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Abstrat. We study weighted funtion spaes of Lebesgue, Besov and Triebel-Lizorkin typewhere the weight funtion belongs to some Mukenhoupt Ap lass. The singularities of funtionsin these spaes are haraterised by means of envelope funtions.Introdution. The purpose of this paper is to use the reently introdued onept ofgrowth envelopes and ontinuity envelopes in funtion spaes, respetively, in order toharaterise weighted spaes of type Lp(R

n, w), Bs
p,q(R

n, w) and F s
p,q(R

n, w) where wbelongs to some Mukenhoupt lass Ap. The idea to onsider growth envelopes and on-tinuity envelopes in (unweighted) funtion spaes originates from suh lassial results asthe famous Sobolev embedding theorem [36℄, or, seondly, from the Brézis-Wainger re-sult [5℄ on the almost Lipshitz ontinuity of funtions from a Sobolev spae H1+n/p
p (Rn),

1 < p < ∞. Basially, the unboundedness of funtions that belong to (lassial) Sobolevspaes W k
p (Rn), k ∈ N0, 1 ≤ p <∞, (and more general sales of spaes) is haraterised.By Sobolev's embedding theorem it is known that for k ≤ n

p , 1 ≤ p < ∞, there are(essentially) unbounded funtions in W k
p (Rn). More preisely, in ase of k < n

p , one has
W k

p (Rn) →֒ Lr(R
n) for p ≤ r ≤ p∗ = np

n−kp , whereas in the limiting ase, k = n
p ,(0.1) Wn/p

p (Rn) →֒ Lr(R
n) whenever p ≤ r <∞,but Wn/p

p (Rn) 6 →֒ L∞(Rn) unless p = 1. Beyond the `ritial line' k = n
p , i.e., for k > n

por k = n and p = 1, we have W k
p (Rn) →֒ L∞(Rn).In the past a lot of work has been devoted to Sobolev type embeddings, in partiularto re�nements of the limiting ase (0.1) in terms of wider lasses of funtion spaes.We do not want to report on this elaborate history here; apart from the original papers2000 Mathematis Subjet Classi�ation: Primary 46E35; Seondary 42B35.Key words and phrases: Mukenhoupt weights, funtion spaes, envelopes.The researh was supported by the Heisenberg fellowship HA 2794/1-1 of the DFG.The paper is in �nal form and no version of it will be published elsewhere.[95℄ © Instytut Matematyzny PAN, 2008



96 D. D. HAROSKEassertions of this type are indispensable parts in books dealing with Sobolev spaes andrelated questions, f. [1℄, [45℄, [26℄, [10℄.In order to study the growth or unboundedness of suh funtions (distributions) thegrowth envelope E
G
(X) = (EX

G
(t), uX

G
) of a funtion spae X ⊂ Lloc

1 is introdued, where
EX
G

(t) ∼ sup{f∗(t) : ‖f |X‖ ≤ 1}, t > 0,is the growth envelope funtion of X and uX
G

∈ (0,∞] is some additional index providinga �ner desription. Here f∗ denotes the non-inreasing rearrangement of f , as usual.When X →֒ C it makes sense to replae f∗(t) with ω(f,t)
t and to study questions of thesmoothness of funtions, where ω(f, t) is the modulus of ontinuity. This leads to theontinuity envelope funtion,

EX
C

(t) ∼ sup

{
ω(f, t)

t
: ‖f |X‖ ≤ 1

}
, 0 < t < 1,and the ontinuity envelope EC. These onepts were introdued in [43℄, [18℄, where thelatter book also ontains a reent survey of the present state-of-the-art (onerning ex-tensions and more general approahes) as well as appliations and further referenes.A �rst motivation to study weighted spaes resulted from questions of loal versusglobal behaviour of EX

G
(t), that is, for t → 0 and t → ∞, respetively. The idea was tohek that so-alled `admissible' weights, say, wα(x) = (1 + |x|2)α/2, have no in�ueneon the loal singularity behaviour (measured in envelopes), unlike (partiular examplesof) Mukenhoupt weights, e.g., wα(x) = |x|α, α > 0. Seondly, we expeted that globallytheir in�uene is the same. These assumptions ould be veri�ed in [19℄, see also [18℄.However, we only studied the above model ases essentially, stiking to growth envelopes.The present paper ontains new and more general results, not only overing ontinuityenvelope funtions, but modifying the model weight funtion as well as proving a �rstresult in the general ase. We restrit ourselves to Mukenhoupt weights and onsider�rst

wα,β(x) =

{
|x|α if |x| ≤ 1 ,

|x|β if |x| > 1 ,

} with β ≥ 0, −n < α ≤ β.We an prove in this situation that
E

Bs
p,q(wα,β)

G
(t) ∼ E

F s
p,q(wα,β)

G
(t) ∼ t−

1
p−max(α,0)

np + s
n , 0 < t < 1,and

E
Bs

p,q(wα,β)

G
(t) ∼ E

F s
p,q(wα,β)

G
(t) ∼ t−

1
p− β

np , t→ ∞,where we have to assume −n + max(α,0)
p < s− n

p < max(α,0)
p . In ase of Lebesgue spaesthe ounterpart reads as

E
Lp(wα,β)
G

(t) ∼ t−
max(α,0)

np − 1
p , 0 < t < 1,and

E
Lp(wα,β)
G

(t) ∼ t−
β

np− 1
p , t→ ∞.In the general ase w ∈ Ap we obtain that

c1 sup
|E|=t

( ∫

E

w(x) dx

)−1/p

≤ E
Lp(w)
G

(t) ≤ c2 sup
|E|=t

1

|E|

( ∫

E

w(x)−p′/p dx

)1/p′

,



SINGULARITIES IN WEIGHTED FUNCTION SPACES 97where the supremum is taken over all sets E ⊂ R
n with measure |E| = t. Finally, omingto ontinuity envelopes, we prove that for max(α,0)

p < s− n
p <

max(α,0)
p + 1,

E
Bs

p,q(wα,β)

C
(t) ∼ E

F s
p,q(wα,β)

C
(t) ∼ t−1+s−n

p −max(α,0)
p , 0 < t < 1.The main tools to prove suh results are unweighted ounterparts, sharp embeddings andatomi deompositions of orresponding spaes. It is obvious but surprising at �rst glanethat parameters α < 0 do not hange the orresponding singularity behaviour. The �rstobservation of this kind, though in a di�erent ontext, is ontained in [21℄.Note that envelope results have some interesting appliations to limiting embeddings,Hardy-type inequalities, and the estimate of approximation numbers of related ompatembeddings, we refer to [18℄ for further details.The paper is organised as follows. Setion 1 ollets standard notation and fundamen-tals about Mukenhoupt weights and weighted funtion spaes, in Setion 2 we brie�yreall the onepts of envelope funtions inluding basi examples. The main results areontained in Setions 3 and 4 onerning growth envelope funtions and ontinuity enve-lope funtions, respetively.Aknowledgements. The present paper is an extended version of the short talk givenat the onferene `Funtion Spaes VIII', July 3-7, 2006, B�dlewo. Some further ideasemerged from disussions with Professor Leszek Skrzypzak while we were working on ajoint projet about embeddings of weighted funtion spaes; I would like to thank himfor the inspiring talks.1. Weighted funtion spaes. We use standard notation. Let N be the olletion ofall natural numbers and let N0 = N ∪ {0}. Let Rn be eulidean n-spae, n ∈ N, C theomplex plane. If a ∈ R, then a+ = max(a, 0). For 0 < u ≤ ∞, the number u′ is givenby 1/u′ = (1 − 1/u)+. Given two (quasi-) Banah spaes X and Y , we write X →֒ Y if

X ⊂ Y and the natural embedding of X in Y is ontinuous. All unimportant positiveonstants will be denoted by c, oasionally with subsripts. For onveniene, let both
dx and | · | stand for the (n-dimensional) Lebesgue measure in the sequel. As we shallalways deal with funtion spaes on Rn, we may often omit the `Rn' from their notationfor onveniene.1.1. Mukenhoupt weights. We brie�y reall some fundamentals on Mukenhoupt lasses
Ap. By a weight w we shall always mean a loally integrable funtion w ∈ Lloc

1 , positivea.e. in the sequel. Let M stand for the Hardy-Littlewood maximal operator given by
Mf(x) = sup

B(x,r)∈B

1

|B(x, r)|

∫

B(x,r)

|f(y)| dy, x ∈ R
n,where B is the olletion of all open balls B(x, r) = {y ∈ Rn : |y − x| < r}, r > 0.Definition 1.1. Let w be a positive, loally integrable funtion on Rn.(i) Let 1 < p < ∞. Then w belongs to the Mukenhoupt lass Ap if there exists aonstant 0 < A <∞ suh that for all balls B,
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(1.1) (
1

|B|

∫

B

w(x) dx

)1/p(
1

|B|

∫

B

w(x)−p′/p dx

)1/p′

≤ A,where p′ is given by 1/p′ + 1/p = 1, as usual.(ii) A weight w belongs to the Mukenhoupt lass A1 if there exists a onstant A > 0suh that
Mw(x) ≤ Aw(x) for almost all x ∈ R

n.(iii) The Mukenhoupt lass A∞ is given by A∞ =
⋃

p>1 Ap.Sine the pioneering work of Mukenhoupt [27℄, [28℄, [29℄, these lasses of weightfuntions have been studied in great detail, we refer, in partiular, to the monographs [13℄,[38℄, [39, Ch. IX℄, and [37, Ch. V℄ for a omplete aount of the theory of Mukenhouptweights.Remark 1.2. For onveniene, we reall a few basi properties only. The lass Ap isstable with respet to translation, dilation and multipliation by a positive salar. Aweight w ∈ Ap possesses the doubling property, and w ∈ Ap implies w−p′/p ∈ Ap′ ,
1 < p < ∞. In addition to the (more or less obvious) monotoniity Ap1

⊂ Ap2
for

1 ≤ p1 < p2 ≤ ∞, the so-alled `reverse Hölder inequality', a fundamental feature of Apweights (see [37, Ch. V, Prop. 3, Cor.℄) leads to the somehow surprising property thatfor any w ∈ Ap there exists some number r < p suh that w ∈ Ar.Example 1.3. Obviously, one of the most prominent examples of a Mukenhoupt weight
w ∈ Ap, 1 < p <∞, is given by(1.2) wα(x) = |x|α, x ∈ R

n, −n < α <∞.It is well known that wα ∈ A1 if, and only if, α ≤ 0 and wα ∈ Ap if, and only if,
α < n(p − 1). In this paper we shall study a slightly more general weight with possiblydi�erent polynomial growth both near zero and in�nity,(1.3) wα,β(x) =

{
|x|α if |x| ≤ 1 ,

|x|β if |x| > 1 ,

} with α > −n, β > −n.Obviously this re�nes the approah (1.2), i.e., wα,α = wα. One veri�es that wα,β ∈ Ap if
−n < α < n(p− 1) and − n < β < n(p− 1).1.2. Funtion spaes of type Bs

p,q(R
n, w) and F s

p,q(R
n, w) with w ∈ A∞. Let w ∈ A∞ bea Mukenhoupt weight and 0 < p <∞. All spaes are de�ned on R

n in this setion. Theweighted Lebesgue spae Lp(w) ontains all measurable funtions suh that(1.4) ‖f |Lp(w)‖ = ‖w1/pf |Lp‖ =

( ∫

Rn

|f(x)|pw(x) dx

)1/p

is �nite. Note that for p = ∞ one obtains the lassial (unweighted) Lebesgue spae,(1.5) L∞(w) = L∞, w ∈ A∞.We thus restrit ourselves to p <∞ in what follows.



SINGULARITIES IN WEIGHTED FUNCTION SPACES 99The Shwartz spae S and its dual S ′ of all omplex-valued tempered distributionshave their usual meaning here. Let ϕ0 = ϕ ∈ S be suh that(1.6) suppϕ ⊂ {y ∈ R
n : |y| < 2} and ϕ(x) = 1 if |x| ≤ 1,and for eah j ∈ N let ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x). Then {ϕj}

∞
j=0 forms a smoothdyadi resolution of unity. Given any f ∈ S ′, we denote by Ff and F−1f its Fouriertransform and its inverse Fourier transform, respetively. Let f ∈ S ′, then the Paley-Wiener-Shwartz theorem implies that F−1(ϕjFf) is an entire analyti funtion on Rn.Definition 1.4. Let 0 < q ≤ ∞, 0 < p < ∞, s ∈ R, and {ϕj}j a smooth dyadiresolution of unity. Assume w ∈ A∞.(i) The weighted Besov spae Bs

p,q(w) is the set of all distributions f ∈ S ′ suh that
‖f |Bs

p,q(w)‖ =
( ∞∑

j=0

2jsq‖F−1(ϕjFf)|Lp(w)‖q
)1/q(1.7) is �nite. In the limiting ase q = ∞ the usual modi�ation is required.(ii) The weighted Triebel-Lizorkin spae F s

p,q(w) is the set of all distributions f ∈ S ′suh that
‖f |F s

p,q(w)‖ =
∥∥∥
( ∞∑

j=0

2jsq|F−1(ϕjFf)(·)|q
)1/q

|Lp(w)
∥∥∥(1.8) is �nite. In the limiting ase q = ∞ the usual modi�ation is required.Remark 1.5. The spaes Bs

p,q(w) and F s
p,q(w) are independent of the partiular hoie ofthe smooth dyadi resolution of unity {ϕj}j appearing in their de�nitions. They are quasi-Banah spaes (Banah spaes for p, q ≥ 1), and S →֒ Bs

p,q(w) →֒ S ′, similarly for the
F -ase, where the �rst embedding is dense if q < ∞; f. [6℄. Moreover, for w0 ≡ 1 ∈ A∞we re-obtain the usual (unweighted) Besov and Triebel-Lizorkin spaes; we refer, in par-tiular, to the series of monographs by Triebel, [40℄, [41℄, [42℄ and [44℄ for a omprehensivetreatment of the unweighted spaes.The above spaes with weights of type w ∈ A∞ have been studied by Bui �rst in[6℄, [7℄, with subsequent papers [8℄, [9℄. It turned out that many of the results fromthe unweighted situation have weighted ounterparts: e.g., we have F 0

p,2(w) = hp(w),
0 < p < ∞, where the latter are Hardy spaes, see [6, Thm. 1.4℄, and, in parti-ular, hp(w) = Lp(w) = F 0

p,2(w), 1 < p < ∞, w ∈ Ap, see [38, Ch. VI, Thm. 1℄.Conerning (lassial) Sobolev spaes W k
p (w) (built upon Lp(w) in the usual way) wehave(1.9) W k

p (w) = F k
p,2(w), k ∈ N0, 1 < p <∞, w ∈ Ap,f. [6, Thm. 2.8℄. Further results, onerning, for instane, embeddings, (real) interpola-tion, extrapolation, lift operators, duality assertions an be found in [6℄, [7℄, [13℄.



100 D. D. HAROSKEMore reently, Ryhkov extended in [32℄ the above lass of weights in order to inor-porate loally regular weights, too, reating in that way the lass Aloc
p . Reent worksare due to Roudenko [12, 30, 31℄, and Bownik [3, 4℄. We partly rely on our approah[20℄.Remark 1.6. In the past, Besov and Triebel-Lizorkin spaes with so-alled `admissible'weights (of at most polynomial growth) were studied in detail, i.e., di�erent harateri-sations, the ontinuity and ompatness of orresponding embeddings and further topis.As a proto-type one an think of(1.10) v(x) = (1 + |x|2)α/2, α ∈ R, x ∈ R

n.Then the de�nition of Bs
p,q(v) and F s

p,q(v) is literally the same as in De�nition 1.4. Asfor literature we refer to [14℄, [15℄, [16℄, see also [11, Ch. 4℄ and [33℄ for a more generalapproah. Quite reently, there was a refreshed interest in this topi leading to the papers[22℄, [23℄, [24℄, [25℄ and [35℄. Appliations are desribed in [16℄.One remarkable point is that for suh weights f ∈ Bs
p,q(v) if, and only if, vf ∈ Bs

p,q,with equivalent norms, ‖f |Bs
p,q(v)‖ ∼ ‖vf |Bs

p,q‖. In view of (1.4) one has thus to modify
v by v1/p in order to ompare results in orresponding spaes.We formulate two speial embedding results for weighted spaes of type Bs

p,q(w) and
F s

p,q(w) that will be used in the sequel. The �rst one will enable us to redue all (non-limiting) ases to the study of B-spaes only. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and
w ∈ A∞. Then(1.11) Bs

p,min(p,q)(w) →֒ F s
p,q(w) →֒ Bs

p,max(p,q)(w),see [6, Thm. 2.6℄. In other words, whenever the q-parameter has no in�uene on theresult we an immediately transfer the B-results to the F -spaes by (1.11). The nextresult establishes a link between weighted and unweighted Besov spaes; it is proved in[21℄.Proposition 1.7. Let(1.12) −∞ < s2 ≤ s1 <∞, 0 < p1 ≤ p2 ≤ ∞, 0 < q1 ≤ q2 ≤ ∞,and wα,β be given by (1.3). Then(1.13) Bs1
p1,q1

(wα,β) →֒ Bs2
p2,q2if, and only if,(1.14) β ≥ 0 and δ = s1 −

n

p1
− s2 +

n

p2
≥

max(α, 0)

p1
.Remark 1.8. We brie�y ompare this result with the admissible weights v disussed inRemark 1.6. Restrited to the parameters given by (1.12) we proved in [15, Thm. 2.3℄that(1.15) Bs1

p1,q1
(v) →֒ Bs2

p2,q2
if, and only if, δ ≥ 0 and v(x) ≥ cfor some c > 0 and all x ∈ Rn. In partiular, with v given by (1.10) we have to assume,in addition, that α ≥ 0. For extensions and more general results in this ontext we referto [15℄.



SINGULARITIES IN WEIGHTED FUNCTION SPACES 1012. Envelope funtions2.1. Growth envelope funtions. Let for some measurable funtion f : R
n → C, �nitea.e., its dereasing rearrangement f∗ be de�ned as usual,(2.1) f∗(t) = inf{s ≥ 0 : |{x ∈ R

n : |f(x)| > s}| ≤ t} , t ≥ 0.Definition 2.1. LetX be some quasi-normed funtion spae on Rn. The growth envelopefuntion EX
G

: (0,∞) → [0,∞] of X is de�ned by(2.2) EX
G

(t) = sup
‖f |X‖≤1

f∗(t), t > 0.It is well-known that EX
G

is monotonially dereasing and right-ontinuous, that X →֒

L∞ if, and only if, EX
G

is bounded, and that there are funtion spaes X whih do notpossess a growth envelope funtion in the sense that EX
G

is not �nite for any t > 0; werefer to [17℄ and [18℄ for a more general approah as well as a detailed aount of basiproperties of EX
G
. We only mention the onvenient `monotoniity' feature for further use :(2.3) X1 →֒ X2 implies EX1

G
(t) ≤ cEX2

G
(t) for some c > 0 and all t > 0.Remark 2.2. Let X be a rearrangement-invariant Banah funtion spae, t > 0, and

At ⊂ Rn with |At| = t, then the fundamental funtion ϕX of X is de�ned by ϕX(t) =

‖χ
At
|X‖. In [18, Set. 2.3℄ we proved that in this ase(2.4) EX

G
(t) ∼

1

ϕX(t)
∼ ‖χ

At
|X‖−1, t > 0.Example 2.3. Basi examples for spaes X are the well-known Lorentz spaes; for de�ni-tions and further details we refer to [2, Ch. 4, Def. 4.1℄, for instane. This sale representsa natural re�nement of the sale of Lebesgue spaes. In [18, Set. 3.2℄ we proved that for

0 < p <∞, 0 < q ≤ ∞,(2.5) E
Lp,q

G
(t) ∼ t−

1
p , t > 0.Remark 2.4. We dealt in [18℄ with the so-alled growth envelope E

G
(X) of some funtionspae X : the envelope funtion EX

G
is equipped with some additional �ne index uX

G
thatontains further information. In view of (2.5) this reads as E

G
(Lp,q) = (t−

1
p , q). However,we do not study this index in the present ontext (though it might be interesting).In general, the onept of growth envelopes make sense only for spaes X ⊂ Lloc

1 ,i.e., when we deal with loally integrable funtions. For X = Bs
p,q we shall thus assume

s > n( 1
p − 1)+ sine by [34, Thm. 3.3.2℄ this implies Bs

p,q ⊂ Lloc
1 for all 0 < p, q ≤ ∞,whereas in the borderline ase s = n( 1

p − 1)+ one needs additional assumptions on p and
q, respetively. This setting will not be treated here. We reall some unweighted results.Proposition 2.5. Let 0 < q ≤ ∞, 0 < p <∞, and s > n( 1

p − 1)+.(i) Assume s < n
p . Then(2.6) E

Bs
p,q

G
(t) ∼ E

F s
p,q

G
(t) ∼ t−

1
p + s

n , 0 < t < 1.(ii) Assume s = n
p and let 1 < q ≤ ∞ in ase of B-spaes, and 1 < p < ∞ in ase of

F -spaes, respetively. Then



102 D. D. HAROSKE(2.7) E
Bn/p

p,q

G
(t) ∼ | log t|

1
q′ , E

F n/p
p,q

G
(t) ∼ | log t|

1
p′ , 0 < t < 1

2 .(iii) We have(2.8) E
Bs

p,q

G
(t) ∼ E

F s
p,q

G
(t) ∼ t−

1
p , t→ ∞.For a proof of this result we refer to [43, Thms. 13.2, 15.2℄ onerning (i)�(ii), and to[18, Sets. 8.1, 8.3, 10.3℄. In the latter book one an also �nd a treatment of borderlineases and a reent aount of further related results.2.2. Continuity envelope funtions. Let C be the spae of all omplex-valued boundeduniformly ontinuous funtions on Rn, equipped with the sup-norm as usual. Reall thatthe lassial Lipshitz spae Lip1 is de�ned as the spae of all funtions f ∈ C suh that(2.9) ‖f |Lip1‖ = ‖f |C‖ + sup

t∈(0,1)

ω(f, t)

tis �nite, the expression (2.9) de�ning its norm, where ω(f, t) stands for the modulus ofontinuity,
ω(f, t) = sup

|h|≤t

sup
x∈Rn

|f(x+ h) − f(x)|, t > 0.Definition 2.6. LetX →֒ C be some quasi-normed funtion spae on Rn. The ontinuityenvelope funtion EX
C

: (0,∞) → [0,∞] of X is de�ned by(2.10) EX
C

(t) = sup
‖f |X‖≤1

ω(f, t)

t
, t > 0.It is well-known that EX

C
is equivalent to some monotonially dereasing funtion,that X →֒ Lip1 if, and only if, EX

C
is bounded, and that(2.11) X1 →֒ X2 implies EX1

C
(t) ≤ cEX2

C
(t) for some c > 0 and all t > 0;we refer to [18, Ch. 5℄ for a more general approah and further details.Remark 2.7. Again, we dealt in the papers and books mentioned above usually withthe so-alled ontinuity envelope E

C
(X) of some funtion spae X where EX

C
is equippedwith some additional �ne index uX

C
.Example 2.8. Let for 0 < a < 1, b ≥ 0, the Lipshitz spaes Lipa, Lip(1,−b) representthe natural extensions of (2.9): we ollet all f ∈ C suh that

‖f |Lipa‖ = ‖f |C‖ + sup
t∈(0,1)

ω(f, t)

ta
,and

‖f |Lip(1,−b)‖ = ‖f |C‖ + sup
t∈(0, 1

2 )

ω(f, t)

t| log t|b
,respetively, are �nite. In [18, Set. 5.3℄ we proved that(2.12) ELipa

C
(t) ∼ t−(1−a), 0 < t < 1,and(2.13) ELip(1,−b)

C
(t) ∼ | log t|b, 0 < t < 1

2 .



SINGULARITIES IN WEIGHTED FUNCTION SPACES 103The ounterpart of Proposition 2.5 reads as follows.Proposition 2.9. Let 0 < q ≤ ∞, 0 < p <∞, and n
p ≤ s ≤ n

p + 1.(i) Assume n
p < s < 1 + n

p . Then(2.14) E
Bs

p,q

C
(t) ∼ E

F s
p,q

C
(t) ∼ t−1−n

p +s, 0 < t < 1.(ii) Assume s = n
p + 1 and let 1 < q ≤ ∞ in ase of B-spaes, and 1 < p <∞ in aseof F -spaes, respetively. Then(2.15) E

B1+n/p
p,q

C
(t) ∼ | log t|

1
q′ , E

F 1+n/p
p,q

C
(t) ∼ | log t|

1
p′ , 0 < t < 1

2 .(iii) Assume s = n
p and let 0 < q ≤ 1 in ase of B-spaes, and 0 < p ≤ 1 in ase of

F -spaes, respetively. Then(2.16) E
Bn/p

p,q

C
(t) ∼ E

F n/p
p,q

C
(t) ∼ t−1, 0 < t < 1.For a proof of this result we refer to [43, Thms. 13.2, 15.2℄ onerning (ii), and to [18,Ch. 9℄ for all ases, as well as further details and related results. Note that for B-spaesthe ase p = ∞ an be inluded (with the orresponding result).3. Growth envelope funtions in weighted funtion spaes. Let w ∼ wα,β begiven by (1.3) with α > −n, β > −n for 1 < p < ∞. Moreover, we shall only deal withspaes on Rn in this setion and will thus omit it from their notation.3.1. Weighted Lebesgue spaes. First we reall what is already known in ase of α = β ≥

0. In [19℄ (see also [18℄) we proved the following result.Proposition 3.1. Let 1 < p <∞, 0 ≤ α < n(p−1), and w ∼ wα,α given by (1.3). Then(3.1) E
Lp(w)
G

(t) ∼ t−
α

np− 1
p , 0 < t < 1,and(3.2) E

Lp(w)
G

(t) ∼ t−
α

np− 1
p , t→ ∞.Remark 3.2. Note that for admissible weights v of type (1.10) the parallel result readsas

E
Lp(v)
G

(t) ∼ t−
1
p , 0 < t < 1, 0 < p <∞, α ≥ 0,whereas the global behaviour ELp(v)

G
(t) for t→ ∞ is the same as (3.2), f. [19℄.We extend this result now to weights w ∼ wα,β with parameters −n < α ≤ β, β ≥ 0.Proposition 3.3. Let 1 < p < ∞, β ≥ 0, −n < α ≤ β, and w ∼ wα,β given by (1.3).Then(3.3) E

Lp(wα,β)
G

(t) ∼ t−
max(α,0)

np − 1
p , 0 < t < 1,and(3.4) E

Lp(wα,β)
G

(t) ∼ t−
β

np− 1
p , t→ ∞.



104 D. D. HAROSKEProof. Step 1. In view of the onstrution (1.3) we obviously have(3.5) Lp(wα,β) →֒ Lp(wγ,γ) if, and only if, α ≤ γ ≤ β.Thus (2.3) and (3.2) imply (with γ = β ≥ 0)(3.6) E
Lp(wα,β)
G

(t) ≤ ct−
β

np− 1
p for t→ ∞.Moreover, if we apply (3.5) with γ = α+, then by (2.3) and (3.1),(3.7) E

Lp(wα,β)
G

(t) ≤ ct−
α+
np − 1

p for 0 < t < 1.For the onverse estimates, assume �rst 0 ≤ α ≤ β. Let(3.8) fs = s−
1
p− α

npχ
As
, As ⊂ R

n, |As| = s.Assume, for onveniene, As = Kcs1/n(0), the ball entered at the origin with radius
cs1/n, and c appropriately hosen suh that |As| = s. Then(3.9) f∗s (t) = s−

1
p− α

npχ
[0,s)

(t), t > 0,and for 0 < s < 1,
‖fs|Lp(wα,β)‖ = s−

1
p− α

np

( ∫

As

wα,β(x) dx

)1/p

∼ s−
1
p− α

np

( ∫ cs1/n

0

|x|α dx

)1/p

∼ s−
1
p− α

np

(
s

1
n (α+n)

)1/p

∼ c′,i.e. (up to possible normalising fators) we have ‖fs|Lp(wα,β)‖ ≤ 1. Hene,(3.10) E
Lp(wα,β)
G

(t) ≥ sup
s>0

f∗s (t) ≥ c sup
s>t

s−
1
p− α

np ∼ t−
α

np− 1
p , 0 < t < 1,where we used (3.9) and α > −n. If s→ ∞, we onsider(3.11) gs = s−

1
p− β

npχ
As

with As =

{
x ∈ R

n : c1s
1
n ≤ |x| ≤ c2s

1
n

}
,where c1, c2 are hosen appropriately suh that |As| = s. Consequently,(3.12) g∗s(t) = s−

1
p− β

npχ
[0,s)

(t), t > 0,and
‖gs|Lp(wα,β)‖ = s−

1
p− β

np

( ∫

As

wα,β(x) dx

)1/p

∼ s−
1
p− β

np s
β

np |As|
1
p ∼ csine wα,β(x) ∼ |x|β ∼ s

β
n for x ∈ As and s >> 1. Note that we (only) used |As| = s inthis argument. Now we an proeed as above, that is,(3.13) E

Lp(wα,β)
G

(t) ≥ sup
s>0

g∗s (t) ≥ c sup
s>t

s−
1
p− β

np ∼ t−
β

np− 1
p , t→ ∞,where we additionally used β > −n. In view of (3.6), (3.7) and (3.10) this onludes theproof for 0 ≤ α ≤ β.Step 2. Let −n < α ≤ 0 ≤ β. As already pointed out, estimate (3.13) remains valid, sothat by (3.6), (3.7) it is left to prove in this ase(3.14) E

Lp(wα,β)
G

(t) ≥ ct−
1
p , 0 < t < 1.



SINGULARITIES IN WEIGHTED FUNCTION SPACES 105We modify the extremal funtions (3.8) by(3.15) hs = s−
1
pχ

As
, As = Kcs1/n(x0), |x0| = 2, 0 < s < 1,and c is again hosen suh that |As| = s. Then wα,β(x) ∼ 1 for all x ∈ As suh that(3.16) ‖hs|Lp(wα,β)‖ ∼ s−

1
p

( ∫

As

wα,β(x) dx

)1/p

∼ s−
1
p |As|

1
p ∼ c′,and h∗s(t) = s−

1
pχ

[0,s)
(t), t > 0. Parallel to (3.10) this leads to (3.14).Remark 3.4. Let −n < α ≤ β < 0. One an easily hek that our proof above oversthe lower estimates (3.13) and (3.14) in this ase, too. So a reasonable onjeture seemsthat Proposition 3.3 remains true for α ≤ β < 0, but the orresponding upper estimatesare not yet proved. Furthermore, one ould also onsider values β ≤ α and bene�t fromthe lower estimates (3.10), (3.13) and (3.14) orrespondingly.Before we ome to weighted spaes of Besov and Triebel-Lizorkin type we try toextrat some ideas from the above proof to formulate the result on a more abstrat level.Proposition 3.5. Let 1 < p <∞, w ∈ Ap and Lp(w) be given by (1.4). Then there arepositive onstants c1, c2 suh that for all t > 0,(3.17) c1 sup

|E|=t

( ∫

E

w(x) dx

)−1/p

≤ E
Lp(w)
G

(t) ≤ c2 sup
|E|=t

1

|E|

( ∫

E

w(x)−p′/p dx

)1/p′

,where the supremum is taken over all sets E ⊂ Rn with |E| = t.Proof. We �rst deal with the estimate from below and adapt the `extremal' funtions(3.15) (see also (3.8) and (3.11)) appropriately. Let for s > 0,(3.18) hs = s−
1
pχ

Es
, Es ⊂ R

n, |Es| = s,where the set Es ⊂ Rn generalises As from above whih was hosen aording to ourneeds, i.e., to re�et the `typial' behaviour of our weight funtion. (In our ase w ∼ wα,βthis refers to |x| → 0 and |x| → ∞, respetively.) In general, however, we have no furtherinformation about `appropriate' sets Es, but at least we an onlude that
‖hs|Lp(w)‖ ∼ s−

1
p

( ∫

Es

w(x) dx

)1/p

.Sine h∗s(t) = s−
1
pχ

[0,s)
(t),

E
Lp(w)
G

(t) ≥ sup
s

h∗s(t)

‖hs|Lp(w)‖
∼ sup

s>t

( ∫

Es

w(x) dx

)−1/p

,leading �nally to the lower estimate in (3.17). Of ourse, we use w ∈ Ap here.Conversely, let f ∈ Lp(w) with ‖f |Lp(w)‖ ≤ 1. First we apply an abstrat resultabout resonant measure spaes aording to [2, Ch. 2, Def. 2.3, Thm. 2.7℄, that is,
∫ ∞

0

f∗(t)g∗(t) dt = sup
k∗=g∗

∫

Rn

|f(x)||k(x)| dx,



106 D. D. HAROSKEwhere the supremum is taken over all funtion k on R
n whih are equimeasurable with g.We hoose g = χ

B
with |B| = t, hene g∗ = χ

[0,t)
, then |k| is the harateristi funtionof some set Et ⊂ R

n with |Et| = t. Thus monotoniity leads to(3.19) tf∗(t) ≤

∫ t

0

f∗(u) du = sup
|Et|=t

∫

Et

|f(x)| dx.Moreover, our assumption together with Hölder's inequality implies(3.20) ∫

Et

|f(x)| dx ≤ ‖f |Lp(w)‖

(∫

Et

w(x)−p′/p dx

)1/p′

≤ c

( ∫

Et

w(x)−p′/p dx

)1/p′

,suh that (3.19), (3.20) and De�nition 2.1 lead to
E

Lp(w)
G

(t) ≤ c sup
|E|=t

1

|E|

( ∫

E

w(x)−p′/p dx

)1/p′

.Remark 3.6. Note that (3.17) is losely onneted with the Mukenhoupt ondition(1.1) for the weight w ∈ Ap. More preisely, if the supremum over all sets E ⊂ Rn with
|E| = t ould be replaed by the supremum over all balls B ⊂ Rn with |B| = t, then weimmediately obtain(3.21) E

Lp(w)
G

(t) ∼ sup
|B|=t

(∫

B

w(x) dx

)−1/p

= sup
|B|=t

‖χ
B
|Lp(w)‖−1as a onsequene of (1.1). But this is not yet overed by the above proof. However, theexamples studied so far in (2.5) (w ≡ 1), Propositions 3.1 (w = wα,α, α ≥ 0) and 3.3(w = wα,β , β ≥ 0, −n < α ≤ β) exemplify (3.17) (and also (3.21)). Moreover, observe thesimilarity between (2.4) and (3.21), though Lp(w) is not a rearrangement-invariant spaein general. Obviously the sup|B|=t disappears in (2.4) (just beause of the rearrangement-invariane).3.2. Weighted Besov and Triebel-Lizorkin spaes. We ome to weighted spaes of type

Bs
p,q(w) and F s

p,q(w). First we ollet what is already known (in addition to the un-weighted result realled in Proposition 2.5).Proposition 3.7. Let 0 < q ≤ ∞, 0 < p <∞, n( 1
p −1)+ < s < n

p , α ≥ 0, and w ∼ wα,αgiven by (1.3).(i) Let 0 ≤ α
p < n− n

p + s. Then(3.22) E
Bs

p,q(w)

G
(t) ∼ E

F s
p,q(w)

G
(t) ∼ t−

1
p + s

n− α
np , 0 < t < 1.(ii) Let 1 < p <∞, and 0 ≤ α < n(p− 1). Then(3.23) E

Bs
p,q(w)

G
(t) ∼ E

F s
p,q(w)

G
(t) ∼ t−

α
np− 1

p , t→ ∞.Remark 3.8. Again, as in the Lp ase we have for admissible weights v of type (1.10)that
E

Bs
p,q(v)

G
(t) ∼ E

F s
p,q

G
(t) ∼ t−

1
p + s

n , 0 < t < 1,whereas the global behaviour oinides with (3.23). Moreover, we determined the orre-sponding growth envelopes for Bs
p,q(w), F s

p,q(w) (and Bs
p,q(v), F s

p,q(v)) in [18℄.



SINGULARITIES IN WEIGHTED FUNCTION SPACES 107Theorem 3.9. Let 0 < q ≤ ∞, 0 < p < ∞, s > 0, β ≥ 0, −n < α ≤ β, and wα,β begiven by (1.3). Assume that(3.24) −n+
max(α, 0)

p
< s−

n

p
<

max(α, 0)

p
.(i) Then(3.25) E

Bs
p,q(wα,β)

G
(t) ∼ E

F s
p,q(wα,β)

G
(t) ∼ t−

1
p−max(α,0)

np + s
n , 0 < t < 1.(ii) Let 1 < p <∞, then(3.26) E

Bs
p,q(wα,β)

G
(t) ∼ E

F s
p,q(wα,β)

G
(t) ∼ t−

1
p− β

np , t→ ∞.Proof. Step 1. Note �rst that it is su�ient to deal with B-spaes only due to (1.11). Wedisuss ondition (3.24) �rst. As mentioned in Setion 2.1 brie�y, the onept of growthenvelopes requiresX ⊂ Lloc
1 and X 6 →֒ L∞ for the underlying funtion spae X in general.We use Proposition 1.7 in the form(3.27) Bs

p,q(wα,β) →֒ Bσ
τ,q and α+

p
= δ = s−

n

p
− σ +

n

τ
,and s ≥ σ, 0 < p ≤ τ ≤ ∞, and 0 < q ≤ ∞. For unweighted B-spaes it is known that

Bσ
τ,q ⊂ Lloc

1 if σ > max(n
τ − n, 0) (negleting limiting ases). Thus the left-hand sideof (3.24) implies that we an always suitably hoose σ and τ suh that (3.27) implies

Bs
p,q(wα,β) ⊂ Lloc

1 . Moreover, we may assume that τ ≥ max(p, 1). On the other hand,
Bσ

τ,q →֒ L∞ for σ > n
τ (negleting limiting ases again) suh that s− n

p >
α+

p and (3.27)lead to Bs
p,q(wα,β) →֒ L∞ (whih is not interesting from our point view). Disregardinglimiting ases we are left to onsider parameters aording to (3.24). (As a by-produt ofour theorem and general features of growth envelopes we shall obtain that Bs

p,q(wα,β) 6 →֒

L∞ when (3.24) is satis�ed.)Step 2. First we deal with the estimates from above and use (3.27) together with theunweighted result Proposition 2.5. By our assumption (3.24) and the embedding (3.27)we onlude n( 1
τ − 1)+ < σ < n

τ suh that (2.6) reads as(3.28) E
Bσ

τ,q

G
(t) ∼ t−

1
τ + σ

n , 0 < t < 1,whih diretly leads to the orresponding upper estimate in (3.25) in view of (2.3) and(3.27). As for the global behaviour we use (3.23) and the embedding Bs
p,q(wα,β) →֒

Bs
p,q(wβ,β) sine α ≤ β (reall (3.5) with γ = β). Thus (2.3) and (3.23) (with α = β)prove the upper estimate in (3.26).Step 3. It remains to show the onverse estimates in (3.25) and (3.26). Let(3.29) fj(x) = 2−j(s−n

p −
α+
p )ψ(2j(x− x0)), x ∈ R

n,be atoms in Bs
p,q(wα,β), where ψ is the ompatly supported C∞-funtion in Rn givenby(3.30) ψ(x) =

{
e
− 1

1−|x|2 , |x| < 1,

0 , |x| ≥ 1;



108 D. D. HAROSKEwe refer to the atomi deomposition result in [20℄, [3℄. Here we an hoose x0 = 0 for
α ≥ 0, but |x0| ∼ 2 for α < 0. Hene, ‖fj |B

s
p,q(wα,β)‖ ≤ c, and

f∗j (t) ∼ 2−j(s−n
p −

α+
p )ψ∗(2jnt), j ∈ N.One easily alulates that(3.31) ψ∗(t) ∼

{
e
− 1

1−(t/|ωn|)2/n , t < |ωn|,

0 , t ≥ |ωn|,where |ωn| denotes the (surfae) measure of the unit sphere in Rn. Let 0 < t < 1 andhoose j0 ∈ N suh that 2−j0n ∼ t. Thus
E

Bs
p,q(wα,β)

G
(t) ≥ c sup

j∈N

f∗j (t) ≥ c f∗j0(c
′2−j0n)

≥ c′′ 2−j0(s−
n
p −

α+
p ) ∼ t

s
n− 1

p−
α+
np ,i.e., the inequality onverse to (3.25).Step 4. As for the global behaviour we adapt the orresponding argument appropriatelyin order to show the lower estimate of (3.4). Let(3.32) ̺ = ϕ1 = ϕ(2−1·) − ϕ,where ϕ is given by (1.6). Then, obviously, supp ̺ ⊂ {x ∈ Rn : 1 < |x| < 4}, and forsuitably hosen ϕ, ̺∗(|ωn|) ≥

1
2 . We replae fj given by (3.29) with(3.33) gj(x) = 2−j n+β

p ̺(2−jx), x ∈ R
n, j ∈ N,and obtain

g∗j (t) ∼ 2−j n+β
p ̺∗(2−jnt) ≥ c2−j n+β

p for t ∼ 2jn, j ∈ N.This will immediately onlude the proof granted that we an show that gj ∈ Bs
p,q(wα,β)with ‖gj |B

s
p,q(wα,β)‖ ≤ c uniformly in j ∈ N.Let k be some ompatly supported C∞ funtion on R

n with
∑

m∈Zn

k(x−m) = 1, x ∈ R
n.Then we have for all x ∈ Rn, j ∈ N,

gj(x) = 2−j n+β
p

∑

m∈Zn

k(x−m) ̺(2−jx) ∼ 2−j n+β
p

∑

|m|∼2j

k(x−m)̺(2−jx).(3.34)
On the other hand, a0m(x) = k(x−m)̺(2−jx) an be regarded as 1K-atoms loated near
Q0m, m ∈ Zn, and thus (3.34) represents a speial atomi representation of gj . By thealready mentioned atomi deomposition with Mukenhoupt weights, [20℄, [3℄, this yields

‖gj |B
s
p,q(wα,β)‖p ≤ c1 2−j(n+β)

∥∥∥
∑

|m|∼2j

χ
0m

|Lp(wα,β)
∥∥∥

p

≤ c22
−j(n+β)

∫

Rn

( ∑

|m|∼2j

χ
0m

(x)
)p

|x|β dx
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≤ c32

−j(n+β)
∑

|m|∼2j

∫

Q0m

|x|β dx

≤ c42
−j(n+β)

∑

|m|∼2j

|m|β ≤ c5,where χ
0m

stands for the harateristi funtion of Q0m, m ∈ Z
n. This ompletes theargument.Remark 3.10. The result naturally extends Proposition 3.7 from α = β ≥ 0 to β ≥ 0,

−n < α ≤ β. Apart from the already mentioned limiting ases in (3.24), i.e., s = n+α+

por s = n+α+

p − n, respetively, further parameter settings, e.g., α ≤ β < 0 or β ≤ αdeserve attention. Even more desirable, however, would be a general result similar toProposition 3.17. But this will be studied elsewhere. Let us �nally remark, that theadditional restrition p > 1 in (ii) is a onsequene of the (method of the) proof andprobably not neessary, see also the unweighted result (2.8). Moreover, one an prove forthe orresponding indies that uX
G

= q if X = Bs
p,q(wα,β) and uX

G
= p if X = F s

p,q(wα,β).Note, �nally, that the unboundedness of EX
G

(t) for t→ 0 in (3.25) implies Bs
p,q(wα,β) 6 →֒

L∞, F s
p,q(wα,β) 6 →֒ L∞ in ase of (3.24).4. Continuity envelope funtions in weighted funtion spaes. We �nally dealwith ontinuity envelopes for spaes Bs

p,q(w), F s
p,q(w) with w ∈ A∞. Nothing is knownso far in suh weighted situations; we rely on the unweighted results Proposition 2.9 andthe tehniques developed above.Theorem 4.1. Let 0 < q ≤ ∞, 0 < p < ∞, β ≥ 0, −n < α ≤ β, and wα,β be given by(1.3). Assume that(4.1) max(α, 0)

p
< s−

n

p
<

max(α, 0)

p
+ 1.Then(4.2) E

Bs
p,q(wα,β)

C
(t) ∼ E

F s
p,q(wα,β)

C
(t) ∼ t−1+s−n

p −max(α,0)
p , 0 < t < 1.Proof. Step 1. Again it is su�ient to deal with B-spaes only due to (1.11). We disussondition (4.1) �rst. As mentioned in Setion 2.2, the onept of ontinuity envelopesrequires X →֒ C and X 6 →֒ Lip1 for the underlying funtion spae X in general. Weuse (3.27) and the orresponding unweighted result. Sine Bσ

τ,q →֒ C if σ > n
τ and

Bσ
τ,q →֒ Lip1 for σ − n

τ > 1 (negleting limiting ases) we an argue as in Step 1 of theproof of Theorem 3.9 and substantiate (4.1).Step 2. First we deal with the estimates from above and use (3.27) together with theunweighted result Proposition 2.9(i) for Bσ
τ,q ,(4.3) E

Bσ
τ,q

C
(t) ∼ t−1+σ−n

τ , 0 < t < 1,whih diretly leads to the orresponding upper estimate in (4.2) in view of (2.11) and(3.27). It remains to show the onverse estimate in (4.2). Let(4.4) fj(x) = 2−j(s−n
p −

α+
p )ϕ(2j(x− x0)), j ∈ N,



110 D. D. HAROSKEwhere ϕ is the molli�ed version of
ϕ̃(x) =

{
0, |x| ≥ 1,

1 − |x|, |x| ≤ 1,
x ∈ R

n,suh that supp ϕ(2j ·) ⊂ {y ∈ Rn : |y| ≤ c2−j}, j ∈ N, and
ω(ϕ(2j ·), t)

t
∼ 2j , t ∼ 2−j , j ∈ N.Then fj given by (4.4) is a Bs

p,q(wα,β)-atom (as we do not need moment onditions).Again we an hoose x0 = 0 for α ≥ 0, but |x0| ∼ 2 for α < 0. In partiular, this means
‖fj |B

s
p,q(wα,β)‖ ∼ 1. Sine

ω(fj , t)

t
∼ 2−j(s−n

p −
α+
p −1), t ∼ 2−j , j ∈ N,hene

E
Bs

p,q(wα,β)

C
(2−j) ≥ c

ω(fj , 2
−j)

2−j
≥ c′2−j(s−n

p −
α+
p −1), j ∈ N,and by standard arguments the proof of (4.2) is omplete.Remark 4.2. In ase of Besov spaes one an extend the result to p = ∞ whih oin-ides with the unweighted result [18, Prop. 9.1℄, reall (1.5). There are ounterparts foradmissible weights in the sense of Remark 1.6: One an prove, for instane, that

E
Bs

p,q(v)

C
(t) ∼ E

Bs
p,q

C
(t), 0 < t < 1,and the ounterpart for F -spaes where v is given by (1.10). Moreover, the indies inthose ases are given by uBs

p,q(wα,β)

C
= u

Bs
p,q(v)

C
= q and uF s

p,q(wα,β)

C
= u

F s
p,q(v)

C
= p.Remark 4.3. Let us �nally remark that envelope result an be applied to obtain Hardy-type inequalities, to establish riteria for limiting embeddings, and, last but not least, toprove surprisingly sharp upper estimates for the asymptoti behaviour of approximationnumbers of related ompat embeddings. This will not be presented here; we refer to [18,Ch. 11℄ for further details and referenes.
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