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Abstrat. Let (Ω, µ) be a measure spae, E be an arbitrary separable Banah spae, E∗

ω∗ be thedual equipped with the weak∗ topology, and g : Ω × E → R be a Carathéodory funtion whihis Lipshitz ontinuous on eah ball of E for almost all s ∈ Ω. Put G(x) :=
∫
Ω

g(s, x(s))dµ(s).Consider the integral funtional G de�ned on some non-Lp-type Banah spae X of measurablefuntions x : Ω → E. We present several general theorems on su�ient onditions under whihany element γ ∈ X∗ of Clarke's generalized gradient (multivalued C-subgradient) ∂CG(x) has therepresentation γ(v) =
∫
Ω
〈ζ(s), v(s)〉dµ(s) (v ∈ X) via some measurable funtion ζ : Ω → E∗

w∗of the assoiate spae X ′ suh that ζ(s) ∈ ∂Cg(s, x(s)) for almost all s ∈ Ω. Here, given a�xed s ∈ Ω, ∂Cg(s, u0) denotes Clarke's generalized gradient for the funtion g(s, ·) at u0 ∈ E.Conerning X, we suppose that it is either a so-alled non-solid Banah M -spae (in partiular,non-solid generalized Orliz spae) or Köthe�Bohner spae (solid spae).Introdution. The purpose of the present paper is to formulate and prove several gen-eral results (see Theorems 3.2-3.3, Remark 3.4 in Setion 3, Theorems 4.2-4.5 in Se-tion 4) for the alulation of Clarke's generalized gradients (also alled multivalued C-2000 Mathematis Subjet Classi�ation: Primary 49J52, 58C20; Seondary 46E30, 47H30,35R70.Key words and phrases: non-smooth analysis, generalized gradient, mulitivalued C-sub-gradient, loally Lipshitz integral funtional, Banah M -spae, Banah L∞-module, non-solidgeneralized Orliz spae, Banah lattie, Köthe�Bohner spae, Orliz spae, Dirihlet di�eren-tial inlusion involving exponential-growth-type nonlinearity.The paper is in �nal form and no version of it will be published elsewhere.[135℄ © Instytut Matematyzny PAN, 2008



136 H. T. NGUYÊÑ AND D. PĄCZKAsubgradients in nonsmooth analysis) of loally Lipshitz integral funtionals. We sueedto obtain the results for these funtionals de�ned on a non-Lp-type spae X of measurablefuntions whih is either a so-alled non-solid Banah M -spae (in partiular, non-solidgeneralized Orliz spae) or Köthe�Bohner spae (solid spae).Theorem 4.2 in the ase of the solid spae X is a generalization of the Lp-result ofF. H. Clarke, J. P. Aubin/F. H. Clarke in 1976-1983 [5, 11, 12℄. Note that this Lp-result isintensively used in the theory of partial di�erential inlusions and non-smooth mehanis(see, e.g., [9, 16, 23, 24℄).In Setion 6 we show that Theorem 4.2 with its proof in a very speial ase for the solidregular Orliz�Bohner spae X = LΦ(E) implies an alternative proof for the LΦ-resultof R. Pªuiennik/S. Tian/Y. Wang in 1990 [36, Theorem 2℄. We observe that the Lp-resultof F. Clarke under his ondition (A) (see [12, Theorems 2.7.5, 2.7.3℄) an be standardlygeneralized to the ase of Lipshitz integral funtionals de�ned on a Köthe�Bohnerspae X (solid spae), and so we shall not present this generalization herein. It turnsout that the Lp-result of F. Clarke [12, Theorem 2.7.5℄ under his ondition (B) togetherwith its proof given in [12, Proofs of Theorems 2.7.5, 2.7.2℄ an be generalized in severaldiretions via introduing the so-alled U -property suh as in Lemmas 3.1, 4.1 and viausing veri�able �majorant� onditions suh as in Theorems 3.2�3.3, 4.2�4.3. Analyzingthe above onditions (A)-(B), we propose the �majorant� onditions (K6)�(K7) and
(K8)�(K9) in Theorems 4.4�4.5 and we need not apply Lebourg's mean value theorem[12, Theorem 2.3.7℄ for proving Theorems 4.4�4.5.By the non-smooth variational methods [9, 24℄, the alulation formula for Clarke'sgeneralized gradient established in Corollary 6.2 of Theorems 4.3, 4.5, an be applied tothe solvability problem for the Dirihlet ellipti inlusion in R

2 involving exponential-growth-type multivalued right-hand side in the Orliz spae LΦ0 , where Φ0(α) = exp(α2)

− 1 (see details in our paper [32℄). Observe that the above mentioned LΦ-result of [36,Theorem 2℄ annot be applied to this problem, sine the �exponential-type� funtion Φ0does not satisfy the ondition (∆) of [36℄. The above inlusion in LΦ0 was studied bytopologial methods in [1, 2, 30, 31℄.In Setion 1 we give some terminology and auxiliary fats for Banah latties, Köthe�Bohner spaes, Banah M -spaes, and Clarke's generalized gradients. In Setion 2 wegive the auxiliary Lemmas 2.1, 2.3, and then the known Lemma 2.4 for onvex integralfuntionals de�ned on these spaes. In Setion 5 we give Corollaries 5.1�5.2 of Theorems3.2�3.3 for the ase of the non-solid generalized Orliz spae X = LM (Ω, Rm) with m ≥ 2.In Setion 6 we give Corollary 6.2 of Theorems 4.3, 4.5 for the solid Orliz�Bohner spae
X = LΦ(E).1. Some terminology and auxiliary fats. Let (Ω, A, µ) be a measure spae with aomplete σ-�nite σ-additive measure µ on some σ-algebra A of subsets of Ω. Throughoutthis paper E denotes a separable Banah spae. Denote [3℄ by Cl(E) (resp., Cp(E),
Cv(E), CvCp(E), et.) the family of all nonempty losed (resp., ompat, onvex, onvexompat, et.) subsets of E. By bcoA we denote the balaned losed onvex hull of A ⊂ E.Put BE(u, r) := {ω ∈ E : ‖ω − u‖E ≤ r} for r ∈ (0,∞). Given a Suslin loally onvex



GENERALIZED GRADIENTS FOR INTEGRAL FUNCTIONALS 137spae F , we denote by B(F ) the σ-algebra of Borel subsets of F . Then a multifuntion
Γ: Ω → 2F is alled (see, e.g., [8, 13, 15℄) measurable if Γ−(C) := {s : Γ(s)∩C 6= ∅} ∈ Afor C ∈ B(F ). Sel Γ denotes the set of all measurable seletions of Γ. The theory ofmeasurable seletions is given in [8, 13, 15℄ (in partiular, for Γ: Ω → 2E∗

w∗ , sine (by[8, p. 198℄, [7, p. 4,11℄) the dual spae E∗
w∗ with the topology w∗ = σ(E∗, E) is a Lusinspae for the ase of separability of E).Given a funtion x : Ω → E and a multifuntion H : Ω × E → Cp(E∗

ω∗), de�ne
NH(x) := Sel H(·, x(·)). General theorems on the boundedness of the (Nemytskij) mul-tivalued superposition operator NH an be found in [3, 4, 26, 34, 39℄. We say thatthe Filippov impliit funtion property is valid for the multifuntion H if given anymeasurable funtion ξ : Ω → E∗

w∗ and any measurable multifuntion b : Ω → Cp(E)with ξ(s) ∈ H(s,b(s)) almost everywhere (a.e.), there exists a measurable funtion
z : Ω → E with z(s) ∈ b(s) and ξ(s) ∈ H(s, z(s)) a.e. The multifuntion H is alled
(A × B(E),B(E∗

w∗))(mod 0)-measurable if exists Ω0 with µ(Ω\Ω0) = 0 suh that His (A × B(E),B(E∗
w∗))-measurable on Ω0 × E. The multifuntion H is alled multi-superpositionally measurable if the multifuntion s 7→ NH(c)(s) := H(s, c(s)) is mea-surable for any measurable multifuntion s 7→ c(s) ∈ Cp(E). Many su�ient onditionsfor the above properties for H an be found e.g. in [2, 8, 16, 42℄. By Filippov's theorem[2, Theorem 6.1℄ all the above properties are valid for any Carathéodory multifuntion

H : Ω × R
m → Cp(Rm).Further, L0(Ω, F ) denotes the spae of all (equivalent lasses of) measurable funtions

x : Ω → F . A Banah spae K ⊂ L0(Ω, R) with norm ‖ · ‖K is alled [4, 22, 41℄ a Banahlattie with monotone norm (also under the name, Köthe spae, Banah ideal spae), if
x ∈ K and y ∈ L0(Ω, R) and |y(s)| ≤ |x(s)| a.e., then y ∈ K and ‖y‖K ≤ ‖x‖K . Put
K+ := {x ∈ K : x(s) ≥ 0 a.e.}. We shall use only K with supp K = Ω. Given a Banahlattie K ⊂ L0(Ω, R), de�ne [21, 41℄ the Köthe�Bohner spae X = K(E) ⊂ L0(Ω, E)as the Banah spae of all measurable funtions x : Ω → E suh that ‖x(·)‖E ∈ K, withnorm ‖x‖X := ‖‖x(·)‖E‖K . Let L∞ be the Banah algebra of all essentially boundedmeasurable salar-valued funtions de�ned on Ω. A Banah spae X ⊂ L0(Ω, E) withnorm ‖ · ‖X is alled [29℄ a Banah M -spae (or Banah L∞-module [27, 28, 33℄, or ideal∗spae [41℄) if x ∈ X and α ∈ L∞ imply that αx ∈ X and ‖αx‖X ≤ ‖α‖L∞‖x‖X . If theabove ondition is valid only for α ∈ (L∞)+, then X is alled a Banah M+-spae.The spaes K and K(E) are alled solid spaes (see, e.g., [35℄ and referenes itedtherein). Spaes of measurable funtions whih are not from the lasses of the abovespaes K and K(E) are usually alled non-solid spaes. Historial omments on di�erentlasses of non-solid spaes an be found in [6, 20, 25, 35℄.A prominent example of a Banah M -spae is the generalized (non-solid in generalfor the ase m ≥ 2) Orliz spae LM = LM (Ω, Rm) ⊂ L0(Ω, Rm) with the Luxemburgnorm ‖x‖LM = inf{λ > 0 :

∫
Ω

M(x(s)/λ)dµ(s) ≤ 1} < ∞, where M : R
m → [0,∞) is agiven Young (even, onvex) funtion (see more general ases of M de�ned on Ω×E with

dimE ≥ 2, e.g. in [10, 14, 17, 18, 19, 20, 25, 26, 35, 40℄).From now on, we suppose that X = X(Ω, E) satis�es one of the following onditions(f. [6, 20, 35℄):



138 H. T. NGUYÊÑ AND D. PĄCZKA(Mm) E = R
m, m ∈ N, X ⊂ L0(Ω, E) is a Banah M -spae with supp X = Ω;(M∞) dimE = +∞, X ⊂ L0(Ω, E) is a Banah M+-spae and exist α, β ∈ L0(Ω, (0,∞))suh that L∞(Ω, E; α) ⊂ X ⊂ L1(Ω, E; β) ontinuously, where L∞(Ω, E; α) isequipped with norm ‖x‖L∞(α) := ‖ x

α
‖L∞(E) and L1(Ω, E; β) is equipped withnorm ‖x‖L1(β) := ‖ x

β
‖L1(E).Under the ondition (Mm) with m ≥ 2, the assoiate spae X ′ = X ′(Ω, Rm) is de�nedin [27, 28, 33℄ by

X ′ := {x′ ∈ L0(Ω, Rm) : x′(s) ∈ vsupp X(s) a.e., 〈x, x′〉 ∈ R (∀x ∈ X)}, (1.1)where 〈x, x′〉 :=
∫
Ω
〈x(s), x′(s)〉dµ(s) and the vetor support vsuppX (always exists)an be de�ned by vsuppX(s) := the losure of {x1(s), x2(s), . . .} a.e. for some sequene

xn ∈ X suh that x ∈ X ⇒ x(s) ∈ the losure of {x1(s), x2(s), . . .} a.e. Under theondition (M∞), the assoiate spae X ′ = X ′(Ω, E∗
w∗) is de�ned as

X ′ := {x′ ∈ L0(Ω, E∗
w∗) : 〈x, x′〉 ∈ R (∀x ∈ X)}. (1.2)It is known that X ′ an be interpreted as a Banah subspae of the dual spae X∗ by theinjetion x′ 7→ 〈·, x′〉 with norm ‖x′‖X′ := sup{〈x, x′〉 : ‖x‖X ≤ 1} < ∞. If X = K(E)is the Köthe�Bohner spae, then X ′ = (K(E))′ = K ′(E∗

w∗), where K ′(E∗
w∗) is theKöthe�Bohner spae (modelled by means of K ′) of measurable funtions y : Ω → E∗

w∗(if in addition E∗ is separable, then X ′ = K ′(E∗)). If X = LM , then X ′ = LM∗ withequivalent norms (in the ase of M de�ned on E with dimE = +∞, the onvex dual M∗is de�ned on E∗
w∗).Let U be an open subset of a Banah spae E. If f : U → R is Lipshitz ontinuouson U , then f has Clarke's generalized derivative f◦(x; ·):

f◦(x; v) = lim sup
y→x
λ↓0

f(y + λv) − f(y)

λ
(v ∈ E). (1.3)

The set ∂Cf(x) = {ζ ∈ E∗ : 〈ζ, v〉 ≤ f◦(x; v) (∀v ∈ E)} is alled the generalized gradient(Clarke's C-subgradient) of f at x (then [12, 23℄ ∂Cf(x) ∈ CvCp(E∗
w∗)). A funtion f issaid [12, De�nition 2.3.4℄ to be regular in Clarke's sense at x if the diretional derivative

f ′(x; v) of f at x along v exists and f ′(x; v) = f◦(x, v) for every v ∈ E.2. Auxiliary lemmas. If g : Ω × E → R is loally Lipshitz ontinuous with respetto the seond variable, then g◦(s, u0; v) denotes the Clarke derivative at u0 in diretion
v of the funtion u 7→ g(s, u). By [12, 23℄ the funtion g◦(s, u; v) is ontinuous in v. Forthe simpliity, ∂Cg(s, u0) denotes the generalized gradient at u0 of g(s, ·). The proofsof Lemmas 2.1, 2.3 are standard via the known measurable seletion theorems [8℄ (forproving Lemma 2.3 one need else Lebourg's theorem [12, Theorem 2.3.7℄).Lemma 2.1. Let g : Ω × E → R be a funtion suh that g(·, u) is measurable for any
u ∈ E and g(s, ·) is Lipshitz ontinuous on eah ball of E for almost all s ∈ Ω. Then,given any measurable funtions x, v : Ω → E, the funtion s ∈ Ω 7→ g◦(s, x(s); v(s)) ismeasurable.



GENERALIZED GRADIENTS FOR INTEGRAL FUNCTIONALS 139Theorem 2.2 (Lebourg [12, Theorem 2.3.7℄). Let f : U → R be Lipshitz ontinuous onan open subset U of E. Assume that U ontains the onvex interval [x, y]. Then, thereexists a point u ∈ (x, y) suh that f(x) − f(y) ∈ 〈∂Cf(u), x − y〉.Lemma 2.3. Let g be as in Lemma 2.1 and x, y : Ω → E be two measurable fun-tions. Suppose that the multifuntion Λ: Ω × [0, 1] → CvCp(R), (s, α) 7→ Λ(s, α) :=

〈∂Cg(s, αx(s) + (1− α)y(s)), x(s)− y(s)〉 is (A ×B(R),B(R))(mod 0)-measurable. Thenthere exist measurable funtions u : Ω → E and ξ : Ω → E∗
w∗ suh that u(s) ∈ [x(s), y(s)],

ξ(s) ∈ ∂Cg(s, u(s)) and g(s, x(s))− g(s, y(s)) = 〈ξ(s), x(s)− y(s)〉 a.e.Proof. We divide the proof into Steps 2.1-2.3.Step 2.1 : Given a �xed measurable funtion z : Ω → E∗
ω∗ , the multifuntion M : Ω →

CvCp(E∗
ω∗) ∪ {∅}, M(s) := ∂Cg(s, z(s)) has domM = Ω(mod 0). By Lemma 2.1, thefuntion s 7→ g◦(s, z(s); v) = sup{〈u∗, v〉 : u∗ ∈ ∂Cg(s, z(s))} is measurable for all v ∈ E,and so, by [8℄, M is measurable.Step 2.2 : Let

H(s) := {u ∈ [x(s), y(s)] : g(s, x(s))− g(s, y(s)) ∈ 〈∂Cg(s, u), x(s) − y(s)〉},

F : Ω × [0, 1] → CvCp(R), F (s, α) := {g(s, x(s)) − g(s, y(s)) − r : r ∈ Λ(s, α)}.By the assumption, we dedue that F is (A × B(R),B(R))(mod 0)-measurable and so
F−({0}) ∈ (A×B(R))(mod 0). On other hand, by Lebourg's Theorem 2.2 for a.a. s ∈ Ωthere exists α ∈ [0, 1] suh that 0 ∈ F (s, α), i.e. there exists Ω0 ⊂ Ω suh that µ(Ω\Ω0)

= 0 and ProjΩ0
F−({0}) = Ω0. Hene, by the von Neumann�Aumann seletion theorem[8, Theorem III.22℄ the multifuntion H̃ : Ω0 → 2[0,1]\{∅}, H̃(s) := {α : 0 ∈ F (s, α)}(whose graph oinides with F−({0})) has a measurable seletor a : Ω0 → [0, 1]. Then

s 7→ u(s) := a(s)x(s) + (1 − a(s))y(s) is a measurable seletor of the multifuntion Hon Ω0.Step 2.3 : By Lebourg's Theorem 2.2,
△(s) := {u∗ ∈ E∗ : g(s, x(s))− g(s, y(s)) = 〈u∗, x(s) − y(s)〉} ∈ CvCl(E∗

ω∗)for all s ∈ Ω0. It is an easy hek that △ is measurable. By Steps 2.1�2.2, we dedue thatthe multifuntion Γ: Ω0 → 2E∗

ω∗ , Γ(s) := △(s) ∩ ∂Cg(s, u(s)) ∈ Cl(E∗
ω∗), is measurable.By [8℄, there exists a measurable seletor ξ of Γ, i.e. ξ(s) ∈ ∂Cg(s, u(s)) and g(s, x(s)) −

g(s, y(s)) = 〈ξ(s), x(s)− y(s)〉 on Ω0.A funtion f : Ω×F → R := R∪{±∞} is alled a normal integrand if f(s, ·) is lowersemiontinuous for almost all (a.a.) s ∈ Ω and f is (A×B(F ),B(R))(mod 0)-measurableon Ω × F . If F is a Lusin spae, then [7, Lemma 1.2.3℄ every Carathéodory funtion on
Ω × F is a normal integrand. If f is a normal integrand on Ω × E, then the dual onvexnormal integrand f∗ : Ω × E∗

w∗ → R is de�ned by f∗(s, u∗) = sup{〈u, u∗〉 − f(s, u) :

u ∈ E}. Denote by X∗s the spae of singular linear funtionals on X = X(Ω, E) (see[20, 22, 33℄). Lemma 2.4 is taken from V. Levin [20, Corollary 1 of Theorem 6.7, p. 216℄,A. Kozek [19℄ (X = LM (Ω, E) with E∗ being separable), [8℄ (see also the referenes itedtherein; in [20℄ this result is valid for a more general spae X). Given a Banah spae E



140 H. T. NGUYÊÑ AND D. PĄCZKAand a onvex funtion ϕ : E → R, the subdi�erential of ϕ is de�ned by
∂ϕ(u) = {ξ ∈ E∗ : 〈ξ, v − u〉 ≤ ϕ(v) − ϕ(u) for all v ∈ E〉}.Lemma 2.4. Let f be a normal onvex integrand on Ω × E and the funtional If ,

If (x) :=
∫
Ω

f(s, x(s))dµ(s), be onsidered on X with (Mm) or (M∞). Suppose thatthe set dom If := {x ∈ X : If (x) < ∞} is nonempty. Then for every x0 ∈ dom Ifthe subdi�erential ∂If (x0) onsists of all linear funtionals λ ∈ (X(Ω, E))∗ of the form
λ(x) = 〈x, y〉+λs(x) (x ∈ X), where y ∈ X ′(Ω, E∗

w∗)∩Sel ∂fX(·, x0(·)), λs ∈ (X(Ω, E))∗s ,
λs ∈ K(dom If , x0) := {l ∈ (X(Ω, E))∗ : l(z − x0) ≤ 0 (∀z ∈ dom If )}, and ∂fX(s, u0)denotes the subdi�erential at u0 of the onvex funtion u ∈ vsupp X(s) 7→ f(s, u).3. Lipshitz integral funtionals on non-solid Banah M-spaes. Given a Banah
M+-spae X ⊂ L0(Ω, E), we say that a multivalued operator M : X → 2L1(Ω,R)\{∅} hasthe U-property if given any x ∈ X for eah sequene xk ⊂ X with ∑∞

k=1 ‖xk − x‖X < ∞there exists β ∈ L1(Ω, R) suh that |αk(s)| ≤ β(s) a.e. for every αk ∈ M(xk) and forevery k ∈ N. Given a funtion g : Ω × E → R, de�ne the integral funtional
G(x) :=

∫

Ω

g(s, x(s))dµ(s). (3.1)Lemma 3.1. Let g : Ω×E → R be a Carathéodory funtion suh that g(s, ·) is Lipshitzontinuous on eah ball of E for almost all s ∈ Ω, and X ⊂ L0(Ω, E) be a non-solidBanah M+-spae with either (M∞) or (Mm) with m ≥ 2, vsuppX(s) = R
m. Supposethe following onditions:(N1) ∂Cg : Ω × E → CvCp(E∗

ω∗) is (A × B(E),B(E∗
w∗))(mod 0)-measurable;(N2) The multivalued superposition operator N∂Cg : X → 2X′

\{∅} is bounded on eahball of X, and:1) for eah x, v ∈ X the funtion s ∈ Ω 7→ g◦(s, x(s); v(s)) belongs to L1(Ω, R),2) the operator Mv : X → 2L1(Ω,R) \ {∅} has the U-property, where Mv(x) :=

{α ∈ L1(Ω, R) : α(·) = 〈ζ(·), v(·)〉, ζ ∈ N∂Cg(x)}.If G is �nite at least for one x∗ ∈ X, then G is Lipshitz on eah ball of X and
∂CG(x) ⊂ N∂Cg(x), (3.2)i.e. γ ∈ ∂CG(x) ⇒ γ(·) = 〈ζ, ·〉 for some ζ ∈ X ′ with ζ(s) ∈ ∂Cg(s, x(s)) a.e. Ifadditionally the funtion g(s, ·) is regular (in Clarke's sense) at x(s) for almost all s ∈ Ω,then the funtional G is regular at x and ∂CG(x) = N∂Cg(x).Proof. We shall mimi Clarke's proof of his Theorem 2.7.5/(B) in [12℄ but new momentsin our proof will be emphasized and given in detail. We divide our proof into Steps 3.1-3.4.Step 3.1 : We laim that the funtional G is Lipshitz ontinuous on every ball of X. Toprove this, we �x y, z ∈ BX(0, r). By the ondition (N1), ∂Cg : Ω × E → CvCp(E∗

w∗) is
(A×B(E),B(E∗

w∗))(mod 0)-measurable, and so we an apply Lemma 2.3 (the parametriversion of Lebourg's theorem). We an then �nd some measurable funtions ξ0 : Ω → E∗
w∗ ,
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u0 : Ω → E and θ0 : Ω → [0, 1] suh that

u0(s) = θ0(s)z(s) + (1 − θ0(s))y(s),

g(s, z(s)) − g(s, y(s)) = 〈ξ0(s), z(s) − y(s)〉,

ξ0(s) ∈ ∂Cg(s, u0(s)) a.e.Sine X is a Banah M+-spae, we have that u ∈ X and
‖u0‖X ≤ ‖θ0z‖X + ‖(1 − θ0)y‖X ≤ ‖z‖X + ‖y‖X ≤ 2r. (3.3)By the ondition (N2), C(2r) := sup{‖v‖X′ : v ∈ N∂Cg(w), w ∈ BX(0, 2r)} < ∞.Therefore ‖ξ0‖X′ ≤ C(2r) follows. Hene, by the de�nition of the assoiate spae X ′, wededue that

|G(z) − G(y)| ≤

∫

Ω

|g(s, z(s)) − g(s, y(s))|dµ(s)

≤

∫

Ω

|〈ξ0(s), z(s) − y(s)〉|dµ(s) ≤ ‖ξ0‖X′‖z − y‖X ≤ C(2r)‖z − y‖Xfor z, y ∈ BX(0, r). Sine G(x∗) ∈ R, the laim of Step 3.1 follows.Step 3.2 : We shall prove that G◦(x; v) ≤
∫
Ω

g◦(s, x(s); v(s))dµ(s) for x, v ∈ X. From thede�nition of the Clarke derivative in the diretion v ∈ X we have
G◦(x; v) = lim sup

y→x
λ↓0

∫

Ω

g(s, y(s) + λv(s)) − g(s, y(s))

λ
dµ(s). (3.4)

Let us hoose arbitrary sequenes λk in R and yk in X suh that λk ↓ 0, ‖yk − x‖X → 0and the limit
b := lim

k→∞

∫

Ω

Fk(s)dµ(s) (3.5)exists, where Fk(s) := g(s,yk(s)+λkv(s))−g(s,yk(s))
λk

. Under (M∞) or (Mm), by [22, 41℄ for
m = 1 and by [29, Theorem 2.1℄ for m > 1 together with Riesz's theorem, we an hoose asubsequene kj and D0 with µ(Ω\D0) = 0 suh that ykj

(s) → x(s) as j → ∞ (∀s ∈ D0),
‖ykj

− x‖X ≤ 1/2j and λkj
≤ 1/2j .We laim the existene of β ∈ L1(Ω, R) and of D1 ⊂ D0 with µ(Ω\D1) = 0 suh that

|Fkj
(s)| ≤ β(s) on D1 for all j ∈ N. To prove this, by the ondition (N1) together withLemma 2.3 there exist measurable funtions ξk ∈ N∂Cg(uk) and uk suh that uk(s) ∈

[yk(s) + λkv(s), yk(s)] and Fk(s) = 〈ξk(s), v(s)〉 a.e., and so Fk ∈ Mv(uk). Sine X is aBanah M+-spae, we get, by an analogous argument to that for (3.3) in Step 3.1, that
uk ∈ X and
‖ukj

−x‖X ≤ ‖ykj
−x‖X +λkj

‖v‖X ≤ 1/2j +(1/2j)‖v‖X ⇒
∞∑

j=1

‖ukj
−x‖X < ∞. (3.6)Sine Mv has the U -property due to the ondition (N2), there exist β ∈ L1(Ω, R) and

D1 ⊂ D0 with µ(Ω\D1) = 0 suh that |Fkj
(s)| ≤ β(s) (∀s ∈ D1).Using the above laim together with the measurability of the funtion s 7→ g◦(s, x(s);

v(s)) (see Lemma 2.1), we an apply the Fatou lemma for the funtions s ∈ D1 7→
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β(s) − Fkj
(s) ∈ [0,∞), and by (N2) we dedue then

b = lim sup
j→∞

∫

D1

Fkj
(s)dµ(s) ≤

∫

D1

lim sup
j→∞

Fkj
(s)dµ(s)

≤

∫

D1

lim sup
u→x(s)

λ↓0

g(s, u + λv(s)) − g(s, u)

λ
dµ(s) =

∫

Ω

g◦(s, x(s); v(s))dµ(s) < ∞.

Therefore,
G◦(x; v) = sup{b = lim

k→∞

∫

Ω

Fk(s)dµ(s) : ‖yk − x‖X → 0, λk ↓ 0}

≤

∫

Ω

g◦(s, x(s); v(s))dµ(s) < ∞.Step 3.3 : We mimi Clarke's argument in the proof of [12, Theorem 2.7.2℄. We know(see Lemma 2.1) that the funtion (s, u) ∈ Ω × E 7→ g◦(s, x(s); u) is a Carathéodoryonvex integrand, and v ∈ X 7→ Ĝ(v) :=
∫
Ω

g◦(s, x(s); v(s))dµ(s) is a onvex funtionalon X suh that Ĝ(0) = 0. If γ ∈ ∂CG(x), then by Step 3.2 for every v ∈ X we have
γ(v) ≤ G◦(x; v) ≤

∫
Ω

g◦(s, x(s); v(s))dµ(s) = Ĝ(v) − Ĝ(0), and so γ is an element ofthe subdi�erential ∂Ĝ(0). By Lemma 2.4 together with dom IĜ = X from the ondition
(N2), we an dedue that ∂Ĝ(0) onsists of linear funtionals γ ∈ X∗ of the form 〈γ, v〉 =∫
Ω
〈ζ(s), v(s)〉dµ(s) (v ∈ X) with ζ ∈ X ′ and ζ(s) ∈ ∂Cg(s, x(s)) a.e. on Ω. Hene, theinlusion (3.2) follows.Step 3.4 : Suppose that g(s, ·) is regular (in Clarke's sense [12, Setion 2.3℄) at x(s) foralmost all s ∈ Ω. Fix v ∈ X. For an analogous reason and by an analogous argument asin Step 3.2, we an apply the Fatou lemma for the funtions s 7→ β(s) + Fkj

(s) ∈ [0,∞)and dedue
lim inf

λ↓0

G(x + λv) − G(x)

λ
≥

∫

Ω

lim inf
λ↓0

g(s, x(s) + λv(s)) − g(s, x(s))

λ
dµ(s)

=

∫

Ω

g′(s, x(s); v(s))dµ(s) =

∫

Ω

g◦(s, x(s); v(s))dµ(s) ≥ G◦(x; v).Now we an dedue by Clarke's argument in the proof of [12, Theorem 2.7.3, p. 87℄ that
G is regular at x and N∂Cg(x) ⊂ ∂CG(x).By Lemma 3.1 we an prove the following Theorems 3.2-3.3.Theorem 3.2. Let g : Ω × R

m → R be a Carathéodory funtion suh that g(s, ·) isLipshitz ontinuous on eah ball of R
m for almost all s ∈ Ω, and X ⊂ L0(Ω, Rm) bea non-solid Banah M -spae with m ≥ 2, vsuppX(s) = R

m. Suppose that ∂Cg satis�es
(N1) and there exists H : Ω × R

m → Cp(Rm) satisfying the following onditions:(N3) The multivalued superposition operator NH : X → 2X′

\{∅} is bounded on eah ballof X;(N4) There exists Ω0 ∈ A with µ(Ω\Ω0) = 0 suh that1) ∂Cg(s, u) ⊂ bco H(s, [−1, 1]u) for all s ∈ Ω0 and for all u ∈ R
m,2) H(s, C) ∈ Cp(Rm) for C ∈ Cp(Rm) for all s ∈ Ω0,



GENERALIZED GRADIENTS FOR INTEGRAL FUNCTIONALS 1433) H is multi-superpositionally measurable,4) H has the Filippov impliit funtion property.Then, the statement of Lemma 3.1 is valid for G de�ned on X.Proof. It su�es to hek the ondition (N2), and then Theorem 3.2 follows from Lemma3.1. We divide this proof into Steps 3.5-3.9. We need the following tehnial notion from[27, 28℄. Given Y ⊂ L0(Ω, Rm) with m ≥ 2, denote by Arm(Y ) the set of all infra-semi-units for Y , i.e. measurable multifuntions b : Ω → 2R
m

\{∅} suh that b(s) ∈ CvCp(Rm)is balaned in R
m a.e. and Selb ⊂ Y .Step 3.5 : We laim that a ∈ Arm(X ′) for eah b ∈ Arm(X), where

a(s) := bco H(s,b(s)).To prove this laim, by the tehnial theorem 3 of [28℄ (see also [27, Theorem 4.2℄), thereexist x̃1, . . . , x̃m ∈ X suh that
m∑

j=1

[−1, 1]x̃j(s) ⊂ b(s) ⊂ D(s) := (m + 1/2)

m∑

j=1

[−1, 1]x̃j(s) a.e. (3.7)Put c(s) := bcoH(s, D(s)). Fix y ∈ Sel c = Sel bco H(·, D(·)). By the ondition (N4)together with the parametri version [8, Theorem IV.11℄ of Carathéodory's theorem, themultifuntions s 7→ H(s, D(s)) ∈ Cp(Rm), s 7→ c(s) ∈ Cp(Rm) are measurable and thereexist measurable funtions αi, ξi suh that y(s) =
∑m+1

i=1 αi(s)ξi(s), ∑m+1
i=1 |αi(s)| = 1,

ξi(s) ∈ H(s, D(s)) a.e.; then there exist some measurable funtions zi suh that zi(s) ∈

D(s) and ξi(s) ∈ H(s, zi(s)) a.e.Then (e.g., by [29, Lemma 3.1/(2)℄), for zi ∈ SelD, there exist funtions αij ∈ L∞suh that zi(s) = (m + 1/2)
∑m

j=1 αij(s)x̃j(s) and ‖αij‖L∞ ≤ 1. Sine X is a Banah
M -spae, we obtain

‖zi‖X ≤ (m + 1/2)

m∑

j=1

‖αij x̃j‖X ≤ (m + 1/2)

m∑

j=1

‖x̃j‖X := κ < ∞. (3.8)By the ondition (N3), r(κ) := sup{‖ξ‖X′ : ξ ∈ NH(z), ‖z‖X ≤ κ} < ∞ for κ ∈ (0,∞).Sine X ′ is a Banah M -spae and ξi ∈ NH(zi), (3.8) implies that
‖y‖X′ ≤

m+1∑

i=1

‖αiξi‖X′ ≤
m+1∑

i=1

‖ξi‖X′ ≤ (m + 1) r(κ) < ∞. (3.9)Hene Sel c ⊂ X ′, and so Sela ⊂ X ′. By the ondition (N4), a(s) is a balaned onvexompat set and a is measurable, and hene the laim follows.Step 3.6 : We laim that given a ∈ Arm(X ′) and v ∈ X, there exists βa ∈ L1(Ω, (0,∞))suh that |〈v(s), d(s)〉| ≤ βa(s) a.e. for any d ∈ Sela. By the tehnial theorem 3 of [28℄(see also [27, Theorem 4.2℄), there exist ỹ1, . . . , ỹm ∈ X ′ suh that
m∑

j=1

[−1, 1]ỹj(s) ⊂ a(s) ⊂ (m + 1/2)
m∑

j=1

[−1, 1]ỹj(s) a.e.Then (e.g., by [29, Lemma 3.1/(2)℄), for a �xed d ∈ Sela, there exist m funtions ηj ∈ L∞suh that d(s) = (m + 1/2)
∑m

j=1 ηj(s)ỹj(s) a.e. and ηj(s) ∈ [−1, 1]. Then, for a.a. s ∈ Ω



144 H. T. NGUYÊÑ AND D. PĄCZKAwe get
|〈v(s), d(s)〉| ≤ (m + 1/2)

m∑

j=1

|ηj(s)||〈v(s), ỹj(s)〉|

≤ (m + 1/2)
m∑

j=1

|〈v(s), ỹj(s)〉| := βa(s).Sine v ∈ X and ỹj ∈ X ′, we have βa ∈ L1(Ω, R).Step 3.7 : We laim that for eah δ ∈ (0,∞) there exists r̃(δ) ∈ (0,∞) suh that ‖x‖X ≤ δimplies ‖y‖X′ ≤ r̃(δ) for y ∈ N∂Cg(x). We dedue this from the proof of Step 3.5. Fix
x ∈ X with ‖x‖X ≤ δ. Put b(s) = [−1, 1]x(s). Then b(s) =

∑m
j=1[−1, 1]x̃j(s) ⊂ D(s) =

[−1, 1]D(s), where x̃1(s) = x(s), x̃j(s) = 0 (j ≥ 2). By the onditions (N3)�(N4) togetherwith (3.8)�(3.9), for a �xed y ∈ N∂Cg(x) ⊂ Sel c we have that
‖zi‖X ≤ (m + 1/2)‖x̃1‖X ≤ (m + 1/2) δ := k(δ) < ∞and ‖y‖X′ ≤ (m + 1/2) r(k(δ)) := r̃(δ) < ∞.Step 3.8 : We shall hek the U -property for the multivalued operator Mv : X → 2L1(Ω,R)\

{∅} de�ned suh as in ondition (N2) at a �xed x ∈ X. Fix v ∈ X and a sequene
{xi}i∈N ⊂ X suh that ∑∞

i=1 ‖xi − x‖X < ∞. Fix αi ∈ Mv(xi); then αi(s) = 〈v(s), ξi(s)〉a.e. on Ω for some ξi ∈ N∂Cg(xi). By the tehnial theorem 7 of [28℄ (see also [27, Theorem4.1℄) we get some Ω1 ⊂ Ω0 with µ(Ω\Ω1) = 0 suh that the series of ompat sets
b(s) := x(s) +

∞∑

i=1

[−1, 1](xi(s) − x(s))onverges in the spae Cp(Rm) for all s ∈ Ω1; moreover, putting b(s) := {0} for s ∈ Ω\Ω1,we get b ∈ Arm(X). By Step 3.5 we get that a(·) := bcoH(·,b(·)) ∈ Arm(X ′). Due tothe ondition (N4) we get that
xi(s) ∈ b(s) = [−1, 1]b(s), ∂Cg(s, xi(s)) ⊂ bcoH(s,b(s)) (∀s ∈ Ω1)and ξi ∈ N∂Cg(xi) ⊂ Sela. Hene, by Step 3.6, the U -property for Mv follows.Step 3.9 : We laim that the funtion s ∈ Ω 7→ g◦(s, x(s); v(s)) belongs to L1(Ω, R) forany x, v ∈ X. Sine X ⊂ L0(Ω, Rm) is a Banah M -spae, by [29, Theorem 3.2, Lemma3.2℄, there exist α ∈ L0(Ω, (0,∞)) and m funtions g1, . . . , gm ∈ X suh that the linearhull of {g1(s), . . . , gm(s)} = vsuppX(s) = R

m a.e., and v(s) :=
∑m

j=1[−1, 1]gj satis�es
v ∈ Arm(X) with α(s)BRm(0, 1) ⊂ v(s) a.e. Then,

|g◦(s, x(s); v(s))|

≤ sup

{∣∣∣∣
g(s, ū + λv(s)) − g(s, ū)

λ

∣∣∣∣ : λ ∈ (0, 1], ‖ū − x(s)‖Rm ≤ α(s)

}

= sup

{∣∣∣∣
g(s, ū + λv(s)) − g(s, ū)

λ

∣∣∣∣ : λ ∈ (0, 1], ū ∈ x(s) + α(s)BRm(0, 1)

}

≤ sup

{∣∣∣∣
g(s, ū + λv(s)) − g(s, ū)

λ

∣∣∣∣ : λ ∈ (0, 1], ū ∈ x(s) + v(s)

}
.
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|g◦(s, x(s); v(s))|

≤ sup{|〈v(s), u∗〉| : u∗ ∈ ∂Cg(s, u), u ∈ [ū, ū + λv(s)], λ ∈ (0, 1], ū ∈ x(s) + v(s)}

≤ sup{|(v(s), u∗)| : u∗ ∈ ∂Cg(s, u), u ∈ [−1, 1]v(s) + x(s) + v(s)}

≤ sup{|〈v(s), u∗〉| : u∗ ∈ ∂Cg(s, u), u ∈ b0(s)}

≤ sup{|〈v(s), u∗〉| : u∗ ∈ a0(s)} a.e.,where
b0(s) := v(s) + [−1, 1]x(s) + v(s), a0(s) := bcoH(s,b0(s)).Then, b0 ∈ Arm(X), and so by Step 3.5, a0 ∈ Arm(X ′). Sine a0 is measurable, by[8℄ there exists some Castaing representation {u∗

q : q ∈ N} for a0, i.e. u∗
q ∈ Sela0 and

a0(s) = the losure of {u∗
q(s) : q ∈ N} a.e. Hene,

|g◦(s, x(s); v(s))| ≤ sup{|〈v(s), u∗
q(s)〉| : q ∈ N} a.e.By Step 3.6 for a0, there exists βa0

∈ L1(Ω, R) with |〈v(s), u∗
q(s)〉| ≤ βa0

(s) a.e. So, theabove laim follows.Theorem 3.3. Let g : Ω × R
m → R, a non-solid Banah M -spae X ⊂ L0(Ω, Rm)with m ≥ 2 be suh as in Theorem 3.2. Suppose that ∂Cg satis�es (N1) and for every

R ∈ (0,∞) there exists HR : Ω × R
m → Cp(Rm) satisfying the following onditions:(N5) The multivalued superposition operator NHR

: BX(0, R) → 2X′

\{∅} is bounded;(N6) ∂Cg(s, x(s)) ⊂ bcoHR(s, [−1, 1]x(s)) a.e. for eah x ∈ BX(0, R), and there exists
Ω0 ∈ A with µ(Ω\Ω0) = 0 suh that1) HR(s, C) ∈ Cp(Rm) for C ∈ Cp(Rm) for all s ∈ Ω0,2) HR is multi-superpositionally measurable,3) the Filippov impliit funtion property is valid for HR.Then, the statement of Lemma 3.1 is valid for G de�ned on X.Proof. It su�es to hek the ondition (N2), and then Theorem 3.3 follows from Lemma3.1. Hene, it su�es to modify Steps 3.5, 3.7�3.9.Modi�ation of Step 3.5: Let b ∈ Arm(X) with ‖x‖X ≤ δ (∀x ∈ Selb) for some δ ∈ (0,∞).Then we laim that aR1

∈Arm(X ′), where aR1
(s) := bcoHR1

(s,b(s)) and R1 := (m +

1/2)mδ. The proof of this laim is analogous to the proof of Step 3.5. Here, (3.7)�(3.8)imply that ‖x̃j‖ ≤ δ and ‖zi‖ ≤ R1. So, it su�es to substitute HR1
for H, aR1

for a,and cR1
(s) := bco HR1

(s, D(s)) for c(s).Modi�ation of Step 3.7: It su�es to substitute cR1
for c, where R1 = (m + 1/2)mδ,then given y ∈ N∂Cg(x) with ‖x‖X ≤ δ we get y ∈ N∂g(x) ⊂ Sel cR1

.Modi�ation of Step 3.8: We observe that by the tehnial theorem 7 of [28℄ (see also [27,Theorem 4.1℄) together with [29, Lemma 3.1℄ we get
‖x̃‖X ≤ δ2 := ‖x‖X +

∞∑

i=1

‖xi − x‖X < ∞
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for H and aR2

for a with R2 :=

(m + 1/2)mδ2.Modi�ation of Step 3.9: Observe that by [29, Lemma 3.1℄, we have
x̃ ∈ Selb0 =⇒ ‖x̃‖X ≤ δ3 := ‖v‖X + ‖x‖X +

m∑

i=1

‖gi‖X < ∞.It su�es to substitute HR3
for H and aR3

for a, where R3 := (m + 1/2)mδ3.Remark 3.4. The statements of Lemma 3.1 and Theorems 3.2�3.3 remain valid for thenon-solid Banah spae X ⊂ L0(Ω, R) with the arbitrary vetor support vsupp X, butthen we need to substitute g◦X(s, u0; v) for g◦(s, u0; v) as well as ∂CgX(s, u0) for ∂Cg(s, u0),where g◦X(s, u0; v) denotes the Clarke derivative at u0 in diretion v ∈ vsuppX(s) for thefuntion u ∈ vsupp X(s) 7→ g(s, u), and ∂CgX(s, u0) denote the generalized gradient at
u0 of the funtion u ∈ vsupp X(s) 7→ g(s, u).4. Lipshitz integral funtionals on Köthe�Bohner spaes. Given a Banah lat-tie K ⊂ L0(Ω, R), we say that an operator Q : K+ → K ′ has the U -property if givenany a ∈ K+ for eah sequene ak ⊂ K+ with ∑∞

k=1 ‖ak − a‖K < ∞ there exists d ∈ K ′suh that |Q(ak)(s)| ≤ d(s) a.e. on Ω for every k ∈ N.Lemma 4.1. Let g : Ω×E → R be a Carathéodory funtion suh that g(s, ·) is Lipshitzontinuous on eah ball of E for almost all s ∈ Ω, and K ⊂ L0(Ω, R) be a Banah lattie.Suppose the following onditions hold:(K1) There exists h : Ω × [0,∞) → [0,∞) suh that
sup{‖u∗‖E∗ : u∗ ∈ ∂Cg(s, u), ‖u‖E ≤ α} ≤ h(s, α)for almost all s ∈ Ω and for all α ∈ [0,∞);(K2) The superposition operator Nh : K+ → K ′ is bounded on eah ball of K+ and hasthe U-property.Then, the statement of Lemma 3.1 is valid for G de�ned on X = K(E).Proof. We shall mimi Clarke's proof of his Theorem 2.7.5/(B) [12℄ but new moments inour proof will be emphasized and given in detail. We divide our proof into Steps 4.1-4.5.Step 4.1 : We laim that the funtional G is Lipshitz ontinuous on every ball of X. Infat, let y, z ∈ BX(0, r). By Lebourg's Theorem 2.2 for g(s, ·) on some open ball ontainingthe onvex interval [z(s), y(s)], we an �nd ξ0(s) ∈ E∗

w∗ , u0(s) ∈ E and θ0(s) ∈ [0, 1] suhthat
u0(s) = θ0(s)z(s) + (1 − θ0(s))y(s),

g(s, z(s)) − g(s, y(s)) = 〈ξ0(s), z(s) − y(s)〉,

ξ0(s) ∈ ∂Cg(s, u0(s)) a.e.We point out that the funtions ξ0, u0, θ0 are not, in general, all measurable. Sine X isa Köthe�Bohner spae, we get
‖‖z(·)‖E + ‖y(·)‖E‖K ≤ ‖‖z(·)‖E‖K + ‖‖y(·)‖E‖K = ‖z‖X + ‖y‖X ≤ 2r.
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‖u0(s)‖E ≤ ‖θ0(s)z(s)‖E + ‖(1 − θ0(s))y(s)‖E ≤ ‖z(s)‖E + ‖y(s)‖E a.e.By ξ0(s) ∈ ∂Cg(s, u0(s)) a.e., from the ondition (K1) we obtain

‖ξ0(s)‖E∗ ≤ h(s, ‖z(s)‖E + ‖y(s)‖E) := γ0(s) a.e.Due to the ondition (K2), we obtain C̃(2r) := sup{‖Nh(α̃)‖K′ : ‖α̃‖K ≤ 2r} < ∞. Sine
γ0(s) = Nh(‖z(·)‖E + ‖y(·)‖E)(s), hene ‖γ0‖K′ ≤ C̃(2r) follows. Sine

|g(s, z(s)) − g(s, y(s))| ≤ ‖ξ0(s)‖E∗‖z(s) − y(s)‖E a.e.,we get
|G(z) − G(y)| ≤

∫

Ω

|g(s, z(s)) − g(s, y(s))| dµ ≤

∫

Ω

γ0(s)‖z(s) − y(s)‖E dµ

≤ ‖γ0‖K′‖‖z(·) − y(·)‖E‖K ≤ C̃(2r)‖z − y‖X .for z, y ∈ BX(0, r). Sine G(x∗) ∈ R, the laim of Step 4.1 follows.Step 4.2 : We shall use the notations from the beginning of Step 3.2 of the proof ofTheorem 3.2, in partiular, Fk(s) := g(s,yk(s)+λkv(s))−g(s,yk(s))
λk

. We an hoose kj and D0with µ(Ω\D0) = 0 suh that ykj
(s) → x(s) as j → ∞ (∀s ∈ D0), ‖ykj

− x‖X ≤ 1/2j and
λkj

≤ 1/2j .We laim the existene of β ∈ L1(Ω, R) and of D1 ⊂ D0 with µ(Ω\D1) = 0 suhthat |Fkj
(s)| ≤ β(s) on D1 for all j ∈ N. To prove this, by Lebourg's Theorem 2.2 for

g(s, ·) on some open ball ontaining the onvex interval [yk(s), yk(s)+λkv(s)], there exist
ξk(s) ∈ E∗

ω∗ and uk(s) ∈ E and αk(s) ∈ [0, 1] suh that
uk(s) = αk(s)[yk(s) + λkv(s)] + (1 − αk(s))yk(s),

g(s, yk(s) + λkv(s)) − g(s, yk(s)) = 〈ξk(s), λkv(s)〉,

ξk(s) ∈ ∂Cg(s, uk(s)) a.e.So Fk(s) = 〈ξk(s), v(s)〉. We point out that the funtions ξk, uk and αk are not, in general,all measurable. We have that
‖ukj

(s)‖E ≤ ‖x(s)‖E + ‖αkj
(s)[ykj

(s) + λkj
v(s)] + (1 − αkj

(s))ykj
(s) − x(s)‖E

≤ ‖x(s)‖E + ‖ykj
(s) − x(s)‖E + λkj

‖v(s)‖E := aj(s) a.e.Hene we obtain, by the ondition (K1),
‖ξkj

(s)‖E∗ ≤ h(s, aj(s)) = Nh(aj)(s) a.e. (4.1)Sine X is a Köthe�Bohner spae, for the sequene aj and a, a(s) := ‖x(s)‖E, we get
‖aj − a‖K = ‖‖ykj

(·) − x(·)‖E + |λkj
| ‖v(·)‖E‖K

≤ ‖‖ykj
(·) − x(·)‖E‖K + |λkj

| ‖‖v(·)‖E‖K

= ‖ykj
− x‖K(E) + |λkj

|‖v‖K(E) ≤ 1/2j + (1/2j)‖‖v(·)‖E‖K ,and so
∞∑

j=1

‖aj − a‖K < ∞.



148 H. T. NGUYÊÑ AND D. PĄCZKABy the ondition (K1) the operator Nh has the U -property, and hene we an �nd d ∈ K ′suh that |Nh(aj)(s)| ≤ d(s) a.e. Sine |Fkj
(s)| ≤ ‖ξkj

(s)‖E∗‖v(s)‖E, by (4.1) we deduethen the existene of D1 ⊂ D0 with µ(Ω\D1) = 0 suh that |Fkj
(s)| ≤ d(s)‖v(s)‖E :=

β(s)(∀s ∈ D1). By ‖v(·)‖E ∈ K, hene β ∈ L1(Ω, R) follows.Step 4.3 : We laim that the funtion s ∈ Ω 7→ g◦(s, x(s); v(s)) belongs to L1(Ω, R) forany x, v ∈ X. Sine K is a Banah lattie, by [22℄, [41, Theorem 2.2.6℄, there exists α ∈ Kwith α(s) > 0 for s ∈ supp K = Ω. Then, by Lebourg's Theorem 2.2, (K1) implies that
|g◦(s, x(s); v(s))|

≤ sup

{∣∣∣∣
g(s, ū + λv(s)) − g(s, ū)

λ

∣∣∣∣ : λ ∈ (0, 1], ‖ū − x(s)‖E ≤ α(s)

}

≤ sup{|〈v(s), u∗〉| : u∗ ∈ ∂Cg(s, u), u ∈ [ū, ū + λv(s)], λ ∈ (0, 1], ‖ū − x(s)‖E ≤ α(s)}

≤ sup{|〈v(s), u∗〉| : u∗ ∈ ∂Cg(s, u), ‖u‖E ≤ ‖x(s)‖E + α(s) + ‖v(s)‖E}

≤ ‖v(s)‖E sup{‖u∗‖E∗ : u∗ ∈ ∂Cg(s, u), ‖u‖E ≤ p(s)}

≤ ‖v(s)‖E h(s, p(s)) a.e.,where p(s) := ‖x(s)‖E + α(s) + ‖v(s)‖E satis�es p ∈ K+. Hene, by (K2) together with
‖v(·)‖E ∈ K, the above laim follows.The remaining part of Step 4.2 and Steps 4.4�4.5 for proving Lemma 4.1 are analogousto Step 3.2 and Steps 3.3-3.4 of the proof of Lemma 3.1.By Lemma 4.1 we an prove the following Theorem 4.2.Theorem 4.2. Let g : Ω×E → R be a Carathéodory funtion suh that g(s, ·) is Lipshitzontinuous on eah ball of E for almost all s ∈ Ω, and K ⊂ L0(Ω, R) be a Banah lattie.Suppose that g satis�es the ondition (K1) with respet to h : Ω × [0,∞) → [0,∞) and hsatis�es the following ondition:(K3) The superposition operator Nh : K+ → K ′ is bounded on eah ball of K+ and h(s, ·)is nondereasing for almost all s ∈ Ω.Then, the statement of Lemma 3.1 is valid for G de�ned on X = K(E).Proof. It su�es to hek the U -property for Nh, and then Theorem 4.2 follows fromLemma 4.1. Fix a ∈ K+ and a sequene ai ∈ K+ suh that ∑∞

i=1 ‖ai−a‖K < ∞. Then bythe Riesz�Fisher property for the Banah lattie K (see, e.g., [22℄, [41, Theorem 3.2.1℄),there exists Ω0 ∈ A with µ(Ω\Ω0) = 0 suh that the series a∞(s) :=
∑∞

i=1 |ai(s) − a(s)|onverges for s ∈ Ω0; moreover putting a∞(s) := 0 (s ∈ Ω\Ω0), we get a∞ ∈ K+. Notethat ai(s) ≤ a∞(s) + a(s) a.e., and then by the ondition (K3) we have
Nh(ai)(s) = h(s, ai(s)) ≤ h(s, a∞(s) + a(s)) = Nh(a∞ + a)(s) := d(s) a.e.Sine Nh maps K+ into K ′, we obtain Nh(a∞ + a) = d ∈ K ′.Theorem 4.3. Let g : Ω×E → R and a Banah lattie K be as in Theorem 4.2. Supposethat for every R ∈ (0,∞) there exists a funtion hR : Ω × [0,∞) → [0,∞) satisfying thefollowing onditions:



GENERALIZED GRADIENTS FOR INTEGRAL FUNCTIONALS 149(K4) sup{‖u∗‖E∗ : u∗ ∈ ∂Cg(s, u), ‖u‖E ≤ a(s)} ≤ hR(s, a(s)) is valid a.e. for eah
a ∈ BK+

(0, R);(K5) The superposition operator NhR
: BK+

(0, R) → K ′ is bounded and there exists Ω0 ∈

A with µ(Ω\Ω0) = 0 suh that hR(s, ·) is nondereasing for s ∈ Ω0.Then, the statement of Lemma 3.1 is valid for G de�ned on X = K(E).Proof. It su�es to modify Steps 4.1-4.3 (in the proof of Lemma 4.1) as well as the proofof Theorem 4.2.Modi�ation of Step 4.1: It su�es to substitute h2r(s, ·) for h(s, ·).Modi�ation of Step 4.2 together with the proof of Theorem 4.2 : Observe by the Riesz�Fisher property for the Banah lattie K that we get also ‖a∞‖K ≤
∑∞

i=1 ‖ai − a‖K .Then, it su�es to substitute hr1
(s, ·) for h(s, ·), where r1 := ‖a‖K+

∑∞
i=1 ‖ai−a‖K < ∞.Modi�ation of Step 4.3: It su�es to substitute hr2

(s, ·) for h(s, ·), where
r2 := ‖‖x(·)‖E‖K + ‖α‖K + ‖‖v(·)‖E‖K < ∞.Theorem 4.4. Let g : Ω×E → R be a Carathéodory funtion suh that g(s, ·) is loallyLipshitz on E for almost all s ∈ Ω, and K ⊂ L0(Ω, R) be a Banah lattie. Suppose thefollowing onditions hold:(K6) There exists h̃ : Ω × [0,∞) → [0,∞) suh that

|g(s, u) − g(s, v)| ≤ h̃(s, ‖u‖E + ‖v‖E)‖u − v‖Efor almost all s ∈ Ω and for all u, v ∈ E;(K7) The superposition operator Nh̃ : K+ → K ′ is bounded on eah ball of K+ and h̃(s, ·)is nondereasing for almost all s ∈ Ω.Then, the statement of Lemma 3.1 is valid for G de�ned on X = K(E).Proof. Observe that if g(s, ·) is Lipshitz ontinuous on eah ball of E for almost all
s ∈ Ω, then by [12, Proposition 2.1.2/(a)℄, (K6)�(K7) imply (K1) and (K3) for h(s, α) =

h̃(s, 2α), and so Theorem 4.4 follows from Theorem 4.2. In the general ase we an giveanother diret proof without using Lebourg's Theorem 2.2 as following.Modi�ation of Step 4.1: Let y, z ∈ BX(0, r). Then,
|G(z) − G(y)| ≤

∫

Ω

h̃(s, ‖z(s)‖E + ‖y(s)‖E)‖z(s) − y(s)‖E dµ(s)

≤ ‖Nh̃(‖z(·)‖E + ‖y(·)‖E)‖K′ ‖‖z(·) − y(·)‖E‖K ≤ C̃(2r)‖z − y‖X .Modi�ation of Step 4.2: Let Fk, yk, kj be as in Step 4.2. Then,
|Fkj

(s)| ≤ h̃(s, ‖ykj
(s) + λkj

v(s)‖E + ‖ykj
(s)‖E) ‖v(s)‖E

≤ h̃(s, 2 ‖ykj
(s)‖E + ‖v(s)‖E) ‖v(s)‖E.Sine ∑∞

j=1 ‖‖ykj
(·)− x(·)‖E‖K ≤

∑∞
j=1

1

2kj
< ∞, by the Riesz�Fisher property for theBanah lattie K (see, e.g., [22℄, [41, Theorem 3.2.1℄), for some Ω0 ∈ A with µ(Ω\Ω0) =

0 the series ã∞(s) :=
∑∞

i=1 ‖ykj
(s) − x(s)‖E onverges for s ∈ Ω0; moreover putting
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ã∞(s) := 0 (s ∈ Ω\Ω0), we get ã∞ ∈ K+. Observe that ‖ykj
(s)‖E ≤ ã∞(s) + ‖x(s)‖Ea.e., and hene

|Fkj
(s)| ≤ d̃(s)‖v(s)‖E a.e.,where d̃(s) := Nh̃(2ã∞ + 2‖x(·)‖E + ‖v(·)‖E)(s) with d̃ ∈ K ′.Modi�ation of Step 4.3: Let α be as in Step 4.3. Then,

|g◦(s, x(s); v(s))|

≤ sup

{∣∣∣∣
g(s, ū + λv(s)) − g(s, ū)

λ

∣∣∣∣ : λ ∈ (0, 1], ‖ū − x(s)‖E ≤ α(s)

}

≤ sup
{

h̃(s, 2‖ū‖E + λ‖v(s)‖E)‖v(s)‖E : λ ∈ (0, 1], ‖ū − x(s)‖E ≤ α(s)
}

≤ sup
{

h̃(s, 2‖ū‖E + ‖v(s)‖E)‖v(s)‖E : ‖ū‖E ≤ ‖x(s)‖E + α(s)
}

≤ ‖v(s)‖E h̃(s, p̃(s)) a.e.,where p̃(s) := 2‖x(s)‖E +2α(s)+‖v(s)‖E with p̃ ∈ K+. Then, g◦(·, x(·), v(·)) ∈ L1(Ω, R).The remaining part of the proof is analogous to Steps 3.2-3.4 of the proof of Lemma 3.1.Theorem 4.5. Let g : Ω×E → R and a Banah lattie K be as in Theorem 4.4. Supposethat for every R ∈ (0,∞) there exists h̃R : Ω × [0,∞) → [0,∞) satisfying the followingonditions:(K8) |g(s, u(s)) − g(s, v(s))| ≤ h̃R(s, ‖u(s)‖E + ‖v(s)‖E)‖u(s) − v(s)‖E is valid a.e. foreah u, v ∈ BK(E)(0, R);(K9) The superposition operator Nh̃R
: BK+

(0, R) → K ′ is bounded and there exists Ω0 ∈

A with µ(Ω\Ω0) = 0 suh that h̃R(s, ·) is nondereasing for s ∈ Ω0.Then, the statement of Lemma 3.1 is valid for G de�ned on X = K(E).Proof. It su�es to modify the alternative proof of Theorem 4.4 in the same way as inthe proof of Theorem 4.3.5. Lipshitz integral funtionals on non-solid generalized Orliz spaes. Let
m ≥ 2 and M : Ω × R

m → [0,∞) be some generalized Young funtion (see, e.g., [6, 17,19, 25℄), i.e. M is a normal integrand, M(s, ·) is onvex even, M(s, 0) = 0, and the set
{u : M(s, u) = 0} is bounded for a.a. s ∈ Ω. The non-solid generalized Orliz spae isde�ned by LM (Ω, Rm) := {x ∈ L0(Ω, Rm) :

∫
Ω

M(s, αx(s))dµ(s) < ∞ for some α > 0}with the Luxemburg norm.We shall use the following onditions (∆m) and (Bm):
(∆m) There exist some measurable funtion δ : Ω → [0,∞) and a ∈ (1,∞) suh that∫

Ω
sup{M(s, u) : ‖u‖ ≤ δ(s)}dµ (s) < ∞ and M(s, 2u) ≤ aM(s, u) for a.a. s ∈ Ωand all u ∈ R

m with ‖u‖ ≥ δ(s);
(Bm) There exist c ∈ LM∗

(Ω, Rm) and b > 0 suh that
∂Cg(s, u) ⊂ [−1, 1] c(s) + b bco ∂M(s, [−1, 1] u)for almost all s ∈ Ω and for all u ∈ R

m.



GENERALIZED GRADIENTS FOR INTEGRAL FUNCTIONALS 151Corollary 5.1 (of Theorem 3.2). Let m ≥ 2, M : Ω×R
m → [0,∞) be aYoung funtion,and g be as in Theorem 3.2. Suppose that the onditions (N1), (Bm) are satis�ed for ∂Cgand (∆m) is valid for M . If the Filippov impliit funtion property is valid for ∂M (inpartiular, if gradM(s, ·) : R

m → R
m is ontinuous), then the statement of Lemma 3.1is valid for G de�ned on X = LM (Ω, Rm).Proof. By the known equality X ′ = LM∗ (with equivalent norms) the assertion of Corol-lary 5.1 follows immediately from Theorem 3.2 via using the results of the following Steps5.1-5.3.Step 5.1 : We laim that if M satis�es the ondition (∆m), then for every κ ∈ (0,∞) thereexists r(κ) ∈ (0,∞) suh that ‖x‖LM ≤ κ ⇒ ‖ξ‖LM∗ ≤ r(κ), where ξ is an arbitrarymeasurable seletor of the multifuntion s 7→ ∂M(s, x(s)). To prove this laim, �x x and

ξ suh that ‖x‖M ≤ κ and ξ(s) ∈ ∂M(s, x(s)) a.e. (then ∫
Ω

M(s, x(s)/κ)dµ(s) ≤ 1). Bythe de�nition of the subdi�erential of the onvex funtion M(s, ·),
M(s, 2x(s)) ≥ M(s, 2x(s)) − M(s, x(s)) ≥ 〈ξ(s), x(s)〉 a.e.Sine ∂M(s, x(s)) = {ζ ∈ R

m : M∗(s, ζ) + M(s, x(s)) = 〈ζ, x(s)〉}, we have
M∗(s, ξ(s)) = 〈ξ(s), x(s)〉 − M(s, x(s))

≤ M(s, 2x(s)) − M(s, x(s)) ≤ M(s, 2x(s)) a.e.Let l ∈ N be suh that κ ≤ 2l−1. Denote A = {s ∈ Ω : ‖x(s)‖ ≤ κδ(s), x(s) 6= 0}. By theondition (∆m) we dedue that:
∫

Ω

M∗(s, ξ(s)) dµ(s) ≤

∫

A

M(s, 2x(s)) dµ(s) +

∫

Ω\A

M(s, 2x(s)) dµ(s)

=

∫

A

M

(
s, 2

‖x(s)‖

δ(s)
x(s)δ(s)
‖x(s)‖

)
dµ(s) +

∫

Ω\A

M

(
s, 2κ

x(s)

κ

)
dµ(s)

≤

∫

A

M

(
s, 2l x(s)δ(s)

‖x(s)‖

)
dµ(s) +

∫

Ω\A

M

(
s, 2l x(s)

κ

)
dµ(s)

≤ al

∫

A

M

(
s,

x(s)δ(s)

‖x(s)‖

)
dµ(s) + al

∫

Ω\A

M

(
s,

x(s)

κ

)
dµ(s)

≤ al

(∫

Ω

sup{M(s, u) : ‖u‖ ≤ δ(s)} dµ(s) + 1

)
≤ al(I + 1),where I :=

∫
Ω

sup{M(s, u) : ‖u‖ ≤ δ(s)}dµ(s) ∈ (0,∞). Sine al(I +1) > 1, by onvexityof M∗ and M∗(s, 0) = 0, ∫
Ω

M∗( ξ(s)
al(I+1)

)dµ(s) ≤ 1 follows. Therefore ‖ξ‖M∗ ≤ al(I+1) :=

r(κ).Step 5.2 : Put H(s, u) := c(s) + b∂M(s, u). Then by the ondition (Bm), ∂Cg(s, u) ⊂

bcoH(s, [−1, 1]u) and the Filippov impliit funtion property for H is valid as this validfor ∂M . Fix y ∈ NH(x) with ‖x‖LM ≤ κ < ∞. Then (e.g., by [29, Lemma 3.1℄), there existmeasurable funtions α, d suh that y(s) = α(s)c(s) + bd(s) a.e. with α(s) ∈ [−1, 1] and
d(s) ∈ ∂M(s, [−1, 1]x(s)) a.e. By the Filippov impliit funtion property for ∂M , thereexists some measurable funtion λ suh that λ(s) ∈ [−1, 1] and d(s) ∈ ∂M(s, λ(s)x(s))a.e. Observe that ‖λx‖LM ≤ ‖x‖LM ≤ κ < ∞ and then by Step 5.1 for λx we get
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‖d‖LM∗ ≤ r(κ) < ∞. Hene,
‖y‖LM∗ ≤ ‖αc‖LM∗ + ‖bd‖LM∗ ≤ ‖c‖LM∗ + b ‖d‖LM∗ := r̃(k) < ∞for y ∈ NH(x).Step 5.3 : By [38, Theorem 2W, Theorem 1N℄, ∂M : Ω × R

m → Cp(Rm) is multi-superpositionally measurable. By [12, Proposition 2.2.6, Proposition 2.1.2/(a)℄ (for theonvex funtion M(s, ·) : R
m → R) together with [2, Lemma 2.9, p. 13℄, ∂M(s, C) ∈

Cp(Rm) for C ∈ Cp(Rm) a.e. Hene, the ondition (N4) follows.We shall use the following ondition:(NM) There exist Ω0 ∈ A with µ(Ω\Ω0) = 0 and for every R ∈ (0,∞) exist bR, dR ∈

(0,∞) and aR ∈ L1(Ω, [0,∞)) suh that
u∗ ∈ ∂Cg(s, u) =⇒ M∗(s, u∗/dR) ≤ aR(s) + bRM(s, u/R)for all s ∈ Ω0, u ∈ R

m.Corollary 5.2 (of Theorem 3.3). Let m ≥ 2, M : Ω×R
m → [0,∞) be a Young funtionwith M∗(s, u∗) ∈ [0,∞), and g be as in Theorem 3.3. Suppose that ∂Cg satis�es theonditions (N1) and (NM). If the multifuntion

(s, u) ∈ Ω × R
m 7→ HMR(s, u) := {u∗ ∈ R

m : M∗(s, u∗

dR
) ≤ aR(s) + bRM(s, u

R
)}has the Filippov impliit funtion property, then the statement of Lemma 3.1 is valid for

G de�ned on X = LM .Proof. It su�es to hek the onditions (N5)�(N6) for X = LM (Ω, Rm) and HR :=

HMR (then Corollary 5.2 follows from Theorem 3.3). Due to the above de�nition of M ,it is known [17, 19, 10℄ and easy to hek that HMR(s, u) ∈ Cp(Rm) and HMR(s, u)is symmetri and HMR(s, C) ∈ Cp(Rm) for C ∈ Cp(Rm) and for all s ∈ Ω0. By [12,Proposition 2.2.6℄, both M and M∗ are Carathéodory, and so (e.g., by [42, Theorem 1℄)
HMR is multi-superpositionally measurable. Sine bco HMR(s, [−1, 1]u) = HMR(s, u), by
(NM) we dedue (N6).Fix x ∈ X = LM (Ω, Rm) with ‖x‖LM ≤ R. Then for any ξ ∈ Sel HMR(·, x(·)) we get

∫

Ω

M∗ (s, ξ(s)/dR) dµ(s) ≤ ‖aR‖L1 + bR

∫

Ω

M (s, x(s)/R) dµ(s)

≤ ‖aR‖L1 + bR + 1 := r̃(R) ∈ (1,∞).Hene, ∫
Ω

M∗(s, ξ(s)
dRr̃(R))dµ(s) ≤ 1, and so ‖ξ‖LM∗ ≤ dRr̃(R). By (LM (Ω, Rm))′ =

LM∗

(Ω, Rm) with equivalent norms, (N5) follows.Remark 5.3. If M : Ω × R → [0, +∞] is suh that L(s) := {u : M(s, u) < +∞} is alinear subspae of R, then X = LM (Ω, R) has vsuppX(s) = L(s) and the statements ofCorollaries 5.1-5.2 remain valid but in the form of Remark 3.4 together with substituting
M∗

L for M∗, where M∗
L(s, ·) is the onvex dual on L(s) of the funtion u ∈ L(s) 7→ M(s, u),and N∂Cg(x) ⊂ X ′ = LM∗

L(Ω, R) (x ∈ X).



GENERALIZED GRADIENTS FOR INTEGRAL FUNCTIONALS 1536. Lipshitz integral funtionals on Orliz�Bohner spaes. Let Φ: Ω× [0,∞) →

[0,∞) be some Musielak�Orliz funtion (onvex in the seond variable) and Φ∗ : Ω ×

[0,∞) → [0,∞) be the onvex dual to Φ (see [4, 25, 37℄). The generalized Orliz�Bohner (Musielak�Orliz�Bohner) spae is de�ned by LΦ(E) = {x ∈ L0(Ω, E) :∫
Ω

Φ(s, α‖x(s)‖E)dµ(s) < ∞ for some α > 0} with the Luxemburg norm.The following onditions (∆) and (B) are taken from [36℄:
(∆) There exist some measurable funtion δ : Ω → [0,∞) and a ∈ (1,∞) suh that∫

Ω
Φ(s, δ(s))dµ(s) < ∞ and Φ(s, 2β) ≤ aΦ(s, β) a.e. for β ≥ δ(s);

(B) There exist c ∈ LΦ∗

(Ω, R) and b ∈ (0,∞) suh that
u∗ ∈ ∂Cg(s, u) ⇒ ‖u∗‖E∗ ≤ c(s) + bϕ(s, ‖u‖E) a.e. on Ωfor all u ∈ E, where ϕ(s, ·) is the right derivative of the onvex funtion Φ(s, ·).Lemma 6.1. Suppose that onditions (∆) and (B) are satis�ed. Then the onditions

(K1) and (K3) in Theorem 4.2 are valid for h(s, α) := |c(s)| + b|ϕ(s, α)| with respet to
X = K(E) with K := LΦ(Ω, R).Proof. By the ondition (B) the ondition (K1) follows. By the ondition (∆) togetherwith [36, Lemma 1℄,

κ ∈ (0,∞) ⇒ τ (κ) := sup{‖ϕ(·, |α(·)|)‖LΦ∗ : ‖α‖LΦ ≤ κ} < ∞.By the equality K ′ = LΦ∗ with equivalent norms (see, e.g., [4, 25, 37℄), ‖Nh(α)‖K′ ≤

‖c‖K′ + bτ (κ) < ∞ follows for every α ∈ K+ with ‖α‖K ≤ κ < ∞. By the nondereasingproperty of ϕ(s, ·), h(s, ·) is nondereasing for a.a. s ∈ Ω. Hene (K3) follows.By Lemma 6.1 together with (LΦ(E))′ = LΦ∗

(E∗
ω∗), Theorem 4.2 with its proof impliesan alternative proof for [36, Theorem 2℄.We shall use the following onditions (SΦ1) and (SΦ2):

(SΦ1) There exists Ω0 ∈ A with µ(Ω\Ω0) = 0 and for every R ∈ (0,∞) there exist
bR, dR ∈ (0,∞) and aR ∈ L1(Ω, [0,∞)) suh that

u∗ ∈ ∂Cg(s, u) =⇒ Φ∗(s, ‖u∗‖E∗/dR) ≤ aR(s) + bRΦ(s, ‖u‖E/R)for all s ∈ Ω0, u ∈ E;
(SΦ2) There exists Ω0 ∈ A with µ(Ω\Ω0) = 0 and for every R ∈ (0,∞) there exist

bR, dR ∈ (0,∞) and aR ∈ L1(Ω, [0,∞)) suh that
|g(s, u) − g(s, v)| ≤ h̃R(s, ‖u‖E + ‖v‖E)‖u − v‖Efor all s ∈ Ω0 and for all u, v ∈ E, and

Φ∗(s, h̃(s, α)/dR) ≤ aR(s) + bRΦ(s, α/R)for all s ∈ Ω0, α ∈ [0,∞).Corollary 6.2 (of Theorems 4.3, 4.5). Let g : Ω × E → R be a Carathéodory funtion.Suppose one of the following onditions holds:



154 H. T. NGUYÊÑ AND D. PĄCZKA1) g(s, ·) is Lipshitz ontinuous on eah ball of E for almost all s ∈ Ω and ∂Cgsatis�es (SΦ1);2) g(s, ·) is loally Lipshitz on E for almost all s ∈ Ω and g satis�es (SΦ2).Then the statement of Lemma 3.1 is valid for G de�ned on X = LΦ(E).Remark 6.3. It is an easy hek that (SΦ1) implies that N∂Cg : LΦ(E) → LΦ∗

(E∗
ω∗) isbounded on BLΦ(E)(0, R). On the other hand, it is known (see e.g. [4, 26℄) that if themeasure µ is ontinuous and ∂Cg is Carathéodory and N∂Cg : LΦ(E) → LΦ∗

(E∗
ω∗) isbounded on BLΦ(E)(0, R), then (SΦ1) is true. So, (SΦ1) is natural for appliations.Proof of Corollary 6.2/(SΦ1). Let (Φ∗)−1(s, ·) be the right pre-image of Φ∗(s, ·). Put

hR(s, α) := dR(Φ∗)−1(s, aR(s) + bRΦ(s, α/R)). Then, (K4) follows. It is easy to hek(see, e.g., [4, 26℄) that NhR
maps boundedly B(LΦ)+(0, R) into LΦ∗

(Ω, R). Sine hR(s, ·) isnondereasing and (LΦ(Ω, R))′ = LΦ∗

(Ω, R) with equivalent norms, (K5) follows. There-fore, Corollary 6.2/(SΦ1) follows from Theorem 4.3.Proof of Corollary 6.2/(SΦ2). By analogous arguments to the proof of Corollary 6.2/
(SΦ1), we dedue Corollary 6.2/(SΦ2) from Theorem 4.5.Aknowledgements. The authors are grateful for the onstrutive remarks of the re-viewer whih in�uened the shape of the revised version. The paper is supported bythe All-Polish Researh Foundation (KBN, Warsaw), in partiular, under the grant Nr0705/P3/94/06 for the �rst author. Lemma 2.3 and Step 5.1 of our paper were obtainedjointly with Agata Narloh in 1998.
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