FUNCTION SPACES VIII BANACH CENTER PUBLICATIONS, VOLUME 79 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2008

THE STRONG UNICITY CONSTANT AND ITS APPLICATIONS

W. ODYNIEC

Department of Applied Mathematics, Herzen University St. Petersburg, Russia E-mail: W.Odyniec@VO13142.spb.edu

M. P. PROPHET

Department of Mathematics, University of Northern Iowa Cedar Falls, Iowa, U.S.A. E-mail: prophet@math.uni.edu

Abstract. In this report we discuss the applications of the strong unicity constant and highlight its use in the minimal projection problem.

Let X be a Banach space and let $V \subset X$ be a nonempty subset. An element $v_0 \in V$ is called a *strongly unique best approximation* to $x \in X$ if there exists r > 0 such that for any $v \in V$

(1) $||x - v|| \ge ||x - v_0|| + r||v - v_0||.$

The biggest constant r satisfying (1) is called the *strong unicity constant*. This notation was introduced by D. J. Newman and H. S. Shapiro (see [20] and [21]).

EXAMPLE 1. Let $X = l_{\infty}^2$ with unit ball U (pictured below). Let $x = (0, 1), v_0 = (1, 0)$ and

$$V = \{ z \in X \mid z = (t, 0), \ 1 \le t \le 2 \}.$$

Then it is easy to see that, in this case, the strong unicity constant is equal to 1. We note the constant r from (1) belongs to the interval (0, 1] and our example attains this greatest value.

There exist two main applications of the strong unicity constant:

1. the error estimate of the Remez algorithm,

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A58; Secondary 41A65.

Key words and phrases: best approximation, minimal projections.

The paper is in final form and no version of it will be published elsewhere.

2. the Lipschitz continuity of the best approximation mapping at x_0 (if there exists a strongly unique best approximation to x_0).

The error estimate of the Remez algorithm is based on an iteration process for finding the constant r from (1) (see [27], [28]). First this algorithm was used for Chebyshev approximation ([10], [11]). Now it is used for filter design in Digital Signal Processing (see [1]). Currently, in numerical methods of Chebyshev approximation, the strong unicity constant is used in conjunction with the metric projection with Lipschitz continuity property (see e.g., [7], [2], [6], [22], [8], [9], [16]).

The aim of this report is to present a third application of the strong unicity constant in the case of projections from l_{∞}^n onto some n-k dimensional subspace $(n \ge 3, 1 \le k \le n-1)$. In this case $X = \mathcal{L}(l_{\infty}^n)$, (equipped with the operator norm),

$$V = \mathcal{P}(l_{\infty}^n, W) = \{ L \in \mathcal{L}(l_{\infty}^n, W) : L_{|_W} = id_W \},\$$

the set of all linear projections from l_{∞}^n onto n - k dimensional subspace W, x = 0 and $v_0 = P_0 \in \mathcal{P}(l_{\infty}^n, W)$. Thus in the case of projections, (1) reduces to

(2)
$$||P|| \ge ||P_0|| + r||P - P_0||$$

The problem considered in our report may be treated as a development of the results initiated by G. Lewicki in [15].

A projection is called *minimal* if

(3)
$$||P_0|| = \lambda(Y, X) = \inf\{||P|| \mid P \in \mathcal{P}(Y, X)\}.$$

It is worth noting that there exist a large number of papers concerning minimal projections. Mainly the problems concern existence (see e.g., [5], [13]), uniqueness (see e.g., [4], [23]) and formulas for minimal projections (see e.g., [3], [24]).

A projection $\pi_0 \in \mathcal{P}(Y, X)$ is called the *strongly unique minimal projection* (or SUMprojection) if there exists a constant $s \in (0, 1]$ such that the inequality

(4)
$$\|\pi_0\| + s\|\pi - \pi_0\| \le \|\pi\|$$

holds for each $\pi \in \mathcal{P}(Y, X)$ (see, for example, [12] for results involving SUM-projections onto hyperplanes).

It is easy to prove that the SUM-projection π_0 is the unique minimal projection in $\mathcal{P}(Y, X)$. The largest possible constant for which the inequality in (4) holds is called the strongly unique projection constant (or SUP-constant).

It is known (see for example [3]) that if $Y = l_{\infty}^n$ and $X \subset Y$ is of dimension n-1 $(n \geq 3)$ with $X = f^{-1}(0)$ where

$$f = (f_1, \dots, f_n) \in Y^*, \quad ||f||_1 = \sum_{i=1}^n |f_i| = 1$$

and

(5)
$$0 < f_1 < f_2 < \dots < f_{n-1} < \frac{1}{2}, \quad f_n \ge \frac{1}{2}$$

then the minimal projection π_0 from l_{∞}^n onto X has norm one and is unique. Moreover, in this case, π_0 is the SUM-projection and the SUP-constant, $s_0 = s_0(\pi_0)$ is equal to $1 - 2f_{n-1}$ ([14], Theorem 2.3.1).

If a minimal projection π^{00} from l_{∞}^n onto $f^{-1}(0)$ has norm u > 1 then π^{00} is the SUM-projection and the SUP-constant is equal to

(6)
$$uf_1 \frac{1 - 2f_1}{1 - 2f_1 - uf_1}$$

where $f = (f_1, \ldots, f_n)$ and $0 < f_1 \le f_2 \le \cdots \le f_n < 1/2$ (in this case we note that as $u \to 1$ we find that (6) approaches $f_1 \frac{1-2f_1}{1-3f_1}$, which in general is not equal to the above expression of $1 - 2f_1$, [17]).

In our report we consider subspaces $X = X_{n-k} \subset l_{\infty}^n$, $1 \leq k \leq n-1$, $n \geq 3$, such that dim X = n - k. Note that this consideration is quite general due to the following proposition.

PROPOSITION 1. Let B be an n-dimensional Banach space with unit ball U. Let U be a polytope with m (n-1)-dimensional faces. Then B is isometrically isomorphic to an n-dimensional subspace of l_{∞}^{n+m-1} .

Proof. This follows immediately from Theorem 1 by G. V. Epifanov in [12].

Since we are interested in situations for which the minimal projection onto X_{n-k} is unique, we may assume without loss generality that (see [24])

(7)
$$X = \bigcap_{p=1}^{k} (f^{(p)})^{-1}(0)$$

where the hyperplanes $\{(f^{(p)})^{-1}(0)\}_{p=1}^k$ are given by the linearly independent functionals $\{f^{(p)}\}_{p=1}^k \in (l_{\infty}^n)^*$ such that, for $p = 1, \ldots, k$, we have

(8)
$$||f^{(p)}||_1 = 1, \ f^{(p)} = (f_1^{(p)}, \dots, f_n^{(p)})$$

(9)
$$0 < f_1^{(p)} < f_2^{(p)} < \dots < f_{n-k}^{(p)} < \frac{1}{2},$$

(10)
$$f_{n-k+1}^{(1)} \ge \frac{1}{2}, \ f_{n-k+2}^{(2)} \ge \frac{1}{2}, \dots, f_n^{(k)} \ge \frac{1}{2},$$

(11)
$$f_i^{(p)} = 0 \text{ if } p + i \neq n, \ i = n - k + 1, \dots, n.$$

Moreover, if conditions (8)–(11) hold then the unique minimal projection from l_{∞}^{n} onto X_{n-k} has norm one (see [3], Thm. 1; [26], Lemma 2.4.1 and [24], Chp. 2).

THEOREM 1. Let $Y = l_{\infty}^n$ $(n \ge 3)$ and $X = X_{n-k} \subset Y$ be a subspace of dimension n-k given by

(12)
$$X_{n-k} = \bigcap_{p=1}^{k} (f^{(p)})^{-1}(0)$$

where $\{f^{(p)}\}_{p=1}^k$ satisfies (8)-(11). Let π_0 be the minimal projection from Y onto X. Then π_0 is the SUM-projection with norm one and for the SUP-constant $s_0 = s(\pi_0)$ we have the inequality

(13)
$$\min\left\{\frac{f_{n-k+1}^{(1)} - f_{n-k}^{(1)}}{f_{n-k+1}^{(1)} + f_{n-k}^{(1)}}, \frac{f_{n-k+2}^{(2)} - f_{n-k}^{(2)}}{f_{n-k+2}^{(2)} + f_{n-k}^{(2)}}, \dots, \frac{f_{n}^{(k)} - f_{n-k}^{(k)}}{f_{n}^{(k)} + f_{n-k}^{(k)}}\right\} \le s_o < 1.$$

REMARK 1. This result extends the results of O. M. Martynov ([18] and [19]) regarding two and three dimensional subspaces of l_{∞}^4 and l_{∞}^6 respectively. (see Remark 2 below) REMARK 2. In general

$$\widehat{s} = \min\left\{\frac{f_{n-k+1}^{(1)} - f_{n-k}^{(1)}}{f_{n-k+1}^{(1)} + f_{n-k}^{(1)}}, \dots, \frac{f_n^{(k)} - f_{n-k}^{(k)}}{f_n^{(k)} + f_{n-k}^{(k)}}\right\}$$

is not equal to the SUP-constant; indeed in the case $k = 1, n \ge 3$ we have

$$\widehat{s} = \frac{f_n^{(1)} - f_{n-1}^{(1)}}{f_n^{(1)} + f_{n-1}^{(1)}} < \frac{f_n^{(1)} - f_{n-1}^{(1)} + (f_{n-2}^{(1)} + \dots + f_1^{(1)})}{f_n^{(1)} + f_{n-1}^{(1)} + (f_{n-2}^{(1)} + \dots + f_1^{(1)})} = 1 - 2f_{n-1}^{(1)}$$

and, by [14] (Thm 2.3.1), $1 - 2f_{n-1}^{(1)}$ is the SUP-constant.

COROLLARY 1. If k = n - 1, $n \ge 3$, then under the hypotheses of Theorem 1 we have $\widehat{s} = \min\{f_2^{(1)} - f_1^{(1)}, \dots, f_n^{(n-1)} - f_1^{(n-1)}\}.$

Conjecture 1. Let $f^{(0)}, \ldots, f^{(n-k)} \in (l_{\infty}^n)^*$, where

$$f^{(0)} = (f_1, \dots, f_k, 0_{k+1}, \dots, 0_n),$$

$$f^{(1)} = (0_1, \dots, 0_k, 1, 0_{k+2}, \dots, 0_n),$$

$$f^{(2)} = (0_1, \dots, 0_{k+1}, 1, 0_{k+3}, \dots, 0_n),$$

:

$$f^{(n-k)} = (0_1, \dots, 0_{n-1}, 1)$$

where $\sum_{i=1}^{k} f_i = 1$ and $0 < f_1 \leq f_2 \leq \cdots \leq f_{k-1} < f_k$. Let $\widehat{f} = (f_1, \ldots, f_k) \in (l_{\infty}^k)^*$ and let $\pi_{\widehat{f}}$ be the unique minimal projection onto $(\widehat{f})^{-1}(0)$ from l_{∞}^k . Let

$$H = \bigcap_{p=0}^{n-k} (f^{(p)})^{-1}(0)$$

and π_H be the unique minimal projection onto H from l_{∞}^n . Then the SUP-constant $s(\pi_H)$ is equal to the SUP-constant $s(\pi_{\hat{f}})$.

References

- A. Antoniou and D. Shpak, A generalized Remez method for the design of FIR digital filters, IEEE Trans. on Circuits and Systems CAS-37 (1990), 161–174.
- M. Bartelt, On Lipschitz conditions, strong uniqueness and a theorem of A.K. Cline, J. Approx. Theory 14 (1975), 245-250.
- J. Blatter and E. W. Cheney, Minimal projections onto hyperplanes in sequence spaces, Ann. Math. Pure Appl. 101 (1974), 215-227.
- [4] E. W. Cheney, C. R. Hobby, P. D. Morris, F. Schurer, and D. E. Wulbert, On the minimal property of the Fourier projection, Trans. Amer. Math. Soc. 143 (1969), 249–258.
- [5] E. W. Cheney and P. D. Morris, On the existence and characterization of minimal projections, J. Reine Angew. Math. 270 (1974), 61-76.
- [6] E. Cheney and J. Respress, On Lipschitizian proximity maps in nonlinear analysis and applications, in: Lecture Notes in Pure and Appl. Math. 80, Dekker, New York, 73–85.
- [7] A. Cline, Lipschitz conditions on uniform approximation operators, J. Approx. Theory 8 (1973), 160–172.
- [8] F. Deutsch and W. Li, Strong uniqueness, Lipschitz continuity, and continuous selections for metric projections in L_1 , J. Approx. Theory 66 (1991), 198–224.
- [9] F. Deutsch, W. Li and H. Sung, Characterizations of continuous and Lipschitz continuous metric selections in normed linear spaces, J. Approx. Theory 58 (1989), 297–314.
- [10] C. Dunham, Discrete Chebyshev approximation: Alternation and the Remez algorithm, ZAMM 58 (1979), 326–328.
- [11] C. Dunham and C. Zhu, Application of modified local strong uniqueness constant to exponential approximation, Technical Report, No. 381, Department of Computer Science, University of Western Ontario, August, 1993.
- [12] G. V. Epifanov, Universality of section of cubes, Mat. Zamet. 2 (1967), 93–95 (in Russian).
- [13] J. R. Isbell and Z. Semadeni, Projection constants and spaces of continuous functions, Trans. Amer. Math. Soc. 107 (1963), 38–48.
- G. Lewicki, Best approximation in spaces of bounded linear operators, Dissertationes Math. 330 (1994).
- [15] G. Lewicki, Strong unicity criterion in some spaces of operators, Comment. Math. Univ. Carolin. 34 (1993), 81–87.
- [16] W. Li, Strong uniqueness and Lipschitz continuity of metric projections: a generalization of the classical Haar theory, J. Approx. Theory 56 (1989), 164–184.
- [17] V. V. Lokot, The constants of strongly unique minimal projections onto hyperplanes in l_{∞}^{n} ($n \geq 3$), Math. Zamet. 72 (2002), 723–728 (in Russian).
- [18] O. M. Martinov, Constants of strong unicity of minimal projections onto some twodimensional subspaces of l⁽⁴⁾_∞, J. Approx. Theory 118 (2002), 175–187.
- [19] O. M. Martinov, N. A. Dubova, and J. L. Zharikova, Strong uniqueness of projections with norm one in l⁶_∞, in: Theoretical and Practical Problems in Education at Schools and Universities (Mathematics and Informatics), St. Petersburg - Murmansk, 2005, 73–81 (in Russian).
- [20] D. J. Newman and H. S. Shapiro, Some theorems on Chebyshev approximation, Duke Math. J. 4 (1963), 673-681.
- [21] D. J. Newman and H. S. Shapiro, Approximation by generalized rational functions, in: On Approximation Theory, Birkhäuser, Basel, 1964, 245–251.

- [22] G. Nürnberger, Strong unicity constants in Chebyshev approximation, in: Numerical Methods of Approximation Theory, 8 (Oberwolfach, 1986), 144–154.
- [23] V. Odinec (= W. Odyniec), On the uniqueness of minimal projections in l_{∞}^n $(n \ge 3)$, Bull. Acad. Polon. Sci. Ser. Math. 28 (1980), 347–350.
- [24] W. Odyniec and G. Lewicki, Minimal Projections in Banach Spaces, Lecture Notes in Math. 1449, Springer, 1990.
- [25] W. Odyniec and M. P. Prophet, A lower bound of the strongly unique minimal projection constant of l_{∞}^{n} , $n \geq 3$, J. Approx. Theory, to appear.
- [26] V. P. Odinets (= W. Odyniec) and M. Yakubson, Projections and bases in normed spaces, Moscow, 2004 (in Russian).
- [27] E. Remez, Sur le calcul effectif des polynômes d'approximation de Tchebychef, C. R. Acad. Sci. Paris 139 (1934), 337–340.
- [28] E. Remez, General Computation Methods of Chebyshev Approximation, Atomic Energy, Voronezh, 1957 (transl. from Russian).