THE STRONG UNICITY CONSTANT AND ITS APPLICATIONS

W. ODYNIEC
Department of Applied Mathematics, Herzen University
St. Petersburg, Russia
E-mail: W.Odyniec@VO13142.spb.edu
M. P. PROPHET
Department of Mathematics, University of Northern Iowa
Cedar Falls, Iowa, U.S.A.
E-mail: prophet@math.uni.edu

Abstract

In this report we discuss the applications of the strong unicity constant and highlight its use in the minimal projection problem.

Let X be a Banach space and let $V \subset X$ be a nonempty subset. An element $v_{0} \in V$ is called a strongly unique best approximation to $x \in X$ if there exists $r>0$ such that for any $v \in V$

$$
\begin{equation*}
\|x-v\| \geq\left\|x-v_{0}\right\|+r\left\|v-v_{0}\right\| . \tag{1}
\end{equation*}
$$

The biggest constant r satisfying (1) is called the strong unicity constant. This notation was introduced by D. J. Newman and H. S. Shapiro (see [20] and [21]).
Example 1. Let $X=l_{\infty}^{2}$ with unit ball U (pictured below). Let $x=(0,1), v_{0}=(1,0)$ and

$$
V=\{z \in X \mid z=(t, 0), 1 \leq t \leq 2\}
$$

Then it is easy to see that, in this case, the strong unicity constant is equal to 1 . We note the constant r from (1) belongs to the interval (0,1] and our example attains this greatest value.

There exist two main applications of the strong unicity constant:

1. the error estimate of the Remez algorithm,

[^0]
2. the Lipschitz continuity of the best approximation mapping at x_{0} (if there exists a strongly unique best approximation to x_{0}).

The error estimate of the Remez algorithm is based on an iteration process for finding the constant r from (1) (see [27], [28]). First this algorithm was used for Chebyshev approximation ([10], [11]). Now it is used for filter design in Digital Signal Processing (see [1]). Currently, in numerical methods of Chebyshev approximation, the strong unicity constant is used in conjunction with the metric projection with Lipschitz continuity property (see e.g., [7], [2], [6], [22], [8], [9], [16]).

The aim of this report is to present a third application of the strong unicity constant in the case of projections from l_{∞}^{n} onto some $n-k$ dimensional subspace ($n \geq 3,1 \leq$ $k \leq n-1)$. In this case $X=\mathcal{L}\left(l_{\infty}^{n}\right)$, (equipped with the operator norm),

$$
V=\mathcal{P}\left(l_{\infty}^{n}, W\right)=\left\{L \in \mathcal{L}\left(l_{\infty}^{n}, W\right): L_{\left.\right|_{W}}=i d_{W}\right\}
$$

the set of all linear projections from l_{∞}^{n} onto $n-k$ dimensional subspace $W, x=0$ and $v_{0}=P_{0} \in \mathcal{P}\left(l_{\infty}^{n}, W\right)$. Thus in the case of projections, (1) reduces to

$$
\begin{equation*}
\|P\| \geq\left\|P_{0}\right\|+r\left\|P-P_{0}\right\| . \tag{2}
\end{equation*}
$$

The problem considered in our report may be treated as a development of the results initiated by G. Lewicki in [15].

A projection is called minimal if

$$
\begin{equation*}
\left\|P_{0}\right\|=\lambda(Y, X)=\inf \{\|P\| \mid P \in \mathcal{P}(Y, X)\} \tag{3}
\end{equation*}
$$

It is worth noting that there exist a large number of papers concerning minimal projections. Mainly the problems concern existence (see e.g., [5], [13]), uniqueness (see e.g., [4], [23]) and formulas for minimal projections (see e.g., [3], [24]).

A projection $\pi_{0} \in \mathcal{P}(Y, X)$ is called the strongly unique minimal projection (or SUMprojection) if there exists a constant $s \in(0,1]$ such that the inequality

$$
\begin{equation*}
\left\|\pi_{0}\right\|+s\left\|\pi-\pi_{0}\right\| \leq\|\pi\| \tag{4}
\end{equation*}
$$

holds for each $\pi \in \mathcal{P}(Y, X)$ (see, for example, [12] for results involving SUM-projections onto hyperplanes).

It is easy to prove that the SUM-projection π_{0} is the unique minimal projection in $\mathcal{P}(Y, X)$. The largest possible constant for which the inequality in (4) holds is called the strongly unique projection constant (or SUP-constant).

It is known (see for example [3]) that if $Y=l_{\infty}^{n}$ and $X \subset Y$ is of dimension $n-1$ ($n \geq 3$) with $X=f^{-1}(0)$ where

$$
f=\left(f_{1}, \ldots, f_{n}\right) \in Y^{*}, \quad\|f\|_{1}=\sum_{i=1}^{n}\left|f_{i}\right|=1
$$

and

$$
\begin{equation*}
0<f_{1}<f_{2}<\cdots<f_{n-1}<\frac{1}{2}, \quad f_{n} \geq \frac{1}{2} \tag{5}
\end{equation*}
$$

then the minimal projection π_{0} from l_{∞}^{n} onto X has norm one and is unique. Moreover, in this case, π_{0} is the SUM-projection and the SUP-constant, $s_{0}=s_{0}\left(\pi_{0}\right)$ is equal to $1-2 f_{n-1}$ ([14], Theorem 2.3.1).

If a minimal projection π^{00} from l_{∞}^{n} onto $f^{-1}(0)$ has norm $u>1$ then π^{00} is the SUM-projection and the SUP-constant is equal to

$$
\begin{equation*}
u f_{1} \frac{1-2 f_{1}}{1-2 f_{1}-u f_{1}} \tag{6}
\end{equation*}
$$

where $f=\left(f_{1}, \ldots, f_{n}\right)$ and $0<f_{1} \leq f_{2} \leq \cdots \leq f_{n}<1 / 2$ (in this case we note that as $u \rightarrow 1$ we find that (6) approaches $f_{1} \frac{1-2 f_{1}}{1-3 f_{1}}$, which in general is not equal to the above expression of $1-2 f_{1}$, [17]).

In our report we consider subspaces $X=X_{n-k} \subset l_{\infty}^{n}, 1 \leq k \leq n-1, n \geq 3$, such that $\operatorname{dim} X=n-k$. Note that this consideration is quite general due to the following proposition.
Proposition 1. Let B be an n-dimensional Banach space with unit ball U. Let U be a polytope with $m(n-1)$-dimensional faces. Then B is isometrically isomorphic to an n-dimensional subspace of l_{∞}^{n+m-1}.
Proof. This follows immediately from Theorem 1 by G. V. Epifanov in [12].
Since we are interested in situations for which the minimal projection onto X_{n-k} is unique, we may assume without loss generality that (see [24])

$$
\begin{equation*}
X=\bigcap_{p=1}^{k}\left(f^{(p)}\right)^{-1}(0) \tag{7}
\end{equation*}
$$

where the hyperplanes $\left\{\left(f^{(p)}\right)^{-1}(0)\right\}_{p=1}^{k}$ are given by the linearly independent functionals $\left\{f^{(p)}\right\}_{p=1}^{k} \in\left(l_{\infty}^{n}\right)^{*}$ such that, for $p=1, \ldots, k$, we have

$$
\begin{gather*}
\left\|f^{(p)}\right\|_{1}=1, f^{(p)}=\left(f_{1}^{(p)}, \ldots, f_{n}^{(p)}\right) \tag{8}\\
0<f_{1}^{(p)}<f_{2}^{(p)}<\cdots<f_{n-k}^{(p)}<\frac{1}{2} \tag{9}\\
f_{n-k+1}^{(1)} \geq \frac{1}{2}, f_{n-k+2}^{(2)} \geq \frac{1}{2}, \ldots, f_{n}^{(k)} \geq \frac{1}{2} \tag{10}\\
f_{i}^{(p)}=0 \text { if } p+i \neq n, i=n-k+1, \ldots, n . \tag{11}
\end{gather*}
$$

Moreover, if conditions (8)-(11) hold then the unique minimal projection from l_{∞}^{n} onto X_{n-k} has norm one (see [3], Thm. 1; [26], Lemma 2.4.1 and [24], Chp. 2).
Theorem 1. Let $Y=l_{\infty}^{n}(n \geq 3)$ and $X=X_{n-k} \subset Y$ be a subspace of dimension $n-k$ given by

$$
\begin{equation*}
X_{n-k}=\bigcap_{p=1}^{k}\left(f^{(p)}\right)^{-1}(0) \tag{12}
\end{equation*}
$$

where $\left\{f^{(p)}\right\}_{p=1}^{k}$ satisfies (8)-(11). Let π_{0} be the minimal projection from Y onto X. Then π_{0} is the SUM-projection with norm one and for the $S U P$-constant $s_{0}=s\left(\pi_{0}\right)$ we have the inequality

$$
\begin{equation*}
\min \left\{\frac{f_{n-k+1}^{(1)}-f_{n-k}^{(1)}}{f_{n-k+1}^{(1)}+f_{n-k}^{(1)}}, \frac{f_{n-k+2}^{(2)}-f_{n-k}^{(2)}}{f_{n-k+2}^{(2)}+f_{n-k}^{(2)}}, \ldots, \frac{f_{n}^{(k)}-f_{n-k}^{(k)}}{f_{n}^{(k)}+f_{n-k}^{(k)}}\right\} \leq s_{o}<1 \tag{13}
\end{equation*}
$$

Remark 1. This result extends the results of O. M. Martynov ([18] and [19]) regarding two and three dimensional subspaces of l_{∞}^{4} and l_{∞}^{6} respectively. (see Remark 2 below)

Remark 2. In general

$$
\widehat{s}=\min \left\{\frac{f_{n-k+1}^{(1)}-f_{n-k}^{(1)}}{f_{n-k+1}^{(1)}+f_{n-k}^{(1)}}, \ldots, \frac{f_{n}^{(k)}-f_{n-k}^{(k)}}{f_{n}^{(k)}+f_{n-k}^{(k)}}\right\}
$$

is not equal to the SUP-constant; indeed in the case $k=1, n \geq 3$ we have

$$
\widehat{s}=\frac{f_{n}^{(1)}-f_{n-1}^{(1)}}{f_{n}^{(1)}+f_{n-1}^{(1)}}<\frac{f_{n}^{(1)}-f_{n-1}^{(1)}+\left(f_{n-2}^{(1)}+\cdots+f_{1}^{(1)}\right)}{f_{n}^{(1)}+f_{n-1}^{(1)}+\left(f_{n-2}^{(1)}+\cdots+f_{1}^{(1)}\right)}=1-2 f_{n-1}^{(1)}
$$

and, by [14] (Thm 2.3.1), $1-2 f_{n-1}^{(1)}$ is the SUP-constant.
Corollary 1. If $k=n-1, n \geq 3$, then under the hypotheses of Theorem 1 we have

$$
\widehat{s}=\min \left\{f_{2}^{(1)}-f_{1}^{(1)}, \ldots, f_{n}^{(n-1)}-f_{1}^{(n-1)}\right\} .
$$

Conjecture 1. Let $f^{(0)}, \ldots, f^{(n-k)} \in\left(l_{\infty}^{n}\right)^{*}$, where

$$
\begin{gathered}
f^{(0)}=\left(f_{1}, \ldots, f_{k}, 0_{k+1}, \ldots, 0_{n}\right), \\
f^{(1)}=\left(0_{1}, \ldots, 0_{k}, 1,0_{k+2}, \ldots, 0_{n}\right), \\
f^{(2)}=\left(0_{1}, \ldots, 0_{k+1}, 1,0_{k+3}, \ldots, 0_{n}\right), \\
\vdots \\
f^{(n-k)}=\left(0_{1}, \ldots, 0_{n-1}, 1\right)
\end{gathered}
$$

where $\sum_{i=1}^{k} f_{i}=1$ and $0<f_{1} \leq f_{2} \leq \cdots \leq f_{k-1}<f_{k}$. Let $\widehat{f}=\left(f_{1}, \ldots, f_{k}\right) \in\left(l_{\infty}^{k}\right)^{*}$ and let $\pi_{\hat{f}}$ be the unique minimal projection onto $(\widehat{f})^{-1}(0)$ from l_{∞}^{k}. Let

$$
H=\bigcap_{p=0}^{n-k}\left(f^{(p)}\right)^{-1}(0)
$$

and π_{H} be the unique minimal projection onto H from l_{∞}^{n}. Then the SUP-constant $s\left(\pi_{H}\right)$ is equal to the $S U P$-constant $s\left(\pi_{\widehat{f}}\right)$.

References

[1] A. Antoniou and D. Shpak, A generalized Remez method for the design of FIR digital filters, IEEE Trans. on Circuits and Systems CAS-37 (1990), 161-174.
[2] M. Bartelt, On Lipschitz conditions, strong uniqueness and a theorem of A.K. Cline, J. Approx. Theory 14 (1975), 245-250.
[3] J. Blatter and E. W. Cheney, Minimal projections onto hyperplanes in sequence spaces, Ann. Math. Pure Appl. 101 (1974), 215-227.
[4] E. W. Cheney, C. R. Hobby, P. D. Morris, F. Schurer, and D. E. Wulbert, On the minimal property of the Fourier projection, Trans. Amer. Math. Soc. 143 (1969), 249-258.
[5] E. W. Cheney and P. D. Morris, On the existence and characterization of minimal projections, J. Reine Angew. Math. 270 (1974), 61-76.
[6] E. Cheney and J. Respress, On Lipschitizian proximity maps in nonlinear analysis and applications, in: Lecture Notes in Pure and Appl. Math. 80, Dekker, New York, 73-85.
[7] A. Cline, Lipschitz conditions on uniform approximation operators, J. Approx. Theory 8 (1973), 160-172.
[8] F. Deutsch and W. Li, Strong uniqueness, Lipschitz continuity, and continuous selections for metric projections in L_{1}, J. Approx. Theory 66 (1991), 198-224.
[9] F. Deutsch, W. Li and H. Sung, Characterizations of continuous and Lipschitz continuous metric selections in normed linear spaces, J. Approx. Theory 58 (1989), 297-314.
[10] C. Dunham, Discrete Chebyshev approximation: Alternation and the Remez algorithm, ZAMM 58 (1979), 326-328.
[11] C. Dunham and C. Zhu, Application of modified local strong uniqueness constant to exponential approximation, Technical Report, No. 381, Department of Computer Science, University of Western Ontario, August, 1993.
[12] G. V. Epifanov, Universality of section of cubes, Mat. Zamet. 2 (1967), 93-95 (in Russian).
[13] J. R. Isbell and Z. Semadeni, Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc. 107 (1963), 38-48.
[14] G. Lewicki, Best approximation in spaces of bounded linear operators, Dissertationes Math. 330 (1994).
[15] G. Lewicki, Strong unicity criterion in some spaces of operators, Comment. Math. Univ. Carolin. 34 (1993), 81-87.
[16] W. Li, Strong uniqueness and Lipschitz continuity of metric projections: a generalization of the classical Haar theory, J. Approx. Theory 56 (1989), 164-184.
[17] V. V. Lokot, The constants of strongly unique minimal projections onto hyperplanes in l_{∞}^{n} ($n \geq 3$), Math. Zamet. 72 (2002), 723-728 (in Russian).
[18] O. M. Martinov, Constants of strong unicity of minimal projections onto some twodimensional subspaces of $l_{\infty}^{(4)}$, J. Approx. Theory 118 (2002), 175-187.
[19] O. M. Martinov, N. A. Dubova, and J. L. Zharikova, Strong uniqueness of projections with norm one in l_{∞}^{6}, in: Theoretical and Practical Problems in Education at Schools and Universities (Mathematics and Informatics), St. Petersburg - Murmansk, 2005, 73-81 (in Russian).
[20] D. J. Newman and H. S. Shapiro, Some theorems on Chebyshev approximation, Duke Math. J. 4 (1963), 673-681.
[21] D. J. Newman and H. S. Shapiro, Approximation by generalized rational functions, in: On Approximation Theory, Birkhäuser, Basel, 1964, 245-251.
[22] G. Nürnberger, Strong unicity constants in Chebyshev approximation, in: Numerical Methods of Approximation Theory, 8 (Oberwolfach, 1986), 144-154.
[23] V. Odinec ($=\mathrm{W}$. Odyniec), On the uniqueness of minimal projections in $l_{\infty}^{n}(n \geq 3)$, Bull. Acad. Polon. Sci. Ser. Math. 28 (1980), 347-350.
[24] W. Odyniec and G. Lewicki, Minimal Projections in Banach Spaces, Lecture Notes in Math. 1449, Springer, 1990.
[25] W. Odyniec and M. P. Prophet, A lower bound of the strongly unique minimal projection constant of $l_{\infty}^{n}, n \geq 3$, J. Approx. Theory, to appear.
[26] V. P. Odinets (=W. Odyniec) and M. Yakubson, Projections and bases in normed spaces, Moscow, 2004 (in Russian).
[27] E. Remez, Sur le calcul effectif des polynômes d'approximation de Tchebychef, C. R. Acad. Sci. Paris 139 (1934), 337-340.
[28] E. Remez, General Computation Methods of Chebyshev Approximation, Atomic Energy, Voronezh, 1957 (transl. from Russian).

[^0]: 2000 Mathematics Subject Classification: Primary 47A58; Secondary 41A65.
 Key words and phrases: best approximation, minimal projections.
 The paper is in final form and no version of it will be published elsewhere.

