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Abstrat. If X is a Banah spae and C ⊂ X a onvex subset, for x∗∗ ∈ X∗∗ and A ⊂ X∗∗ let
d(x∗∗, C) = inf{‖x∗∗ − x‖ : x ∈ C} be the distane from x∗∗ to C and d̂(A, C) = sup{d(a,C) :

a ∈ A}. Among other things, we prove that if X is an order-ontinuous Banah lattie and
K is a w∗-ompat subset of X∗∗ we have: (i) d̂(cow

∗

(K),X) ≤ 2d̂(K, X) and, if K ∩ X isw∗-dense in K, then d̂(cow
∗

(K),X) = d̂(K, X); (ii) if X fails to have a opy of ℓ1(ℵ1), then
d̂(cow

∗

(K),X) = d̂(K, X); (iii) if X has a 1-symmetri basis, then d̂(cow
∗

(K),X) = d̂(K, X).1. Introdution. If X is a Banah spae, let B(X) and S(X) be the losed unit balland unit sphere of X, respetively, and X∗ its topologial dual. The weak-topology of Xis denoted by w and the weak∗-topology of X∗ by w∗. If C is a onvex subset of X∗∗, for
x∗∗ ∈ X∗∗ and A ⊂ X∗∗, let d(x∗∗, C) = inf{‖x∗∗−x‖ : x ∈ C} be the distane from x∗∗to C and d̂(A,C) = sup{d(a, C) : a ∈ A}. Observe that: (i) d̂(co(A), C) = d̂(o(A), C) =

d̂(A,C) where o(A) is the onvex hull of A; (ii) if X⊥ = {z ∈ X∗∗∗ : z(x) = 0, ∀x ∈ X}and Q : X∗∗ → X∗∗

X
is the anonial quotient mapping, then:
d(x∗∗, X) = sup{z(x∗∗) : z ∈ S(X⊥)} = ‖Qx∗∗‖.With this terminology, the Krein-�mulian Theorem (see [3, p. 51℄) states the following:if X is a Banah spae and K ⊂ X∗∗ a w∗-ompat subset suh that d̂(K,X) = 0 (thus,

K is a weakly ompat subset of X), then d̂(cow∗

(K), X) = 0, that is, cow∗

(K) ⊂ Xand cow∗

(K) = co(K) is also a weakly ompat subset of X (co(K) = ‖ · ‖-losure ofo(K) and cow∗

(K) = w∗-losure of o(K)). So, in view of this situation, we an posetwo natural questions:2000 Mathematis Subjet Classi�ation: 46B20, 46B26.Key words and phrases: Krein-�mulian Theorem, Banah latties, 1-symmetri spaes.Supported in part by DGICYT grant MTM2005-00082, grant UCM-910346 and grant UCM-BSCH PR27/05-14045The paper is in �nal form and no version of it will be published elsewhere.[79℄ © Instytut Matematyzny PAN, 2008



80 A. S. GRANERO AND M. SÁNCHEZ(A) If K ⊂ X∗∗ is a w∗-ompat subset, does the equality d̂(cow∗

(K), X) = d̂(K,X)always hold?The answer to this question is negative. In fat, we onstruted (see [5℄, [7℄) a Banahspae X suh that: (i) there exists a w∗-ompat subset H ⊂ B(X∗∗) suh that H ∩Xis w∗-dense in H, d̂(H,X) = 1
2 and d̂(cow∗

(H), X) = 1; (ii) there exists a w∗-ompatsubset K ⊂ B(X∗∗) suh that d̂(K,X) = 1
3 and d̂(cow∗

(K), X) = 1.(B) Does there exist a universal onstant 1 ≤ M < ∞ suh that always X has M -ontrol inside its bidual X∗∗, that is, d̂(cow∗

(K), X) ≤ Md̂(K,X) for every w∗-ompatsubset of X∗∗?The answer to this question is a�rmative. In [5℄ we proved the following result, whihextends the Krein-Šmulian Theorem: if K ⊂ X∗∗ is a w∗-ompat subset and Z ⊂ Xa subspae of X, then d̂(cow∗

(K), Z) ≤ 5d̂(K,Z) and, if Z ∩K is w∗-dense in K, then
d̂(cow∗

(K), Z) ≤ 2d̂(K,Z). So, in view of these results we have: (i) the universal onstant
M of our extension of the Krein-Šmulian Theorem satis�es 3 ≤ M ≤ 5; (ii) for theategory of w∗-ompat subsets K ⊂ X∗∗ suh that X∩K is w∗-dense in K, the onstant
M is exatly 2.Although the answer to question (A) is, in general, negative there are many Banahspaes X for whih d̂(cow∗

(K), X) = d̂(K,X). This is the ase (see [5℄), for instane, if
ℓ1 * X∗, if the unit ball B(X∗) of the dual X∗ is w∗-angeli (for example, if X is weaklyompatly generated (WCG) or weakly Lindelöf determined (WLD)), if X = ℓ1(I), if Kis fragmented by the norm of X∗∗, et.In order to �nd lasses of Banah spae with 1-ontrol in its bidual or, at least, abetter ontrol than in the above general ase, we examine in this paper the lass ofBanah latties. First, we have the following remarks:(a) In [7, Prop. 10℄ we have onstruted a Banah lattie X and a w∗-ompat subset
K ⊂ B(X∗∗) suh that d̂(K,X) = 1

3 and d̂(cow∗

(K), X) = 1. So, onerning the ontrolinside the bidual, the lass of Banah latties behaves as in the general ase.(b) In [6℄ we proved that if ϕ is an Orliz funtion, I an in�nite set and X = ℓϕ(I)the orresponding Orliz spae, equipped with either the Luxemburg or the Orliz norm,then for every w∗-ompat subset K ⊂ X∗∗ we have d̂(cow∗

(K), X) = d̂(K,X) if andonly if ϕ satis�es the ∆2 ondition at 0, that is, if and only if ℓϕ(I) has a 1-symmetribasis.In view of these results it is natural to ask the following questions. If X is a Banahspae with a 1-symmetri basis, does X have 1-ontrol inside X∗∗? What happens if
X is an order-ontinuous Banah lattie? The purpose of this note is to onsider theseproblems. Among other things, we prove that if X is an order-ontinuous Banah lattieand K is a w∗-ompat subset of X∗∗ then: (i) d̂(cow∗

(K), X) ≤ 2d̂(K,X) and, if K ∩Xis w∗-dense in K, then d̂(cow∗

(K), X) = d̂(K,X); (ii) if X fails to have a opy of ℓ1(ℵ1),then d̂(cow∗

(K), X) = d̂(K,X); (iii) if X has a 1-symmetri basis, then d̂(cow∗

(K), X) =

d̂(K,X).Our notation is standard as in the books [9℄,[10℄. |A| denotes the ardinality of a set A,
ω1 the �rst unountable ordinal and ℵ1 = |ω1|. Let X be a Banah spae. If A is a subset



THE EXTENSION OF THE KREIN-ŠMULIAN THEOREM 81ofX, then [A] is the subspae generated by A and [A] the losure of [A]. The Banah spae
X is said to be weakly ompatly generated (for short, WCG) if there exists a w-ompatsubset W of X suh that X = [W ]. The Banah spae X is said to have M -ontrol insideits bidual X∗∗ if d̂(cow∗

(K), X) ≤Md̂(K,X) for every w∗-ompat subset K of X∗∗. Thenotions (ountable or unountable) of 1-unonditional deomposition, 1-unonditionalbasis, 1-symmetri basis and trans�nite basis an be found in [9℄ and [12℄. Conerningthe notions of Banah latties, order-ontinuity (for short, o-ontinuity), et., let us referthe reader to the books [10℄ and [11℄.2. The struture of X,X∗ and X∗∗ when X =
∑

α∈A ⊕Xα. Let us onsider thestruture of X, X∗ and X∗∗ when X is a 1-unonditional diret sum X =
∑

α∈A ⊕Xαof a family of Banah subspaes {Xα : α ∈ A} of X.Definition 1. A Banah spae X is said to be an 1-unonditional diret sum of a familyof Banah subspaes {Xα : α ∈ A} of X, for short, X =
∑

α∈A ⊕Xα 1-unonditional,when X = [∪α∈AXα] and, if xα ∈ Xα, ǫα = ±1, α ∈ A, and A is a �nite subset of A,then ‖
∑

α∈A ǫαxα‖ ≤ ‖
∑

α∈A xα‖.If X =
∑

α∈A ⊕Xα is a 1-unonditional diret sum, then(i) For eah subset A ⊂ A there exists a projetion PA : X → X suh that ‖PA‖ = 1and PA(X) =
∑

α∈A ⊕Xα.(ii) Every x ∈ X has a unique representation of the form x =
∑

α∈A xα with xα ∈

Xα suh that the subset {α ∈ A : xα 6= 0} is ountable, the above series onvergesunonditionally and ‖
∑

α∈A ǫαxα‖ = ‖x‖, where ǫα = ±1, ∀α ∈ A.(iii) If u ∈ X∗, the α-th oordinate uα of u will be the restrition uα := u ↾ Xα ∈ X∗
αof u to Xα. We will identify u with the family (uα)α∈A of its oordinates.We onsider eah dual X∗

α anonially and isometrially embedded into X∗ as follows.If Pα : X → Xα is the projetion assoiated to Xα, then P ∗
α(X∗

α) is a subspae of
X∗ isometri to X∗

α. We identify X∗
α with P ∗

α(X∗
α). Consider in X∗ the losed subspae

Y0 := [
⋃

α∈AX
∗
α], whih is atually the 1-unonditional diret sum of the losed subspaes

{X∗
α : α ∈ A}, that is, Y0 =

∑

α∈A ⊕X∗
α 1-unonditional. Let Y ∗

0 be the dual of Y0.Fat 1. Y ∗
0 an be embedded anonially and isometrially into X∗∗.Indeed, if z ∈ Y ∗

0 , for eah α ∈ A let zα := z ↾ X∗
α be the α-th oordinate of z andidentify z with the family (zα)α∈A of its oordinates. In order to embed Y ∗

0 into X∗∗,de�ne the mapping h : Y ∗
0 → X∗∗ as follows:

∀z ∈ Y ∗
0 , ∀u ∈ X∗, h(z)(u) =

∑

α∈A

zα(uα).Conerning the de�nition of h we have to hek several things, namely:(A) First, we need to be sure that the series ∑

α∈A zα(uα) onverges. If A0 ⊂ A is a�nite subset, then ∑

α∈A0
uα ∈ Y0 and, if ǫα = ±1, ∀α ∈ A, then

∑

α∈A0

zα(ǫαuα) = z
(

∑

α∈A0

ǫαuα

)

≤ ‖z‖ ·
∥

∥

∥

∑

α∈A0

ǫαuα

∥

∥

∥
≤ ‖z‖ · ‖u‖.



82 A. S. GRANERO AND M. SÁNCHEZThus we get: (i) |{α ∈ A : zα(uα) 6= 0}| ≤ ℵ0; (ii) the series ∑

α∈A zα(uα) onvergesabsolutely and, moreover, ∑α∈A zα(uα) ≤ ‖z‖·‖u‖. Therefore h(z) ∈ X∗∗ with ‖h(z)‖ ≤

‖z‖, ∀z ∈ Y ∗
0 , and h is a ontinuous linear mapping suh that ‖h‖ ≤ 1.(B) Let us see that h is an isometry. As h(z) ↾ Y0 = z, ∀z ∈ Y ∗

0 , we have
‖h(z)‖ = sup{〈h(z), u〉 : u ∈ B(X∗)} ≥ sup{〈z, u〉 : u ∈ B(Y0)} = ‖z‖.On the other hand, ‖h(z)‖ ≤ ‖z‖. So, h is an isometry.We know that the subspae Y ⊥

0 := {z ∈ X∗∗ : 〈z, y〉 = 0, ∀y ∈ Y0} of X∗∗ isisometrially isomorphi to the dual (X∗

Y0

)∗.Fat 2. X∗∗ = h(Y ∗
0 )

m
⊕ Y ⊥

0 , that is, X∗∗ is the monotone diret sum of h(Y ∗
0 ) and Y ⊥

0 .Observe that this means that every z ∈ X∗∗ has a unique deomposition z = z1 + z2 with
z1 ∈ h(Y ∗

0 ) and z2 ∈ Y ⊥
0 so that ‖z‖ ≥ ‖z1‖ ∨ ‖z2‖.Indeed, it is lear that h(Y ∗

0 ) ∩ Y ⊥
0 = {0}. Let z ∈ X∗∗ and put w1 := z ↾ Y0. Let ussee that z − h(w1) ∈ Y ⊥

0 . For every α ∈ A and every v ∈ X∗
α we have

〈z − h(w1), v〉 = 〈z, v〉 − 〈h(w1), v〉

= 〈z ↾ X∗
α, v〉 − 〈w1α, v〉 = 〈z ↾ X∗

α, v〉 − 〈z ↾ X∗
α, v〉 = 0.Thus, X∗∗ = h(Y ∗

0 )⊕Y ⊥
0 . Moreover the above diret sum is monotone beause, if z =

z1 + z2 ∈ X∗∗ with z1 ∈ h(Y ∗
0 ) and z2 ∈ Y ⊥

0 , we have on the one hand
‖z‖ ≥ sup{〈z1 + z2, u〉 : u ∈ B(Y0)} = sup{〈z1, u〉 : u ∈ B(Y0)} = ‖z1‖.On the other hand, given ǫ > 0, hoose v ∈ B(X∗) suh that ‖z2‖− ǫ

2 ≤ 〈z2, v〉. We knowthat 〈z1, v〉 =
∑

α∈A z1α(vα) (where z1α := z ↾ X∗
α) so that there exists a �nite subset

A0 ⊂ A suh that |∑α∈A\A0
z1α(vα)| ≤ ǫ

2 . Thus, if u = v−
∑

α∈A0
vα, then u ∈ B(X∗),

〈z2, u〉 = 〈z2, v〉 and
|〈z1, u〉| =

∣

∣

∣

∑

α∈A

z1α(uα)
∣

∣

∣
=

∣

∣

∣

∑

α∈A\A0

z1α(vα)
∣

∣

∣
≤
ǫ

2
.Hene

‖z2‖ −
ǫ
2 ≤ 〈z2, v〉 = 〈z2, u〉 ≤ 〈z1 + z2, u〉 + ǫ

2 = 〈z, u〉 + ǫ
2 ≤ ‖z‖ + ǫ

2 .As ǫ > 0 is arbitrary, we get ‖z2‖ ≤ ‖z‖ and so the diret sum X∗∗ = h(Y ∗
0 )⊕Y ⊥

0 ismonotone.Finally observe that the anonial opy J(X) of X in X∗∗ is inside h(Y ∗
0 ) although

J(X) 6= h(Y ∗
0 ) in general.3. 1-unonditional diret sums of WCG subspaes. Let us investigate the on-trol inside its bidual of a Banah spae whih is a 1-unonditional diret sum of WCGsubspaes. First, we need the following lemma.Lemma 2. Let X be a Banah spae and K a w-ompat subset of X∗. Given z ∈ B(X∗∗)and ǫ > 0, there exists x ∈ X suh that ‖x‖ ≤ 1 + ǫ and

∀k ∈ K, z(k) − ǫ ≤ x(k) ≤ z(k) + ǫ.



THE EXTENSION OF THE KREIN-ŠMULIAN THEOREM 83Proof. Without loss of generality, we suppose that K is onvex and symmetri withrespet to 0 (otherwise, pik co(K ∪ −K) instead of K). Consider the Banah spae
Z = X⊕1R. Then Z∗ = X∗⊕∞R and Z∗∗ = X∗∗⊕1R. Let H1 := {(k, z(k)− ǫ

2 ) : k ∈ K}and H2 := {(k, z(k) + ǫ
2 ) : k ∈ K} be two w-ompat onvex disjoint subsets of Z∗ suhthat, if H = H2 −H1, then H ⊂ Z∗ is a w-ompat onvex subset (and so a w∗-ompatsubset) of Z∗ ful�lling that H ∩

◦

B(0; ǫ
2 ) = ∅. Thus, if we pik ρ > 0 with 2

2+ǫ
≤ ρ < 1,then H∩B(0; ρǫ

2 ) = ∅. By the Hahn-Banah Theorem there exists a vetor ϕ ∈ B(Z) suhthat 〈h, ϕ〉 ≥ ρǫ
2 , ∀h ∈ H. If ϕ = x0 + t0, with x0 ∈ X, t0 ∈ R and ‖ϕ‖ = ‖x0‖+ |t0| ≤ 1,then for every (k1, z(k1) −

ǫ
2 ) ∈ H1 and every (k2, z(k2) + ǫ

2 ) ∈ H2 we have
ϕ((k2, z(k2) + ǫ

2 )) − ϕ((k1, z(k1) −
ǫ
2 )) ≥

ρǫ

2
.Thus(3.1) x0(k2) + t0z(k2) + t0

ǫ

2
≥ x0(k1) + t0z(k1) − t0

ǫ

2
+
ρǫ

2
,whene hoosing k1 = k2 in (3.1), we get t0ǫ ≥ ρǫ

2 , that is, ρ
2 ≤ t0 ≤ 1. So, ‖x0‖ ≤ 1 − ρ

2 .Putting k1 = 0 in (3.1) we get
∀k ∈ K, x0(k) + t0z(k) + t0

ǫ

2
≥ −t0

ǫ

2
+
ρǫ

2
.Thus

∀k ∈ K, −
1

t0
x0(k) ≤ z(k) +

ǫ

2

2t0 − ρ

t0
≤ z(k) + ǫ.On the other hand, putting k2 = 0 in (3.1) we obtain

∀k ∈ K,
t0
2
ǫ ≥ x0(k) + t0z(k) − t0

ǫ

2
+
ρǫ

2
.Thus

∀k ∈ K, z(k) − ǫ ≤ z(k) −
ǫ

2

2t0 − ρ

t0
≤ −

1

t0
x0(k).Therefore, if x = − 1

t0
x0, then x satis�es the statement of the Lemma.Proposition 3. Let X be a Banah spae, whih is a 1-unonditional diret sum of afamily {Xα : α ∈ A} of WCG Banah spaes, we say, X =

∑

α∈A ⊕Xα. Then(A) X has 2-ontrol inside the bidual X∗∗.(B) If the spaes Xα are re�exive and X :=
∑

α∈A ⊕ℓ1Xα (that is, X is the diret
ℓ1-sum of the family {Xα : α ∈ A}), then X has 1-ontrol in the bidual X∗∗.Proof. We adopt the notation of the above paragraphs. So, let Y0 =

∑

α∈A ⊕X∗
α, X∗∗ =

h(Y ∗
0 )

m
⊕ Y ⊥

0 , et. Observe that in the ase (B) we have Y0 =
∑

α∈A ⊕c0
X∗

α, that is, Y0 isthe diret c0-sum of the subspaes {X∗
α : α ∈ A}. Let Kα be a w-ompat subset of Xαsuh that 0 ∈ Kα and Xα = [Kα], α ∈ A. In the ase (B) we pik Kα := B(Xα). Supposethat there exist a w∗-ompat subset K ⊂ B(X∗∗) and some real numbers a, b > 0 suhthat(1) d̂(cow∗

(K), X) > b > 2a > 2d̂(K,X) > 0 in the ase (A).(2) d̂(cow∗

(K), X) > b > a > d̂(K,X) > 0 in the ase (B).



84 A. S. GRANERO AND M. SÁNCHEZBy Lemma 12 of [5℄ we haveFat. There exist ψ ∈ S(X∗∗∗) ∩ X⊥ and a w∗-ompat subset ∅ 6= H ⊂ K suh thatfor every w∗-open subset V of X∗∗ with V ∩ H 6= ∅ there exists ξ ∈ cow∗

(V ∩ H) suhthat 〈ψ, ξ〉 > b.Now we proeed step by step:Step 1. By the Fat there exists a vetor ξ1 ∈ cow∗

(H) suh that 〈ψ, ξ1〉 > b. Sine
B(X∗) is w∗-dense in B(X∗∗∗), we an �nd a vetor x∗1 ∈ B(X∗) suh that 〈ξ1, x∗1〉 > band another vetor η1 ∈ H so that 〈η1, x∗1〉 > b. Let η1 = v1 + w1 with v1 ∈ h(Y ∗

0 ) and
w1 ∈ Y ⊥

0 . Then a > d(η1, X) ≥ d(η1, h(Y
∗
0 )) = ‖w1‖, whene

〈v1, x
∗
1〉 = 〈η1, x

∗
1〉 − 〈w1, x

∗
1〉 > b− a.As 〈v1, x∗1〉 =

∑

α∈A v1α(x∗1α) > b− a, we an �nd a �nite subset A1 ⊂ A suh that, if y1is the restrition of x∗1 to ∑

α∈A1
⊕Xα (so y1 =

∑

α∈A1
x∗1α ∈ B(

∑

α∈A1
⊕X∗

α) ⊂ B(Y0)),then 〈η1, y1〉 = 〈v1, y1〉 > b− a.Step 2. Let V1 = {u ∈ X∗∗ : 〈u, y1〉 > b − a}, whih is a w∗-open subset of X∗∗ with
V1 ∩ H 6= ∅, beause η1 ∈ V1 ∩ H. By the Fat there exists ξ2 ∈ cow∗

(V1 ∩ H) with
〈ψ, ξ2〉 > b. Let 0 < 2ǫ1 < 2−1 ∧ (〈ψ, ξ2〉 − b) ∧ (a(d̂(K,X))−1 − 1). Consider in X∗∗ thesubset L1 := {ξ2}∪ (

∑

α∈A1
Kα). Clearly L1 is a w-ompat subset of X∗∗. Moreover, inthe ase (B), we have B(

∑

α∈A1
⊕1Xα) ⊂ L1. By Lemma 2 there exists a vetor x∗2 ∈ X∗suh that ‖x∗2‖ ≤ 1 + ǫ1 and

∀k ∈ L1, 〈ψ, k〉 − ǫ1 < 〈k, x∗2〉 < 〈ψ, k〉 + ǫ1.In partiular, 〈ξ2, x∗2〉 > b+ǫ1 and |〈x∗2, k〉| ≤ ǫ1 ≤ 2−2, ∀k ∈
∑

α∈A1
Kα. Sine 〈ξ2, x∗2〉 >

b + ǫ1, we an hoose η2 ∈ V1 ∩H suh that 〈η2, x
∗
2〉 > b + ǫ1 and also 〈η2, y1〉 > b − abeause η2 ∈ V1. Let η2 = v2 + w2 with v2 ∈ h(Y ∗

0 ) and w2 ∈ Y ⊥
0 . Observe that

‖w2‖ = d(η2, h(Y
∗
0 )) ≤ d(η2, X) ≤ d̂(K,X) < a and |〈w2, x

∗
2〉| ≤ (1 + ǫ1)d̂(K,X) ≤ a.Now we hoose y2 and A2 in the ases (A) and (B):Case A. We have

〈v2, x
∗
2〉 = 〈η2, x

∗
2〉 − 〈w2, x

∗
2〉 ≥ 〈η2, x

∗
2〉 − |〈w2, x

∗
2〉| > b− a.Thus, as 〈v2, x

∗
2〉 =

∑

α∈A 〈v2α, x
∗
2α〉 > b − a, we an �nd a �nite subset A2 of Asatisfying A1 ⊂ A2 ⊂ A suh that, if y2 is the restrition of x∗2 to ∑

α∈A2
⊕Xα (so

y2 =
∑

α∈A2
x∗2α ∈

∑

α∈A2
⊕X∗

α ⊂ Y0 with ‖y2‖ ≤ 1+ǫ1), then 〈η2, y2〉 = 〈v2, y2〉 > b−a.Observe that for every k ∈
⋃

α∈A1
Kα we have ψ(k) = 0, whene

|〈y2, k〉| = |〈x∗2, k〉| ≤ ǫ1 ≤ 2−2.Case B. Let γ21 := x∗2 ↾
∑

α∈A1
⊕1Xα (that is, γ21 =

∑

α∈A1
x∗2α) and γ22 = x∗2 − γ21.Sine |〈x∗2, k〉| ≤ ǫ1, ∀k ∈

∑

α∈A1
Kα, and B(

∑

α∈A1
⊕1Xα) ⊂

∑

α∈A1
Kα, then

‖γ21‖ ≤ ǫ1. So
〈v2, γ22〉 = 〈η2, x

∗
2〉 − 〈w2, x

∗
2〉 − 〈v2, γ21〉 ≥ 〈η2, x

∗
2〉 − ǫ1 − a > b− a.Sine 〈v2, γ22〉 =

∑

α∈A\A1
〈v2α, x

∗
2α〉 > b−a, we an �nd a �nite subset A2 ⊂ A\A1 suhthat, if y2 is the restrition of x∗2 to ∑

α∈A2
⊕Xα (so y2 =

∑

α∈A2
x∗2α ∈

∑

α∈A2
⊕X∗

α ⊂ Y0with ‖y2‖ ≤ 1 + ǫ1), then 〈η2, y2〉 = 〈v2, y2〉 > b− a.



THE EXTENSION OF THE KREIN-ŠMULIAN THEOREM 85Further we proeed by iteration. We obtain the sequenes {yk : k ≥ 1} ⊂ Y0, {ηk :

k ≥ 1} ⊂ K and {Ak : k ≥ 1}, Ak ⊂ A, ful�lling the following onditions:Case A. In this ase we have:(i) The �nite subsets Ak of A satisfy Ak ⊂ Ak+1 for k ≥ 1.(ii) yk ∈
∑

α∈Ak
⊕X∗

α ⊂ Y0, ‖yk‖ ≤ 1 + ǫk−1, k ≥ 2, and 〈ηj , yk〉 > b − a for j ≥ kwith j, k ∈ N.(iii) For every h ∈
⋃

α∈Ak
Kα we have |〈yk+1, h〉| ≤ 2−k−1, ∀k ≥ 1.Let A0 := ∪n≥1An, X0 :=

∑

α∈A0
⊕Xα and let P0 : X → X0 be the anonialprojetion on X0, with norm ‖P0‖ = 1. The spae X admits the monotone deomposition

X = X0

m
⊕X1 where X1 :=

∑

α∈A\A0

Xα.Therefore we get the following monotone deompositions
X∗ = X∗

0

m
⊕X∗

1 , X
∗∗ = X∗∗

0

m
⊕X∗∗

1 , X∗∗∗ = X∗∗∗
0

m
⊕X∗∗∗

1 , et.,with projetions P0 : X → X0, P ∗
0 : X∗ → X∗

0 , P ∗∗
0 : X∗∗ → X∗∗

0 , P ∗∗∗
0 : X∗∗∗ → X∗∗∗

0 ,et. Observe that P ∗
0 (yk) = yk, ∀k ≥ 1, that is, yk ∈ X∗

0 = P ∗
0 (X∗), ∀k ≥ 1. Let η0 be aw∗-luster point of the sequene {ηk : k ≥ 1} in X∗∗. Obviously η0 ∈ K. Moreover, sine

〈ηj , yk〉 > b− a, ∀j ≥ k, we get 〈η0, yk〉 ≥ b− a, ∀k ≥ 1. Let ϕ0 be a w∗-luster point of
{yk : k ≥ 1} in X∗∗∗. Then(i) ϕ0 ∈ B(X∗∗∗). Atually ϕ0 is in P ∗∗∗

0 (X∗∗∗) = X∗∗∗
0 , that is, P ∗∗∗

0 (ϕ0) = ϕ0.(ii) By onstrution ϕ0↾Kα
= 0, ∀α ∈ A0. Thus ϕ0 ∈ X⊥

0 , beause ⋃

α∈A0
Kα gener-ates X0.(iii) 〈ϕ0, η0〉 ≥ b− a beause 〈η0, yk〉 ≥ b− a, ∀k ≥ 1.LetW := P ∗∗

0 (K) ⊂ B(X∗∗
0 ), whih is a w∗-ompat subset ofX∗∗

0 , and w0 = P ∗∗
0 (η0).Obviously w0 ∈W .Claim 1. d(w0, X0) < a.Indeed, let x ∈ X be arbitrary. Then

d(w0, X0) ≤ ‖w0 − P ∗∗
0 x‖ = ‖P ∗∗

0 (η0) − P ∗∗
0 x‖ ≤ ‖η0 − x‖.That is, d(w0, X0) ≤ d(η0, X) ≤ d̂(K,X) < a.Claim 2. d(w0, X0) ≥ b− a.Indeed, as ϕ0 ∈ B(X∗∗∗) ∩X⊥

0 and
〈ϕ0, wo〉 = 〈ϕ0, P

∗∗
0 η0〉 = 〈P ∗∗∗

0 ϕ0, η0〉 = 〈ϕ0, η0〉 ≥ b− a,we onlude that d(w0, X0) ≥ b− a.As a < b− a we get a ontradition whih proves the statement in the ase (A).Case B. In this ase we have:(i) The �nite subsets Ak, k ≥ 1, of A are disjoint.(ii) yk ∈
∑

α∈Ak
⊕0X

∗
α ⊂ Y0, ‖yk‖ ≤ 1 + ǫk−1, k ≥ 2, and 〈ηj , yk〉 > b− a for j ≥ kwith j, k ∈ N.



86 A. S. GRANERO AND M. SÁNCHEZ(iii) For every n ∈ N we have ‖
∑n

i=1 yi‖ ≤ 2.Let η0 be a w∗-luster point of the sequene {ηk : k ≥ 1} in X∗∗. Obviously η0 ∈ K.Moreover, sine 〈ηj , yk〉 > b − a, ∀j ≥ k, we get 〈η0, yk〉 ≥ b − a > 0, ∀k ≥ 1. Thus
〈η0,

∑n
i=1 yi〉 ≥ n(b − a), ∀n ≥ 1. Sine ‖

∑n
i=1 yi‖ ≤ 2, ∀n ≥ 1, we get a ontraditionwhih proves the statement (B).Proposition 4. Let X be a Banah spae, whih is the 1-unonditional diret sum X =

∑

α∈A ⊕Xα of the family {Xα : α ∈ A} of WCG Banah spaes. If K ⊂ X∗∗ is aw∗-ompat subset suh that K ∩X is w∗-dense in K, then d̂(cow∗

(K), X) = d̂(K,X).Proof. The proof is analogous to the one of ase (A) of Proposition 3. For reader'sonveniene we give the details of the proof. Suppose that there exists a w∗-ompatsubset K ⊂ B(X∗∗) suh that
d̂(cow∗

(K), X) > b > a > d̂(K,X) > 0.By Lemma 12 of [5℄ we have:Fat. There exist ψ ∈ S(X∗∗∗) ∩ X⊥ and a w∗-ompat subset ∅ 6= H ⊂ K suh thatfor every w∗-open subset V of X∗∗ with V ∩ H 6= ∅ there exists ξ ∈ cow∗

(V ∩ H) with
〈ψ, ξ〉 > b.Step 1. By the Fat there exists a vetor ξ1 ∈ cow∗

(H) suh that 〈ψ, ξ1〉 > b. Sine
B(X∗) is w∗-dense in B(X∗∗∗), we an �nd a vetor x∗1 ∈ B(X∗) suh that 〈ξ1, x∗1〉 > b.Let V1 = {u ∈ X∗∗ : 〈u, x∗1〉 > b}, whih is a w∗-open subset of X∗∗ suh that V1 ∩H 6= ∅and so, for the sake of density, also V1∩K∩X 6= ∅. Thus there exists a vetor η1 ∈ K∩Xsuh that 〈η1, x∗1〉 > b. Sine η1 ∈ X, the support A1 := supp(η1) = {α ∈ A : η1α 6= 0} of
η1 is ountable, we say, A1 = {α1n : n ≥ 1}.Step 2. As V1 ∩H 6= ∅, by the Fat there exists a vetor ξ2 ∈ cow∗

(V1 ∩H) suh that
〈ψ, ξ2〉 > b. Let L1 :=

⋃1
i,j=1Kαij

and ǫ1 := 2−1∧(ψ(ξ2)−b). As L1∪{ξ2} is a w-ompatsubset of X∗∗, by Lemma 2 there exists a vetor x∗2 ∈ X∗ suh that ‖x∗2‖ ≤ 1 + ǫ1 and
∀k ∈ L1 ∪ {ξ2}, 〈ψ, k〉 − ǫ1 < 〈k, x∗2〉 < 〈ψ, k〉 + ǫ1.In partiular 〈ξ2, x
∗
2〉 > b and |〈x∗2, k〉| ≤ 2−1, ∀k ∈ L1. As 〈ξ2, x

∗
2〉 > b and ξ2 ∈

cow∗

(V1 ∩ H), if we put W2 := {u ∈ X∗∗|〈u, x∗2〉 > b}, then W2 ∩ V1 ∩ H 6= ∅ and,for the sake of density, also W2 ∩ V1 ∩ K ∩ X 6= ∅. Denote V2 := W2 ∩ V1 and hoose
η2 ∈ V2 ∩ K ∩ X, whih satis�es x∗i (η2) > b, i = 1, 2. Sine η2 ∈ X, the support
A2 := supp(η2) = {α ∈ A : η2α 6= 0} of η2 is ountable, we say, A2 = {α2n : n ≥ 1}.Further we proeed by iteration. We get the sequenes {x∗k : k ≥ 1} ⊂ X∗, {ηk : k ≥

1} ⊂ K ∩X, {Lk : k ≥ 1} and {Ak : k ≥ 1}, suh that(a) Ak := supp(ηk) = {α ∈ A : ηkα 6= 0} is the support of ηk and is ountable, say,
Ak = {αkn : n ≥ 1}, ∀k ≥ 1.(b) The subsets Lk =

⋃k
i,j=1Kαij

are w-ompat subsets of B(X), ∀k ≥ 1.() ‖x∗k+1‖ ≤ 1 + ǫk, 〈ηj , x
∗
k〉 > b, j ≥ k ≥ 1, and for every h ∈ Lk we have

|〈x∗k+1, h〉| ≤ 2−k, ∀k ≥ 1.



THE EXTENSION OF THE KREIN-ŠMULIAN THEOREM 87Let A0 :=
⋃

n≥1 An, X0 :=
∑

α∈A0
⊕Xα and let P0 : X → X0 be the anonialprojetion, with norm ‖P0‖ = 1. Observe that X0 is WCG beause it is a ountable sumof WCG Banah spaes. The spae X admits the monotone deomposition

X = X0

m
⊕X1 where X1 :=

∑

α∈A\A0

Xα.Thus we get the monotone deompositions
X∗ = X∗

0

m
⊕X∗

1 , X
∗∗ = X∗∗

0

m
⊕X∗∗

1 , X∗∗∗ = X∗∗∗
0

m
⊕X∗∗∗

1 , et.,with projetions P0 : X → X0, P ∗
0 : X∗ → X∗

0 , P ∗∗
0 : X∗∗ → X∗∗

0 , P ∗∗∗
0 : X∗∗∗ → X∗∗∗

0 ,et. Observe that P0(ηk) = ηk ∈ X0, ∀k ≥ 1. Let η0 be a w∗-luster point of thesequene {ηk : k ≥ 1} in X∗∗. Obviously η0 ∈ X∗∗
0 ∩K beause X∗∗

0 is w∗-losed in X∗∗(atually X∗∗
0 = X0

w∗) and {ηk : k ≥ 1} ⊂ X0 ∩K. Sine 〈x∗i , ηk〉 > b, ∀i ≤ k, we get
〈η0, x

∗
i 〉 ≥ b, ∀i ≥ 1, and also 〈η0, P

∗
0 x

∗
i 〉 ≥ b, ∀i ≥ 1, beause 〈η0, P ∗

0 x
∗
i 〉 = 〈P ∗∗

0 η0, x
∗
i 〉 =

〈η0, x
∗
i 〉 ≥ b. Let ϕ0 be a w∗-luster point of {P ∗

0 x
∗
k : k ≥ 1} in X∗∗∗. Then(i) ϕ0 ∈ B(X∗∗∗). Atually ϕ0 is in P ∗∗∗

0 (X∗∗∗) = X∗∗∗
0 , (that is, P ∗∗∗

0 (ϕ0) = ϕ0)beause X∗∗∗
0 is w∗-losed in X∗∗∗ and {P ∗

0 x
∗
k : k ≥ 1} ⊂ X∗

0 ⊂ X∗∗∗
0 .(ii) Sine for every k ≥ 1 and every h ∈ Lk we have

|〈P ∗
0 (x∗k+1), h〉| = |〈x∗k+1, P0(h)〉| = |〈x∗k+1, h〉| ≤ 2−k,we get ϕ0 ∈ X⊥

0 .(iii) 〈ϕ0, η0〉 ≥ b beause 〈η0, P
∗
0 (x∗k)〉 ≥ b, ∀k ≥ 1.Let W := P ∗∗

0 (K) ⊂ B(X∗∗
0 ). W is learly a w∗-ompat subset of X∗∗

0 . Let w0 =

P ∗∗
0 (η0). Obviously w0 ∈W .Claim 1. d(w0, X0) < a.Indeed, �rst as W = P ∗∗

0 (K), X0 = P ∗∗
0 (X) and ‖P ∗∗

0 ‖ = 1, we have d̂(W,X0) ≤

‖P ∗∗
0 ‖d̂(K,X) < a. Now it is enough to observe that w0 ∈W .Claim 2. d(w0, X0) ≥ b.Indeed, sine ϕ0 ∈ B(X∗∗∗) ∩X⊥

0 and
〈ϕ0, w0〉 = 〈ϕ0, P

∗∗
0 η0〉 = 〈P ∗∗∗

0 ϕ0, η0〉 = 〈ϕ0, η0〉 ≥ b,we onlude that d(w0, X0) ≥ b.As a < b we get a ontradition whih proves the statement.Let X be a Banah spae whih admits the deomposition X =
∑

α∈A ⊕Xα as a1-unonditional diret sum of losed subspaes Xα. We say that the deomposition X =
∑

α∈A ⊕Xα is of ountable type if for every u ∈ X∗ the support supp(u) := {α ∈ A : uα 6=

0} of u is ountable, (uα)α∈A being the set of oordinates of u, that is, uα := u↾Xα
= u◦Pα,where Pα : X → Xα is the anonial projetion. For instane, if I is an in�nite set,

M : R → [0,+∞] an Orliz funtion suh that its omplementary Orliz funtion M∗(see [2℄, [9, Chapter 4℄) satis�es M∗(t) > 0 for t > 0, then the Orliz spae hM (I) :=

{f ∈ RI :
∑

i∈I M(fi/λ) < ∞, ∀λ > 0} has ountable deomposition (with respet to



88 A. S. GRANERO AND M. SÁNCHEZthe anonial basis of hM (I)), beause every element of its dual hM (I)∗ := ℓM∗(I) hasountable support.Lemma 5. Let X be a Banah spae whih admits a deomposition X =
∑

α∈A ⊕Xα asa 1-unonditional diret sum of losed subspaes. The following statement are equivalent:(1) The deomposition X =
∑

α∈A ⊕Xα is not of ountable type.(2) X has an isomorphi opy of ℓ1(ℵ1) disjointly disposed with respet to the deom-position X =
∑

α∈A ⊕Xα, that is, there exists a subset A1 ⊂ A with ardinality |A1| = ℵ1and for eah α ∈ A1 an element vα ∈ Xα so that the family {vα : α ∈ A1} is equivalentto the anonial basis of ℓ1(ℵ1).Proof. (1) ⇒ (2). If the deomposition X =
∑

α∈A ⊕Xα is not of ountable type, thereexists some u ∈ X∗ suh that the subset A0 := {α ∈ A : uα 6= 0} satis�es |A0| ≥ ℵ1,where uα := u↾Xα
= u ◦ Pα and Pα : X → Xα is the anonial projetion. By passing toa subset if neessary, we an �nd a real number ǫ > 0, a subset A1 ⊂ A0 with |A1| = ℵ1and a family {vα : α ∈ A1} with vα ∈ B(Xα) so that 〈u, vα〉 = 〈uα, vα〉 > ǫ. From this wean prove that the family {vα : α ∈ A1} is equivalent to the anonial basis of ℓ1(ℵ1) andgenerates a opy of ℓ1(ℵ1), whih is disjointly disposed with respet to the deomposition

X =
∑

α∈A ⊕Xα.
(2) ⇒ (1). Let A1 ⊂ A be a subset with ardinality |A1| = ℵ1 and for eah α ∈ A1 let

vα be an element of Xα so that the family {vα : α ∈ A1} is equivalent to the anonialbasis {eα : α ∈ A1} of ℓ1(A1). Let T : ℓ1(A1) → X be the isomorphism between
ℓ1(A1) and the losed subspae generated by {vα : α ∈ A1} so that T (eα) = vα. Sine
T ∗ : X∗ → ℓ∞(A1) is a quotient mapping and so T ∗(X∗) = ℓ∞(A1), if w0 ∈ ℓ∞(A1) issuh that w0(α) = 1, ∀α ∈ A1, there exists a vetor u ∈ X∗ suh that T ∗(u) = w0. Thenfor every α ∈ A1 we have

〈u, vα〉 = 〈u, Teα〉 = 〈T ∗u, eα〉 = 〈w0, eα〉 = 1,and this proves that u is an element of X∗ that does not have ountable support withrespet to the deomposition X =
∑

α∈A ⊕Xα.Proposition 6. Let X be a Banah spae that admits a deomposition of ountable type
X =

∑

i∈I ⊕Xi as a 1-unonditional diret sum of WCG losed subspaes {Xi : i ∈ I}.Then X has 1-ontrol in its bidual X∗∗.Proof. If I is a ountable set, thenX is a ountable diret sum of WCG Banah subspaesand, so, it is WCG. Thus the statement follows in this ase from [5, Cor. 4℄. So, supposein the sequel that I is unountable. We assume that the statement is not true and we aregoing to get a ontradition. Let K be a w∗-ompat subset of X∗∗ and z0 ∈ cow∗

(K)a vetor suh that d(z0, X) > b > a > d̂(K,X). Choose ψ ∈ B(X∗∗∗) ∩ X⊥ suhthat 〈ψ, z0〉 > b. We adopt the following notation. For eah i ∈ I let Ki ⊂ Xi be aw-ompat subset of Xi whih generates Xi. If J is a subset of I, let X(J) denote thesubspae X(J) :=
∑

i∈J ⊕Xi (so X = X(I)) and let PJ denote the anonial projetion
PJ : X → X(J) with norm ‖PJ‖ = 1. We identify the subspae P ∗

J (X∗) of the dual X∗with X(J)∗.



THE EXTENSION OF THE KREIN-ŠMULIAN THEOREM 89Step 1. Sine 〈ψ, z0〉 > b, there exists x∗1 ∈ B(X∗) suh that 〈z0, x∗1〉 > b (beause B(X∗)is w∗-dense in B(X∗∗∗)). By hypothesis the support supp(x∗1) = {α ∈ I : 0 6= x∗1α} := J1of x∗1 is ountable. Let J1 := {α1j : j ≥ 1} and I1 := J1. Thus, if PI1
: X →

∑

i∈I1
⊕Xiis the orresponding anonial projetion, then P ∗

I1
(x∗1) = x∗1 (that is, x∗1 ∈ X(I1)

∗) andmoreover
〈P ∗∗

I1
(z0), x

∗
1〉 = 〈z0, P

∗
I1

(x∗1)〉 = 〈z0, x
∗
1〉 > b.Step 2. Let Kα11

be the w-ompat subset that generates Xα11
, and put L2 := {z0} ∪

Kα11
, whih is a w-ompat subset of X∗∗. Let ǫ2 = 2−2 ∧ (〈ψ, z0〉 − b). By Lemma 2there exists a vetor x∗2 ∈ X∗ suh that ‖x∗2‖ ≤ 1 + ǫ2 and

∀k ∈ L2, 〈ψ, k〉 − ǫ2 < 〈k, x∗2〉 < 〈ψ, k〉 + ǫ2.In partiular, 〈z0, x∗2〉 > b and |〈k, x∗2〉| ≤ 2−2, ∀k ∈ Kα11
. Let J2 := supp(x∗2) be thesupport of x∗2, whih is ountable by hypothesis. Put J2 := {α2j : j ≥ 1} and I2 := J1∪J2.Then P ∗

I2
(x∗i ) = x∗i ∈ X(I2)

∗, i = 1, 2, and moreover
〈P ∗∗

I2
(z0), x

∗
i 〉 = 〈z0, P

∗
I2

(x∗i )〉 = 〈z0, x
∗
i 〉 > b, i = 1, 2.Step 3. Let L3 := {z0} ∪ (

⋃

{Kαij
: 1 ≤ i, j ≤ 2}), whih is a w-ompat subset of

X∗∗. Let ǫ3 = 2−3 ∧ (〈ψ, z0〉 − b). By Lemma 2 there exists a vetor x∗3 ∈ X∗ suh that
‖x∗3‖ ≤ 1 + ǫ3 and

∀k ∈ L3, 〈ψ, k〉 − ǫ3 < 〈k, x∗3〉 < 〈ψ, k〉 + ǫ3.In partiular, 〈z0, x∗3〉 > b and |〈k, x∗3〉| ≤ 2−3, ∀k ∈ Kαij
, 1 ≤ i, j ≤ 2. Let J3 := supp(x∗3)be the support of x∗3, that is ountable by hypothesis, and put J3 := {α3j : j ≥ 1} and

I3 := J1 ∪ J2 ∪ J3. Then P ∗
I3

(x∗i ) = x∗i ∈ X(I3)
∗, i = 1, 2, 3, and moreover

〈P ∗∗
I3

(z0), x
∗
i 〉 = 〈z0, P

∗
I3

(x∗i )〉 = 〈z0, x
∗
i 〉 > b, i = 1, 2, 3.Further we proeed by iteration. Let I0 :=

⋃

n≥1 In. Observe that I0 is a ountablesubset of I suh that P ∗
I0

(x∗i ) = x∗i ∈ X(I0)
∗, i ≥ 1. Let ψ0 ∈ B(X∗∗∗) be a w∗-lusterpoint of the sequene {x∗n : n ≥ 1} in X∗∗∗. Then(α) Sine X(I0)

∗∗∗ is a w∗-losed subset of X∗∗∗ and x∗n ∈ B(X(I0)
∗) ⊂ B(X(I0)

∗∗∗),
n ≥ 1, we get ψ0 ∈ B(X(I0)

∗∗∗) and so P ∗∗∗
I0

(ψ0) = ψ0.(β) Sine |〈u, x∗n+1〉| ≤ 2−n−1, ∀u ∈ Kαij
, 1 ≤ i, j ≤ n, and the subset ⋃

i,j≥1Kαijgenerates the spae X(I0), we onlude that ψ0↾X(I0) ≡ 0, that is, ψ0 ∈ B(X(I0)
⊥).(γ) Sine 〈z0, x

∗
k〉 > b, ∀k ≥ 1, then 〈ψ0, z0〉 ≥ b.Let H := P ∗∗

I0
(K) and w0 := P ∗∗

I0
(z0). Clearly, H is a w∗-ompat subset of X(I0)

∗∗(for the topology σ(X(I0)
∗∗, X(I0)

∗) and w0 ∈ cow∗

(H).Claim 1. d̂(H,X(I0)) < a and d(w0, X(I0)) < a.Indeed
d̂(H,X(I0)) = d̂(P ∗∗

I0
(K), P ∗∗

I0
(X)) ≤ ‖P ∗∗

I0
‖d̂(K,X) < a.By [5, Cor. 4℄ we have d(w0, X(I0)) < a, beause X(I0) is a ountable diret sum ofWCG spaes and so it is WCG.Claim 2. d(w0, X(I0)) ≥ b.



90 A. S. GRANERO AND M. SÁNCHEZIndeed, by (γ) we have
〈ψ0, w0〉 = 〈ψ0, P

∗∗
I0

(z0)〉 = 〈P ∗∗∗
I0

(ψ0), z0〉 = 〈ψ0, z0〉 ≥ b.As ψ0 ∈ X(I0)
⊥ and ‖ψ0‖ ≤ 1, we get d(w0, X(I0)) ≥ b.Sine b > a, we obtain a ontradition whih proves the statement.Proposition 7. Let X be a Banah spae that has a trans�nite basis {eα : 1 ≤ α < ω1}with onstant 1 (that is, if 1 ≤ α1 < α2 < · · · < αn+m < ω1 and (λi)

n+m
i=1 ∈ Rn+m, then

‖
∑n

i=1 λieαi
‖ ≤ ‖

∑n+m
i=1 λieαi

‖) so that every z ∈ X∗ has ountable support. Then Xhas 1-ontrol in its bidual X∗∗.Proof. This proof is analogous to the one of Proposition 6. We suppose that the statementis not true and we are going to obtain a ontradition. Assume that there exist a w∗-ompat subset K ⊂ X∗∗ and a vetor z0 ∈ cow∗

(K) suh that d(z0, X) > b > a >

d̂(K,X). Choose a vetor ψ ∈ B(X∗∗∗)∩X⊥ suh that 〈ψ, z0〉 > b. We adopt the followingnotation. If β < ω1, let X(β) denote the subspae X(β) :=
∑

i<β ⊕[ei] (so X = X(ω1))and let Pβ be the anonial projetion Pβ : X → X(β) with norm ‖Pβ‖ = 1. We identifythe subspae P ∗
β (X∗) of X∗ with X(β)∗.Step 1. Sine 〈ψ, z0〉 > b, there exists x∗1 ∈ B(X∗) suh that 〈z0, x∗1〉 > b (beause B(X∗)is w∗-dense in B(X∗∗∗)). By hypothesis the support of x∗1 is ountable and so there exists

β1 < ω1 suh that supp(x∗1) ⊂ [1, β1). Thus, P ∗
β1

(x∗1) = x∗1 (that is, x∗1 ∈ X(β1)
∗) andmoreover

〈P ∗∗
β1

(z0), x
∗
1〉 = 〈z0, P

∗
β1

(x∗1)〉 = 〈z0, x
∗
1〉 > b.Step 2. Let [1, β1) = {α1j : j ≥ 1}. Sine 〈ψ, z0〉 > b and 〈ψ, eα11

〉 = 0, there exists
x∗2 ∈ B(X∗) suh that 〈z0, x

∗
2〉 > b and 〈x∗2, eα11

〉 = 0. By hypothesis the support of x∗2is ountable and so there exists β1 < β2 < ω1 suh that supp(x∗2) ⊂ [1, β2). Thus, for
i = 1, 2, we have P ∗

β2
(x∗i ) = x∗i (that is, x∗i ∈ X(β2)

∗) and moreover
〈P ∗∗

β2
(z0), x

∗
i 〉 = 〈z0, P

∗
β2

(x∗i )〉 = 〈z0, x
∗
i 〉 > b.Step 3. Let [1, β2) = {α2j : j ≥ 1}. Sine 〈ψ, z0〉 > b and 〈ψ, eαij

〉 = 0, i, j = 1, 2, thereexists x∗3 ∈ B(X∗) suh that 〈z0, x∗3〉 > b and 〈x∗3, eαij
〉 = 0, i, j = 1, 2. By hypothesis thesupport of x∗3 is ountable and so there exists β2 < β3 < ω1 suh that supp(x∗3) ⊂ [1, β3).Thus, for i = 1, 2, 3, we have P ∗

β3
(x∗i ) = x∗i (that is, x∗i ∈ X(β3)

∗) and moreover
〈P ∗∗

β3
(z0), x

∗
i 〉 = 〈z0, P

∗
β3

(x∗i )〉 = 〈z0, x
∗
i 〉 > b.Further we proeed by iteration. Let β0 := sup{βn : n ≥ 1}, that satis�es β0 < ω1 and

P ∗
β0

(x∗i ) = x∗i , and so x∗i ∈ X(β0)
∗, i ≥ 1. Let ψ0 ∈ B(X∗∗∗) a w∗-luster point of thesequene {x∗n : n ≥ 1} en X∗∗∗. Then(α) SineX(β0)

∗∗∗ is a w∗-losed subset ofX∗∗∗ and x∗n ∈ B(X(β0)
∗) ⊂ B(X(β0)

∗∗∗),
n ≥ 1, we get ψ0 ∈ B(X(β0)

∗∗∗) and so P ∗∗∗
β0

(ψ0) = ψ0.(β) Sine 〈x∗n+1, eαij
〉 = 0, ∀1 ≤ i, j ≤ n, and the family {eαij

: 1 ≤ i, j} generatesthe spae X(β0), we onlude that ψ0↾X(β0) ≡ 0, that is, ψ0 ∈ B(X(β0)
⊥).(γ) Sine 〈z0, x

∗
k〉 > b, ∀k ≥ 1, then 〈ψ0, z0〉 ≥ b.
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β0

(K) and w0 := P ∗∗
β0

(z0). Clearly, H is a w∗-ompat subset of X(β0)
∗∗and w0 ∈ cow∗

(H).Claim 1. d̂(H,X(β0)) < a and d(w0, X(β0)) < a.Indeed
d̂(H,X(β0)) = d̂(P ∗∗

β0
(K), P ∗∗

β0
(X)) ≤ ‖P ∗∗

β0
‖d̂(K,X) < a.By [5, Cor. 4℄ we get d(w0, X(β0)) < a, beause X(β0) is separable and so WCG.Claim 2. d(w0, X(β0)) ≥ b.Indeed, by (γ) we have

〈ψ0, w0〉 = 〈ψ0, P
∗∗
β0

(z0)〉 = 〈P ∗∗∗
β0

(ψ0), z0〉 = 〈ψ0, z0〉 ≥ b.As ψ0 ∈ X(β0)
⊥ and ‖ψ0‖ ≤ 1, we get d(w0, X(β0)) ≥ b.Sine b > a, we obtain a ontradition, whih proves the statement.Proposition 8. Let X be a Banah spae whih is the trans�nite diret sum of thefamily {Xα : 1 ≤ α < ω1} of WCG subspaes, X =

∑

α<ω1
⊕Xα, with onstant 1(that is, if 1 ≤ α1 < α2 < · · · < αn+m < ω1, xαi

∈ Xαi
and (λi)

n+m
i=1 ∈ Rn+m, then

‖
∑n

i=1 λixαi
‖ ≤ ‖

∑n+m
i=1 λixαi

‖) so that every z ∈ X∗ has ountable support. Then Xhas 1-ontrol in its bidual X∗∗.Proof. The proof is analogous to the one of Proposition 7 by using the w-ompat subsets
Kα ⊂ Xα that generate Xα, α < ω1, and Lemma 2, as in Proposition 6.4. Appliation to the order-ontinuous Banah latties. First we show that, if
X is an o-ontinuous Banah lattie, then X is a 1-unonditional diret sum of disjointlosed ideals whih are WCG. This result is well known (see [1℄) but we give its proof forthe reader's onveniene.Lemma 9. Let X be an o-ontinuous Banah lattie with a weak unit e > 0. Then X isWCG.Proof. It is well known (see [10, p. 28℄) that the interval [0, e] := {x ∈ X : 0 ≤ x ≤ e} is aw-ompat subset of X. Let us see that X = [[0, e]], that is, X is the losure of the spaegenerated by [0, e]. Pik a positive element x ∈ X+. Then ne∧ x ↑ x for n→ ∞, whene
‖x−ne∧ x‖ ↓ 0 beause X is o-ontinuous. So ⋃

n≥1[0, ne] =
⋃

n≥1 n[0, e] is dense in thepositive one X+. As X = X+ −X+, we onlude that X is the losure of the subspaegenerated by [0, e].Lemma 10. If X is an o-ontinuous Banah lattie, then X is the 1-unonditional diretsum X =
∑

α∈A ⊕Xα of a family of losed ideals {Xα : α ∈ A} mutually disjoint, suhthat eah Xα has weak unit and so it is WCG.Proof. By [10, 1.a.9℄ X admits the expression X =
∑

α∈A ⊕Xα as a diret sum of afamily of losed ideals mutually disjoint {Xα : α ∈ A} (so as a 1-unonditional diretsum), suh that eah Xα has a weak unit. By Lemma 9 we get the statement.



92 A. S. GRANERO AND M. SÁNCHEZProposition 11. Let X be an o-ontinuous Banah lattie. If K is a w∗-ompat sub-set of X∗∗, then d̂(cow∗

(K), X) ≤ 2d̂(K,X) and, if K ∩ X is w∗-dense in K, then
d̂(cow∗

(K), X) = d̂(K,X).Proof. This result follows from Lemma 10, Proposition 3 and Proposition 4.Proposition 12. Let X be an o-ontinuous Banah lattie that does not have a opy of
ℓ1(ℵ1). Then X has 1-ontrol in its bidual X∗∗.Proof. Clearly, if X is an o-ontinuous Banah lattie that does not have a opy of
ℓ1(ℵ1), then X admits by Lemma 5 and Lemma 10 a deomposition of ountable type
X =

∑

α∈A ⊕Xα as a 1-unonditional diret sum of losed ideals Xα eah having weakunit. So, this result follows from Proposition 6.Proposition 13. Let X be a Banah spae with a 1-unonditional basis {ei : i ∈ I}equivalent to the anonial basis of ℓ1(I). Then X has 1-ontrol in its bidual X∗∗.Proof. The proof is analogous to the one of part (B) of Proposition 3, putting Xi =

[ei], i ∈ I, and taking into aount that X∗ and the subspae Y0 of X∗ (see the notationof Proposition 3) are anonially isomorphi to ℓ∞(I) and c0(I), respetively.A Banah spae X has a 1-symmetri basis {ei : i ∈ I} (see [12, p. 811℄) whenever
{ei : i ∈ I} is a 1-unonditional basis of X and, moreover, {ei : i ∈ I} is symmetri,that is, for any two sequenes {in : n ≥ 1} and {jn : n ≥ 1} of I, the basi sequenes
{ein

: n ≥ 1} and {ejn
: n ≥ 1} are equivalent. Of ourse, the anonial bases ofnon-separable Orliz spaes, Lorentz spaes, Orliz-Lorentz spaes, et., are 1-symmetribases.Proposition 14. Let X be a Banah spae with a 1-symmetri basis. Then X has 1-ontrol in its bidual X∗∗.Proof. Case 1. Suppose that every element of the dual X∗ has ountable support. Inthis ase the result follows from Proposition 6.Case 2. Suppose that there exists a vetor u ∈ B(X∗) whit unountable support. ByProposition 13 it is enough to prove the following laim.Claim. If there exists a vetor u ∈ B(X∗) with unountable support, then the 1-sym-metri basis {ei : i ∈ I} of X is equivalent to the anonial basis of ℓ1(I).Indeed, sine supp(u) := {i ∈ I : u(ei) 6= 0} is unountable, we an �nd a real number

ǫ > 0 and an unountable subset J ⊂ supp(u) suh that |u(ei)| > ǫ, ∀i ∈ J . Let us provethat the family {ei : i ∈ J} is equivalent to the basis of ℓ1(J). Suppose that the basis
{ei : i ∈ J} is normalized and hoose a vetor of the form ∑

1≤k≤n λkeik
, ik ∈ J . Let

ǫk = ±1 so that u(λkǫkeik
) = |λku(eik

)| ≥ ǫ|λk|, 1 ≤ k ≤ n. Then
∑

1≤k≤n

|λk| ≥
∥

∥

∥

∑

1≤k≤n

λkeik

∥

∥

∥
=

∥

∥

∥

∑

1≤k≤n

λkǫkeik

∥

∥

∥

≥
∣

∣

∣
u
(

∑

1≤k≤n

λkǫkeik

)∣

∣

∣
≥ ǫ

∑

1≤k≤n

|λk|,



THE EXTENSION OF THE KREIN-ŠMULIAN THEOREM 93and this implies that the family {ei : i ∈ J} is equivalent to the basis of ℓ1(J). As thebasis {ei : i ∈ I} of X is symmetri, �nally we onlude that {ei : i ∈ I} is equivalentto the anonial basis of ℓ1(I), and this proves the Claim and ompletes the proof of theProposition.
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