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Abstract. The paper deals with local means and wavelet bases in weighted and unweighted

function spaces of type B
s

pq and F
s

pq on R
n and on T

n.

1. Introduction. Compactly supported wavelets may serve in the theory of function

spaces of type

Bs
pq(R

n) and F s
pq(R

n) with s ∈ R, 0 < p, q ≤ ∞, (1.1)

(p <∞ for the F -scale) both as atoms and as kernels in local means,

kjm(f) =

∫

Rn

kjm(y) f(y) dy, j ∈ N0, m ∈ Zn, (1.2)

having limited smoothness, supports in balls of radius ∼ 2−j , centred at 2−jm and subject

to some cancellations. Whereas one has for atoms satisfactory qualitative formulations

in terms of natural conditions for smoothness and cancellations (which will be repeated

below) the situation for kernels of local means is somewhat different. This comes mainly

from the observation that it is totally sufficient for the theory of spaces of type (1.1) in

R
n, on smooth domains and even on Lipschitz domains to deal with local means as in

(1.2) based on the special kernels

kjm(y) = (∆Nk)(2jy −m), j ∈ N0, m ∈ Zn, y ∈ R
n, (1.3)

where k is a compactly supported C∞ function and ∆N is the Nth power of the Laplacian

∆ ensuring the necessary cancellations. But (1.3) is too rigid when one constructs wavelet

bases (para-bases, frames) for corresponding spaces in domains with fractal boundaries.

Motivated by these observations we study in this paper local means of type (1.2) for the

spaces in (1.1) at the same level of smoothness, location and cancellation as for atoms

(Theorem 15 which might be considered as our main result). We shift the indicated
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application of these assertions to wavelet (para-)bases for function spaces of the above

type in bounded domains with fractal boundaries (one may think about the snowflake

curve as boundary) to a later occasion. But one gets almost as a by-product wavelet bases

(isomorphisms) for the spaces in (1.1), some weighted generalisations and related periodic

counterparts on the n-torus Tn under natural conditions for smoothness and cancellation.

This will be outlined in Section 4 which might be considered as a continuation of [17].

2. Definitions and atoms

2.1. Definitions. We use standard notation. Let N be the collection of all natural num-

bers and N0 = N∪{0}. Let R
n be Euclidean n-space, where n ∈ N. Put R = R

1, whereas

C is the complex plane. Let S(Rn) be the usual Schwartz space and S′(Rn) be the space of

all tempered distributions on R
n. Furthermore, Lp(R

n) with 0 < p ≤ ∞, is the standard

quasi-Banach space with respect to the Lebesgue measure, quasi-normed by

‖f |Lp(R
n)‖ =

( ∫

Rn

|f(x)|p dx
)1/p

with the obvious modification if p = ∞. As usual, Z is the collection of all integers; and

Zn where n ∈ N, denotes the lattice of all points m = (m1, . . . ,mn) ∈ R
n with mj ∈ Z.

Let N
n
0 , where n ∈ N, be the set of all multi-indices,

α = (α1, . . . , αn) with αj ∈ N0 and |α| =
n∑

j=1

αj .

If x = (x1, . . . , xn) ∈ R
n and β = (β1, . . . , βn) ∈ N

n
0 then we put

xβ = xβ1

1 · · ·xβn
n (monomials).

If ϕ ∈ S(Rn) then

ϕ̂(ξ) = (Fϕ)(ξ) = (2π)−n/2

∫

Rn

e−ixξ ϕ(x) dx, ξ ∈ R
n, (2.1)

denotes the Fourier transform of ϕ. As usual, F−1ϕ and ϕ∨ stand for the inverse Fourier

transform, given by the right-hand side of (2.1) with i in place of −i. Here xξ denotes

the scalar product in R
n. Both F and F−1 are extended to S′(Rn) in the standard way.

Let ϕ0 ∈ S(Rn) with

ϕ0(x) = 1 if |x| ≤ 1 and ϕ0(y) = 0 if |y| ≥ 3/2,

and let

ϕk(x) = ϕ0(2
−kx) − ϕ0(2

−k+1x), x ∈ R
n, k ∈ N.

Since
∑∞

j=0 ϕj(x) = 1 for x ∈ R
n, the ϕj form a dyadic resolution of unity. The entire

analytic functions (ϕj f̂)∨(x) make sense pointwise for any f ∈ S′(Rn).

Definition 1. Let ϕ = {ϕj}
∞
j=0 be the above dyadic resolution of unity.

(i) Let

0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R. (2.2)
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Then Bs
pq(R

n) is the collection of all f ∈ S′(Rn) such that

‖f |Bs
pq(R

n)‖ϕ =
( ∞∑

j=0

2jsq‖(ϕj f̂)∨ |Lp(R
n)‖q

)1/q

<∞ (2.3)

(with the usual modification if q = ∞).

(ii) Let

0 < p <∞, 0 < q ≤ ∞, s ∈ R. (2.4)

Then F s
pq(R

n) is the collection of all f ∈ S′(Rn) such that

‖f |F s
pq(R

n)‖ϕ =
∥∥∥
( ∞∑

j=0

2jsq |(ϕj f̂)∨(·)|q
)1/q

|Lp(R
n)

∥∥∥ <∞ (2.5)

(with the usual modification if q = ∞).

Remark 2. The theory of these spaces may be found in [14, 16, 18]. We only mention

that these spaces are independent of ϕ (equivalent quasi-norms for admitted ϕ’s). This

justifies our omission of the subscript ϕ in (2.3), (2.5) in the sequel. We assume that the

reader is familiar with basic assertions of the theory of the above spaces. But it seems to

be in order to recall a few special cases. By the Paley-Littlewood theorem one has

Lp(R
n) = F 0

p,2(R
n), 1 < p <∞,

and more generally,

F s
p,2(R

n) = W s
p (Rn), s ∈ N0, 1 < p <∞,

for the classical Sobolev spaces, usually normed by

‖f |W s
p (Rn)‖ =

( ∑

|α|≤s

‖Dαf |Lp(R
n)‖p

)1/p

.

Let

(∆1
hf)(x) = f(x+ h) − f(x), (∆l+1

h f)(x) = ∆1
h(∆l

hf)(x),

where x ∈ R
n, h ∈ R

n, l ∈ N, be the iterated differences in R
n. Then the Hölder-Zygmund

spaces Cs(Rn), s > 0, can be (equivalently) normed by

‖f |Cs(Rn)‖m = sup
x∈Rn

|f(x)| + sup |h|−s |∆m
h f(x)|

where 0 < s < m ∈ N. The second supremum is taken over all x ∈ R
n and all h ∈ R

n

with 0 < |h| ≤ 1. One has

Cs(Rn) = Bs
∞∞(Rn), s > 0.

If 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and s > 0 then Bs
pq(R

n) are the classical Besov spaces

which again can be characterised in terms of the differences ∆m
h f with 0 < s < m ∈ N.

Otherwise we refer to [16, Chapter 1] and [18, Chapter 1] where one finds the history of

these spaces, further special cases and classical characterisations.
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2.2. Atoms. We give a detailed description of atomic representations of the spaces in

(1.1) for two reasons. First we need these assertions later on for the proof of our main

results about local means. Secondly, atoms and local means are dual to each other where

the natural smoothness assumptions and the cancellation conditions change their roles.

Let Qjm be cubes in R
n with sides parallel to the axes of coordinates, centred at 2−jm

with side-length 2−j+1 where m ∈ Zn and j ∈ N0. If Q is a cube in R
n and r > 0 then

rQ is the cube in R
n concentric with Q and with side-length r times of the side-length

of Q. Let χjm be the characteristic function of Qjm.

Definition 3. Let 0 < p ≤ ∞, 0 < q ≤ ∞. Then bpq is the collection of all sequences

λ = {λjm ∈ C : j ∈ N0, m ∈ Z
n} (2.6)

such that

‖λ |bpq‖ =
( ∞∑

j=0

( ∑

m∈Zn

|λjm|p
)q/p)1/q

<∞, (2.7)

and fpq is the collection of all sequences λ as in (2.6) such that

‖λ |fpq‖ =
∥∥∥
( ∑

j,m

2jnq/p |λjmχjm(·)|q
)1/q

|Lp(R
n)

∥∥∥ <∞ (2.8)

with the usual modifications if p = ∞ and/or q = ∞.

Remark 4. Note that the factor 2jnq/p in (2.8) can be omitted if one relies on the

p-normalised characteristic function χ
(p)
jm(x) = 2

n(j−1)
p χjm(x). This is the usual way to

say what is meant by fpq. But for our purposes the above version seems to be more

appropriate. Of course, bpp = fpp.

Next we introduce atoms, which may be discontinuous.

Definition 5. Let s ∈ R, 0 < p ≤ ∞, K ∈ N0, L ∈ N0, and d ≥ 1. Then L∞-functions

ajm : R
n → C with j ∈ N0, m ∈ Zn, are called (s, p)-atoms if

supp ajm ⊂ dQjm, j ∈ N0, m ∈ Zn; (2.9)

there exist all (classical) derivatives Dαajm with |α| ≤ K such that

|Dαajm(x)| ≤ 2−j(s−n
p
)+j|α|, |α| ≤ K, j ∈ N0, m ∈ Zn, (2.10)

and ∫

Rn

xβ ajm(x) dx = 0, |β| < L, j ∈ N, m ∈ Z
n. (2.11)

Remark 6. No cancellation (2.11) for a0,m is required. Furthermore, if L = 0 then (2.11)

is empty (no condition). Of course, the above atoms depend on K, L, and d. But this

will not be indicated. We put as usual

σp = n

(
1

p
− 1

)

+

and σpq = n

(
1

min(p, q)
− 1

)

+

(2.12)

where b+ = max(b, 0) if b ∈ R.

Theorem 7. (i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R. Let K ∈ N0, L ∈ N0, with

K > s and L > σp − s (2.13)
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be fixed. Then f ∈ S′(Rn) belongs to Bs
pq(R

n) if, and only if, it can be represented as

f =
∞∑

j=0

∑

m∈Zn

λjm ajm (2.14)

where ajm are (s, p)-atoms according to Definition 5 with (2.13) and fixed d ≥ 1, and

λ ∈ bpq. Furthermore,

‖f |Bs
pq(R

n)‖ ∼ inf ‖λ |bpq‖ (2.15)

are equivalent quasi-norms where the infimum is taken over all admissible representations

(2.14) (for fixed K,L, d).

(ii) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R. Let K ∈ N0, L ∈ N0, with

K > s and L > σpq − s (2.16)

be fixed. Then f ∈ S′(Rn) belongs to F s
pq(R

n) if, and only if, it can be represented by

(2.14) where ajm are (s, p)-atoms according to Definition 5 with (2.16) and fixed d ≥ 1,

and λ ∈ fpq. Furthermore,

‖f |F s
pq(R

n)‖ ∼ inf ‖λ |fpq‖ (2.17)

are equivalent quasi-norms where the infimum is taken over all admissible representations

(2.14) (for fixed K,L, d).

Remark 8. These formulations coincide essentially with [18, Section 1.5.1]. There one

finds also some technical comments how the convergence in (2.14) must be understood.

Atoms of the above type go back essentially to [4, 5]. But more details about the complex

history of atoms may be found in [16, Section 1.9].

3. Local means

3.1. Some definitions. It is the main aim of this paper to prove estimates for local means

which are dual to atomic representations according to Theorem 7 as far as smoothness

assumptions and cancellation properties are concerned. First we collect some definitions.

Let Qjm be the same cubes in R
n as at the beginning of Section 2.2.

Definition 9. Let A ∈ N0, B ∈ N0 and C > 0. Then L∞-functions kjm : R
n → C with

j ∈ N0, m ∈ Zn, are called kernels if

supp kjm ⊂ CQjm, j ∈ N0, m ∈ Zn; (3.1)

there exist all (classical) derivatives Dαkjm with |α| ≤ A such that

|Dαkjm(x)| ≤ 2jn+j|α|, |α| ≤ A, j ∈ N0, m ∈ Z
n, (3.2)

and ∫

Rn

xβ kjm(x) dx = 0, |β| < B, j ∈ N, m ∈ Z
n. (3.3)

Remark 10. No cancellation (3.3) for k0,m is required. Furthermore, if B = 0 then

(3.3) is empty (no condition). Compared with Definition 5 for atoms we have different

normalisations in (2.10) and in (3.2) (also due to the history of atoms). We adapt the

sequence spaces introduced in Definition 3 in connection with atoms to the above kernels.
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Definition 11. Let s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞. Then b̄spq is the collection of all

sequences λ as in (2.6) such that

‖λ |b̄spq‖ =
( ∞∑

j=0

2j(s−n
p
)q

( ∑

m∈Zn

|λjm|p
)q/p)1/q

<∞, (3.4)

and f̄s
pq is the collection of all sequences λ as in (2.6) such that

‖λ |f̄s
pq‖ =

∥∥∥
( ∑

j,m

2jsq|λjm χjm(·)|q
)1/q

|Lp(R
n)

∥∥∥ <∞ (3.5)

with the usual modifications if p = ∞ and/or q = ∞.

Remark 12. The notation bspq and fs
pq (without bar) will be reserved for a slight modifi-

cation of the above sequence spaces in connection with wavelet representations. One has

b̄spp = f̄s
pp.

Definition 13. Let f ∈ Bs
pq(R

n) where s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞. Let kjm be

kernels according to Definition 9 with A > σp−s where σp is given by (2.12) and B ∈ N0.

Then

kjm(f) = (f, kjm) =

∫

Rn

kjm(y) f(y) dy, j ∈ N0, m ∈ Zn, (3.6)

are local means, considered as a dual pairing for (S(Rn), S′(Rn)). Furthermore,

k(f) = {kjm(f) : j ∈ N0, m ∈ Z
n} . (3.7)

Remark 14. We justify the dual pairing (3.6). According to [14, Theorems 2.11.2, 2.11.3]

one has for the dual space of Bs
pp(R

n) that

Bs
pp(R

n)′ = B
−s+σp

p′p′ (Rn), s ∈ R, 0 < p <∞, (3.8)

where
1

p
+

1

p′
= 1 if 1 ≤ p ≤ ∞ and p′ = ∞ if 0 < p < 1. (3.9)

Since kjm ∈ CA(Rn) has a compact support one gets kjm ∈ BA−ε
uv (Rn) for any ε > 0 and

0 < u, v ≤ ∞. By

Bs
pq(R

n) ⊂ Bs−ε
pp (Rn) and Bs

∞q(R
n) ⊂ Bs,loc

pq (Rn)

locally for any ε > 0, 0 < p < ∞ and 0 < q ≤ ∞ one gets by (3.8) and A > σp − s that

(3.6) makes always sense as a dual pairing. This applies also to f ∈ F s
pq(R

n) since

F s
pq(R

n) ⊂ Bs
p,max(p,q)(R

n).

But one can also justify (3.6) for f ∈ Bs
pq(R

n) or f ∈ F s
pq(R

n) by direct arguments, [18,

Section 5.1.7].

3.2. Main assertion. At the end we ask for counterparts of atomic representations in

Theorem 7 in terms of local means according to Definition 13 where kjm are compactly

supported wavelets. Since wavelets are special atoms one gets the desired estimates from

above by Theorem 7. This brings us in the luxurious position that we only have to care for

corresponding estimates from below. This will be done in the following theorem in terms
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of local means. The sequence spaces b̄spq and f̄s
pq have the same meaning as in Definition

11. Let σp and σpq be as in (2.12).

Theorem 15. (i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R. Let kjm be kernels as in

Definition 9 where A ∈ N0, B ∈ N0 with

A > σp − s, B > s, (3.10)

and C > 0 are fixed. Let k(f) be as in (3.6), (3.7). Then for some c > 0 and all f ∈

Bs
pq(R

n),

‖k(f) |b̄spq‖ ≤ c ‖f |Bs
pq(R

n)‖. (3.11)

(ii) Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R. Let kjm and k(f) be the above kernels where

A ∈ N0, B ∈ N0 with

A > σpq − s, B > s, (3.12)

and C > 0 are fixed. Then for some c > 0 and all f ∈ F s
pq(R

n),

‖k(f) |f̄s
pq‖ ≤ c ‖f |F s

pq(R
n)‖. (3.13)

Proof. Step 1. We prove (i). By Remark 14 the local means kjm(f) make sense. Let

f =

∞∑

r=0

∑

l∈Zn

λrl arl(x), f ∈ Bs
pq(R

n), (3.14)

be an optimal atomic decomposition of Theorem 7 with arl as in (2.9)-(2.11) where

K = B > s and L = A > σp − s. (3.15)

We call here and in the sequel an atomic decomposition optimal if there is some c > 0

such that for all f ∈ Bs
pq(R

n),

‖λ |bpq‖ ≤ c ‖f |Bs
pq(R

n)‖.

For j ∈ N0 we split (3.14) into

f = fj + f j =

j∑

r=0

· · · +
∞∑

r=j+1

· · · (3.16)

and get ∫

Rn

kjm(y) f(y) dy =

∫

Rn

kjm(y) fj(y) dy +

∫

Rn

kjm(y) f j(y) dy. (3.17)

Let r ≤ j and let l ∈ ljr(m) where C and d in

ljr(m) = {l : CQjm ∩ dQrl 6= ∅} (3.18)

have the same meaning as in (3.1), (2.9). Then card ljr(m) ∼ 1 and

2j(s−n
p
)

∣∣∣∣
∫

Rn

kjm(y) arl(y) dy

∣∣∣∣

≤ c 2j(s−n
p
)

∑

|γ|=B

sup
x

|Dγarl(x)|

∫

Rn

|kjm(y)| · |y − 2−jm|B dy

≤ c 2(j−r)(s−n
p
)2rB2−jB2jn2−jn

= c 2(j−r)(s−n
p
−B). (3.19)
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Hence for any ε > 0 (modification if p = ∞),

2j(s−n
p
)p

∣∣∣∣
∫

Rn

kjm(y)fj(y) dy

∣∣∣∣
p

≤ c

j∑

r=0

∑

l∈ljr(m)

|λrl|
p 2(j−r)(s−n

p
−B+ε)p. (3.20)

For fixed r, j with r ≤ j and l ∈ Zn one has

card {m ∈ Zn : l ∈ ljr(m)} ∼ 2(j−r)n. (3.21)

Then it follows from (3.20), (3.21) that

2j(s−n
p
)p

∑

m∈Zn

∣∣∣∣
∫

Rn

kjm(y) fj(y) dy

∣∣∣∣
p

≤ c

j∑

r=0

2(j−r)n 2p(j−r)(s−n
p
−B+ε)

∑

l∈Zn

|λrl|
p

≤ c

j∑

r=0

2p(j−r)(s−B+ε)
∑

l∈Zn

|λrl|
p. (3.22)

Let r > j. Then one gets by (3.15) for l ∈ ljr(m) that

2j(s−n
p
)

∣∣∣∣
∫

Rn

kjm(y) arl(y) dy

∣∣∣∣

≤ 2j(s−n
p
)

∑

|γ|=A

sup
x

|Dγkjm(x)|

∫

Rn

|arl(y)| · |y − 2−rl|A dy

≤ c 2(j−r)(s−n
p
) 2jn+Aj 2−rA−rn ≤ c 2(j−r)(s−n

p
+n+A). (3.23)

By (3.16), (3.17) it follows that for any ε > 0,

2j(s−n
p
)p

∣∣∣∣
∫

Rn

kjm(y) f j(y) dy

∣∣∣∣
p

≤ c
∑

r>j

2(j−r)(s−n
p
+n+A−ε)p

( ∑

l∈ljr(m)

|λrl|
)p

. (3.24)

If p ≤ 1 then one gets

2j(s−n
p
)p

∣∣∣∣
∫

Rn

kjm(y) f j(y) dy

∣∣∣∣
p

≤ c
∑

r>j

2(j−r)(s−σp+A−ε)p
∑

l∈ljr(m)

|λrl|
p. (3.25)

If 1 < p < ∞ then it follows from (3.24), Hölder’s inequality and card ljr(m) ∼ 2n(r−j)

that

2j(s−n
p
)p

∣∣∣∣
∫

Rn

kjm(y) f j(y) dy

∣∣∣∣
p

≤ c
∑

r>j

2(j−r)(s−n
p
+n+A−ε)p

∑

l∈ljr(m)

|λrl|
p2(r−j)(p−1)n

≤ c
∑

r>j

2(j−r)(s+A−ε)p
∑

l∈ljr(m)

|λrl|
p.

Summation over m ∈ Z
n results in

2j(s−n
p
)p

∑

m∈Zn

∣∣∣∣
∫

Rn

kjm(y) f j(y) dy

∣∣∣∣
p

≤ c
∑

r>j

2(j−r)(s−σp+A−ε)p
∑

l∈Zn

|λrl|
p. (3.26)

By (3.22), (3.26) and (3.10) it follows that for some κ > 0,

2j(s−n
p
)p

∑

m∈Zn

∣∣∣∣
∫

Rn

kjm(y) f(y) dy

∣∣∣∣
p

≤ c

∞∑

r=0

2−|j−r|κp
∑

l∈Zn

|λrl|
p.
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Using (3.7), (3.4) and (2.15) based on (2.7) one gets by standard arguments that

‖k(f) |b̄spq‖ ≤ c ‖λ |bpq‖ ∼ ‖f |Bs
pq(R

n)‖.

This proves (3.11).

Step 2. The proof of (ii) will be based on the vector-valued maximal inequality

∥∥∥
( ∞∑

k=0

(M |gk|
w) (·)q/w

)1/q

|Lp(R
n)

∥∥∥ ≤ c
∥∥∥
( ∞∑

k=0

|gk(·)|q
)1/q

|Lp(R
n)

∥∥∥ (3.27)

due to [3] where

0 < p <∞, 0 < q ≤ ∞, 0 < w < min(p, q).

Here M is the Hardy-Littlewood maximal function,

(Mg)(x) = sup |Q|−1

∫

Q

|g(y)| dy, x ∈ R
n,

where the supremum is taken over all cubes Q centred at x. A short proof may also be

found in [13, pp. 303-305]. By Remark 14 the local means kjm(f) make sense. Let again

f =

∞∑

r=0

∑

l∈Zn

λrl arl(x), f ∈ F s
pq(R

n),

be an optimal atomic decomposition of Theorem 7 with arl as in (2.9)-(2.11) where now

K = B > s and L = A > σpq − s.

We rely again on the splitting (3.16)-(3.18). Let r ≤ j. We assume q < ∞ (if q = ∞

one has to modify what follows appropriately). Then the counterpart of (3.19), (3.20) is

given by

2jsqχjm(x)

∣∣∣∣
∫

Rn

kjm(y) fj(y) dy

∣∣∣∣
q

≤ c

j∑

r=0

∑

l∈ljr(m)

|λrl|
q 2

rn
p

qχjm(x) 2(j−r)(s−B+ε)q

where x ∈ R
n. For fixed j, r, and l the summation

∑
χjm(x) over those m ∈ Z

n with

l ∈ ljr(m) is comparable with χrl(x) and can be estimated from above by its maximal

function. Hence, one gets for any w > 0,

2jsq
∑

m∈Zn

χjm(x)

∣∣∣∣
∫

Rn

kjm(y) fj(y) dy

∣∣∣∣
q

≤ c

j∑

r=0

2(j−r)(s−B+ε)q
∑

l∈Zn

M(|λrl|
w 2

rn
p

w χrl(·))(x)
q/w. (3.28)

This is the counterpart of (3.22). Let now r > j. Then it follows as in (3.23), (3.24) that

2js χjm(x)

∣∣∣∣
∫

Rn

kjm(y) f j(y) dy

∣∣∣∣ ≤ c χjm(x)
∑

r>j

2(j−r)(s+A+n)
∑

l∈ljr(m)

2r n
p |λrl|.
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For x ∈ R
n with χjm(x) = 1 and 0 < w < 1 the last factor can be estimated by

( ∑

l∈ljr(m)

2r n
p |λrl|

)w

≤
∑

l∈ljr(m)

2r nw
p |λrl|

w ≤ c2rn2−jn2jn

∫

Rn

∑

l∈ljr(m)

2r nw
p |λrl|

wχrl(y) dy

≤ c 2(r−j)nM
( ∑

l∈ljr(m)

2r nw
p |λrl|

w χrl(·)
)
(x).

Assuming again q <∞ one gets

2jsqχjm(x)

∣∣∣∣
∫

Rn

kjm(y) f j(y) dy

∣∣∣∣
q

≤ c χjm(x)
∑

r>j

2(j−r)(s+A+n− n
w
−ε)q M

( ∑

l∈ljr(m)

2r nw
p |λrl|

w χrl(·)
)
(x)q/w.

(3.29)

Since

A+ s > σpq =
n

min(1, p, q)
− n

one may choose w with w < min(1, p, q) and ε > 0 in (3.29) such that

A+ s+ n−
n

w
− ε > 0.

In what follows we decompose 2−rZn with r > j into clusters (controlled overlapping)

around 2−jm with m ∈ Zn. Let l ∈ ljr(m) as in (3.18). With r = j + t one gets for some

κ > 0 that

2jsq
∑

m∈Zn

χjm(x)

∣∣∣∣
∫

Rn

kjm(y) f j(y) dy

∣∣∣∣
q

≤ c
∞∑

t=1

2−tκq
∑

m∈Zn

M
( ∑

l∈lj
j+t

(m)

2(j+t) nw
p |λj+t,l|

w χj+t,l(·)
)
(x)q/w. (3.30)

Summation over j in (3.28) with s−B + ε < 0 and in (3.30) gives by (3.5),

‖k(f) |f̄s
pq‖ ≤ c

∥∥∥
( ∞∑

r=0

∑

l∈Zn

[
M

(
|λrl|

w 2
rn
p

w χrl(·)
)]q/w )1/q

|Lp(R
n)

∥∥∥

+ c

∞∑

t=1

2−tκ′

∥∥∥
( ∞∑

j=0

∑

m∈Zn

[
M

( ∑

l∈lj
j+t

(m)

· · ·
)]q/w)1/q

|Lp(R
n)

∥∥∥ (3.31)

for some 0 < κ′ < κ. By construction, the lattice 2−jZn refined by l ∈ ljj+t(m) is related

to 2−j−t
Z

n. Since w < min(1, p, q) one can apply (3.27). Then one gets by (2.8) and

(2.17) that

‖k(f) |f̄s
pq‖ ≤ c ‖λ |fpq‖ ∼ ‖f |F s

pq(R
n)‖.

This proves (3.13).

Remark 16. As far as technicalities are concerned we refer in this context to [9]. In

particular we took over from this paper the idea to decompose the lattice 2−j−tZn in

connection with (3.30), (3.31) into clusters around 2−j
Z

n. These clusters disappear after

the vector-valued maximal inequality is applied. According to Definition 9 the kernels
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kjm have compact supports. This was of some use. But there is little doubt that one can

replace the compactness assumption (3.1) by a sufficiently strong decay. We refer again

to [9].

4. Wavelet bases

4.1. Wavelets. As said in the Introduction the interplay between the sharp and natural

Theorems 7 and 15 can be taken as a starting point for a comprehensive theory for wavelet

(para-)bases in function spaces on (bounded) fractal domains in R
n. But this task will be

shifted to a later occasion. A first step in this direction has been done in [20] where we

formulated Theorem 15 without proof referring to a later occasion (just this one now).

Using a weaker version of Theorem 15 (seen from the point of view of applications to

wavelets) we dealt in [17] and [18, Section 3.1] with wavelet bases (isomorphisms) in the

spaces

Bs
pq(R

n), F s
pq(R

n) where s ∈ R, 0 < p, q ≤ ∞, (4.1)

(with p < ∞ for the F -spaces). This has been extended in [19] and [18, Section 4.2]

to corresponding spaces in bounded Lipschitz domains. Our aim in the present paper is

more modest. We wish simply to substitute the predecessor of Theorem 15 by its sharper

version obtained now and describe the consequences for wavelet bases (isomorphisms)

in the spaces in (4.1). However we extend these assertions to some weighted spaces and

some periodic spaces. But first we recall the needed basic notation of wavelet theory.

We suppose that the reader is familiar with wavelets in R
n of Daubechies type and

the related muli-resolution analysis. The standard references are [1, 10, 11, 21]. A short

summary of what is needed may also be found in [18, Section 1.7]. As usual, Cu(R) collects

all (complex-valued) continuous functions on R having continuous bounded derivatives

up to order u ∈ N (inclusively). Let

ψF ∈ Cu(R), ψM ∈ Cu(R), u ∈ N, (4.2)

be real compactly supported Daubechies wavelets with
∫

R

ψM (x)xv dx = 0 for all v ∈ N0 with v < u. (4.3)

Recall that ψF is called the scaling function (father wavelet) and ψM is the associated

(mother) wavelet. We extend these wavelets from R to R
n by the usual tensor procedure.

Let

G = (G1, . . . , Gn) ∈ G0 = {F,M}n (4.4)

if Gr is either F or M . Let

G = (G1, . . . , Gm) ∈ Gj = {F,M}n∗, j ∈ N, (4.5)

if Gr is either F or M where * indicates that at least one of the components of G must

be an M . Hence G0 has 2n elements, whereas Gj with j ∈ N has 2n − 1 elements. Let

Ψj
G,m(x) = 2jn/2

n∏

r=1

ψGr
(2jxr −mr), G ∈ Gj , m ∈ Zn, (4.6)
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where j ∈ N0. We always assume tha ψF and ψM in (4.2) have L2-norm 1. Then

{Ψj
G,m : j ∈ N0, G ∈ Gj , m ∈ Z

n} (4.7)

is an orthonormal basis in L2(R
n) (for any u ∈ N) and

f =

∞∑

j=0

∑

G∈Gj

∑

m∈Zn

λj,G
m 2−jn/2 Ψj

G,m (4.8)

with

λj,G
m = λj,G

m (f) = 2jn/2

∫

Rn

f(x) Ψj
G,m(x) dx = 2jn/2 (f,Ψj

G,m) (4.9)

is the corresponding expansion, adapted to our later needs, where 2−jn/2 Ψj
G,m are uni-

formly bounded functions.

4.2. Spaces on R
n. One may ask whether the orthonormal basis (4.7) in L2(R

n) remains

to be an (unconditional) basis in other spaces on R
n. First candidates are Lp(R

n) with

1 < p < ∞ but also related (fractional) Sobolev spaces and classical Besov spaces.

Something may be found in the above-mentioned books [1, 10, 11, 21]. One may also

consult [18, Remarks 1.63, 1.65, pp. 32,34] for more details and further references. An

extension of this theory to all spaces in (4.1) has been given in [9, 17] and [18, Section

3.1.3, Theorem 3.5, p. 154]. Basically one identifies the wavelets in (4.6) both with atoms

and with kernels of local means and applies (now) Theorems 7 and 15 for related estimates

from below and from above. In [17, 18] we used Theorem 7 but we relied on the heavy

machinery of rather general equivalent quasi-norms in the spaces (4.1) instead of the

tailored (for our purposes) Theorem 15. Then one gets somewhat unnatural conditions

for u ∈ N in (4.2). Although this outcome is not elegant it does not matter very much as

long as one deals with spaces on R
n. But the situation is different if one wishes to extend

this theory to spaces of type (4.1) on (bounded) domains in R
n with fractal boundary.

However this must be shifted to a later occasion, where [20] might be considered as a

first step in this direction. Here we restrict ourselves to (unweighted and weighted) spaces

on R
n and periodic spaces.

First we adapt the sequence spaces in Definition 11 to wavelets having the additional

parameter G ∈ Gj as in (4.4), (4.5).

Definition 17. Let s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞. Then bspq is the collection of all

sequences

λ =
{
λj,G

m ∈ C : j ∈ N0, G ∈ Gj , m ∈ Zn
}

(4.10)

such that

‖λ |bspq‖ =
( ∞∑

j=0

2j(s−n
p
)q

∑

G∈Gj

( ∑

m∈Zn

|λj,G
m |p

)q/p)1/q

<∞ (4.11)

and fs
pq is the collection of all sequences (4.10) such that

‖λ |fs
pq‖ =

∥∥∥
( ∑

j,G,m

2jsq |λj,G
m χjm(·)|q

)1/q

|Lp(R
n)

∥∥∥ <∞

with the usual modification if p = ∞ and/or q = ∞.
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Remark 18. We refer to the comments in Remark 12. As explained at the beginning of

[18, Section 3.1.3] we may abbreviate the right-hand side of (4.8) by
∑

j,G,m

λj,G
m 2−jn/2 Ψj

G,m

since the conditions on the sequences λ always ensure that the corresponding series con-

verge unconditionally (which means that any rearrangement converges to the same limit)

at least in S′(Rn). Local convergence in Bσ
pq(R

n) means convergence in Bσ
pq(K) for any

ball K in R
n. Similarly for F σ

pq(R
n). Recall that σp and σpq are given by (2.12).

Theorem 19. (i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R and let Ψj
G,m be the wavelets in

(4.6) based on (4.2) with

u > max(s, σp − s). (4.12)

Let f ∈ S′(Rn). Then f ∈ Bs
pq(R

n) if, and only if, it can be represented as

f =
∑

j,G,m

λj,G
m 2−jn/2 Ψj

G,m, λ ∈ bspq, (4.13)

unconditional convergence being in S′(Rn) and locally in any space Bσ
pq(R

n) with σ < s.

The representation (4.13) is unique,

λj,G
m = 2jn/2 (f,Ψj

G,m), (4.14)

and

I : f 7→ {2jn/2 (f,Ψj
G,m)} (4.15)

is an isomorphic map of Bs
pq(R

n) onto bspq. If, in addition, p <∞, q <∞, then {Ψj
G,m}

is an unconditional basis in Bs
pq(R

n).

(ii) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R, and

u > max(s, σpq − s). (4.16)

Let f ∈ S′(Rn). Then f ∈ F s
pq(R

n) if, and only if, it can be represented as

f =
∑

j,G,m

λj,G
m 2−jn/2 Ψj

G,m, λ ∈ fs
pq, (4.17)

unconditional convergence being in S′(Rn) and locally in any space F σ
pq(R

n) with σ < s.

The representation (4.17) is unique with (4.14) and I in (4.15) is an isomorphic map

of F s
pq(R

n) onto fs
pq. If, in addition, q < ∞, then {Ψj

G,m} is an unconditional basis in

F s
pq(R

n).

Proof. Step 1. This theorem coincides with corresponding assertions in [17] and [18,

Section 3.1.3, Theorem 3.5, pp. 153-156] under the more restrictive smoothness and can-

cellation assumptions (4.2), (4.3) with

u > max

(
s,

2n

p
+
n

2
− s

)
and u > max

(
s,

2n

min(p, q)
+
n

2
− s

)
(4.18)

for Bs
pq(R

n) and F s
pq(R

n), respectively. But all technicalities such as the unconditional

convergence of (4.13), (4.17), the uniqueness (4.14), the isomorphic maps (4.15), the use
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of duality, (3.8), (3.9), the unconditional bases, can be taken over verbatim. Hence it

remains to make clear that (4.12) and (4.16) are natural and sufficient.

Step 2. Let f be given by (4.13). Then

aG
jm = 2−j(s−n

p
) 2−jn/2 Ψj

G,m, G ∈ Gj ,

are atoms in Bs
pq(R

n) according to Definition 5 and (2.13) with K = L = u (up to

unimportant constants). Having the different normalisations for bspq in (4.11) and for bpq

in (2.7) in mind one gets by Theorem 7(i) that f ∈ Bs
pq(R

n) and

‖f |Bs
pq(R

n)‖ ≤ c ‖λ |bspq‖ (4.19)

where the extra summation over G does not influence this argument. Conversely, if f ∈

Bs
pq(R

n) then

kG
jm = 2jn/2 Ψj

G,m, j ∈ N0, G ∈ Gj , m ∈ Zn,

are kernels of corresponding local means in Bs
pq(R

n) according to Definitions 9, 13, (4.6)

and (3.10) with A = B = u (neglecting unimportant constants). The modification

k(f) =
{
kG

jm(f) : j ∈ N0, G ∈ Gj , m ∈ Zn
}

of (3.7) is immaterial for the application of Theorem 15 resulting in

‖k(f) |bspq‖ ≤ c ‖f |Bs
pq(R

n)‖. (4.20)

Similarly for F s
pq(R

n). Armed with (4.19), (4.20) and the F -counterparts the rest is the

same as in [17, 18].

4.3. Weighted spaces. Based on [8] we extended in [18, Section 6.2] Theorem 19 with u

as in (4.18) to some weighted spaces. There is no difficulty to apply the corresponding

arguments to the above improved version with u as in (4.12), (4.16). The main reason

for giving an explicit formulation comes from the somewhat surprising (for the author)

application to get wavelet bases for periodic spaces subject of the next subsection.

Definition 20. Let w be a real C∞ function in R
n such that for all γ ∈ N

n
0 and suitable

positive numbers cγ ,

|Dγw(x)| ≤ cγ w(x) for all x ∈ R
n,

and

0 < w(x) ≤ cw(y) (1 + |x− y|2)α/2 for all x ∈ R
n, y ∈ R

n,

and some constants c > 0 and α ≥ 0.

(i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, and s ∈ R. Then Bs
pq(R

n, w) is the collection of all

f ∈ S′(Rn) such that

‖f |Bs
pq(R

n, w)‖ = ‖wf |Bs
pq(R

n)‖ <∞.

(ii) Let 0 < p < ∞, 0 < q ≤ ∞, and s ∈ R. Then F s
pq(R

n, w) is the collection of all

f ∈ S′(Rn) such that

‖f |F s
pq(R

n, w)‖ = ‖wf |F s
pq(R

n)‖ <∞.

Remark 21. Usually these spaces are introduced in the same way as in Definition 1 with

Lp(R
n, w) in place of Lp(R

n). Then the above version is one of the basic observations
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of the theory of these spaces. These weighted spaces (avoiding local singularities) played

some role in the theory of function spaces and had been studied in detail in [2, Chapter

4] (mainly based on [6, 7]) and [18, Chapter 6] where one finds also references to the

literature. Here we are only interested in an extension of Theorem 19 to these spaces. For

this purpose one has first to modify the sequence spaces in Definition 17.

Definition 22. Let w be a weight according to Definition 20 and let s ∈ R, 0 < p ≤ ∞,

0 < q ≤ ∞. Then bspq(w) is the collection of all sequences (4.10) such that

‖λ |bspq(w)‖ =
( ∞∑

j=0

2j(s−n
p
)q

∑

G∈Gj

( ∑

m∈Zn

w(2−jm)p |λj,G
m |p

)q/p)1/q

<∞

and fs
pq(w) is the collection of all sequences (4.10) such that

‖λ |fs
pq(w)‖ =

∥∥∥
( ∑

j,G,m

2jsq w(2−jm)q |λj,G
m χjm(·)|q

)1/q

|Lp(R
n)

∥∥∥ <∞

with the usual modifications if p = ∞ and/or q = ∞.

Remark 23. This extends Definition 17 to the weighted case and coincides with [18,

Definition 6.11, p. 269]. We extend now Theorem 19 to the weighted case again in the

sense of Remark 18, now with respect to the spaces Bs
pq(R

n, w) and F s
pq(R

n, w) as in

Definition 20.

Theorem 24. (i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R and let Ψj
G,m be the wavelets in

(4.6) based on (4.2) with

u > max(s, σp − s). (4.21)

Let f ∈ S′(Rn). Then f ∈ Bs
pq(R

n, w) if, and only if, it can be represented as

f =
∑

j,G,m

λj,G
m 2−jn/2 Ψj

G,m, λ ∈ bspq(w), (4.22)

unconditional convergence being in S′(Rn) and in any space Bσ
pq(R

n, w̃) with σ < s and

w̃(x)w−1(x) → 0 if |x| → ∞. Furthermore, the representation (4.22) is unique,

λj,G
m = 2jn/2 (f,Ψj

G,m) (4.23)

and

I : f 7→ {2jn/2 (f,Ψj
G,m)} (4.24)

is an isomorphic map of Bs
pq(R

n, w) onto bspq(w). If, in addition, p < ∞, q < ∞, then

{Ψj
G,m} is an unconditional basis in Bs

pq(R
n, w).

(ii) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R and

u > max(s, σpq − s). (4.25)

Let f ∈ S′(Rn). Then f ∈ F s
pq(R

n, w) if, and only if, it can be represented as

f =
∑

j,G,m

λj,G
m 2−jn/2 Ψj

G,m, λ ∈ fs
pq(w), (4.26)

unconditional convergence being in S′(Rn) and in any space F σ
pq(R

n, w̃) with σ < s and

w̃(x)w−1(x) → 0 if |x| → ∞. Furthermore, the representation (4.26) is unique with (4.23)
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and I in (4.24) is an isomorphic map of F s
pq(R

n, w) onto fs
pq(w). If, in addition, q <∞,

then {Ψj
G,m} is an unconditional basis in F s

pq(R
n, w).

Proof. This theorem with u as in (4.18) coincides with [18, Theorem 6.15, pp. 270/271].

The corresponding proof reduces the weighted case to the unweighted one using local-

isation and interpolation. But this works also for u as in (4.21), (4.25) relying now on

Theorem 19.

4.4. Periodic spaces. The main reason for inserting Theorem 24 is the somewhat surpris-

ing application to wavelet bases in periodic spaces. However we will be very brief shifting

more comprehensive considerations to a later occasion. As far as spaces on the n-torus

Tn are concerned we refer to [12, Chapter 3]. We rely here on the close connection of

these spaces to periodic spaces on R
n as considered in [14, Chapter 9] with a reference

to [15]. There one finds further details and explanations of what follows. We specify the

weight w in Definition 20 now by

wα(x) = (1 + |x|2)α/2, α ∈ R.

Definition 25. Let s ∈ R, 0 < p ≤ ∞ (p < ∞ for the F -spaces), 0 < q ≤ ∞ and

α < −n
p . Let either A = B or A = F . Then

As,per
pq (Rn) =

{
f ∈ As

pq(R
n, wα) : f(·) = f(· + k), k ∈ Zn

}
. (4.27)

Remark 26. We justify this definition. First we remark that f ∈ S′(Rn) is periodic,

f(·) = f(· + k) for all k ∈ Zn,

if, and only if, it can be represented as

f =
∑

m∈Zn

am ei2πmx, x ∈ R
n, (4.28)

with {am} ⊂ C of at most polynomial growth, hence

|am| ≤ c (1 + |m|)κ for some c > 0, κ > 0 and all m ∈ Zn. (4.29)

One may consult the above references. With ϕj as in Definition 1 one checks easily that

(ϕj f̂)∨(x) =
∑

m∈Zn

am ϕj(2πm) ei2πmx, x ∈ R
n.

These are trigonometrical polynomials. Then one gets by Definition 20 for these periodic

distributions that

‖f |Bs
pq(R

n, wα)‖ =
( ∞∑

j=0

2jsq
∥∥∥wα(x)

∑

m∈Zn

amϕj(2πm) ei2πmx |Lp(R
n)

∥∥∥
q)1/q

(4.30)

and

‖f |F s
pq(R

n, wα)‖ =
∥∥∥wα(x)

( ∞∑

j=0

2jsq
∣∣∣

∑

m∈Zn

am ϕj(2πm) ei2πmx
∣∣∣
q)1/q

|Lp(R
n)

∥∥∥. (4.31)

Now it is quite clear that (4.27) makes sense and that these periodic spaces are indepen-

dent of α with α < −n/p (equivalent quasi-norms).

Let

T
n = {x ∈ R

n : 0 ≤ xj ≤ 1}
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be the n-torus, where opposite points are identified in the usual way. Then the related

periodic distributions f ∈ D′(Tn) can be represented by

f =
∑

m∈Zn

am ei2πmx, x ∈ Tn, (4.32)

where {am} ⊂ C satisfies (4.29). Next we introduce the periodic counterpart on T
n of

Definition 1.

Definition 27. Let ϕ = {ϕj}
∞
j=0 be the same dyadic resolution of unity as in Defini-

tion 1.

(i) Let p, q, s as in (2.2). Then Bs
pq(T

n) is the collection of all f ∈ D′(Tn), represented

by (4.32), such that

‖f |Bs
pq(T

n)‖ϕ =
( ∞∑

j=0

2jsq
∥∥∥

∑

m∈Zn

am ϕj(2πm) ei2πmx |Lp(T
n)

∥∥∥
q)1/q

<∞. (4.33)

(ii) Let p, q, s as in (2.4). Then F s
pq(T

n) is the collection of all f ∈ D′(Tn), represented

by (4.32), such that

‖f |F s
pq(T

n)‖ϕ =
∥∥∥
( ∞∑

j=0

2jsq
∣∣∣

∑

m∈Zn

am ϕj(2πm) ei2πmx
∣∣∣
q)1/q

|Lp(T
n)

∥∥∥ <∞. (4.34)

Remark 28. We refer again to [12, Chapter 3] for details, explanations, properties and

special cases. In particular, these spaces are independent of ϕ.

Proposition 29. Let s ∈ R, 0 < p ≤ ∞ (p < ∞ for the F -spaces), 0 < q ≤ ∞.

Let As,per
pq (Rn) and As

pq(T
n) be the spaces introduced in the Definitions 25, 27, where

either A = B or A = F . Let f ∈ D′(Tn) be represented by (4.32) with (4.29). Then the

extension operator extper,

extperf =
∑

m∈Zn

am ei2πmx, x ∈ R
n,

(appropriately interpreted) maps As
pq(T

n) isomorphically onto As,per
pq (Rn),

extperAs
pq(T

n) = As,per
pq (Rn).

Proof. This follows immediately from the above preparations, in particular by (4.32)

compared with (4.28) and (4.30), (4.31) compared with (4.33), (4.34) having in mind

that α < −n/p, hence wα ∈ Lp(R
n).

The periodic spaces As,per
pq (Rn) are closed subspaces of the weighted spaces As

pq(R
n, wα)

with α < −n/p for which we have the wavelet representations according to Theorem

24. The question arises whether these assertions can be adapted to the periodic spaces

and transferred by Proposition 29 to corresponding spaces on Tn. The idea to periodise

wavelet bases on R according to (4.6) (with n = 1) to get (periodic) wavelet bases on

the 1-torus T, preferably for L2(T), appears several times in literature. We refer to [1,

pp. 304/305], [10, Section 7.5.1, pp. 282/283] and [21, Section 2.5, pp. 38-42]. We extend

these constructions to the periodic spaces on R
n and the spaces on Tn. We rely on the

notation introduced in (4.2)-(4.6) now with 2j+L in place of 2j for some L ∈ N such that

supp Ψ0
G,0 ⊂ {x ∈ R

n : |x| < 1/2} , G ∈ G0 = {F,M}n, (4.35)
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for the starting terms and, hence, for all Ψj
G,0 with j ∈ N0. Let

P
n
j = {k ∈ Zn : 0 ≤ kr < 2j+L}, j ∈ N0,

be the 2(j+L)n lattice points in 2j+LTn. We put

Ψj
G,k,per(x) =

∑

l∈Zn

Ψj
G,k(x− l) =

∑

l∈Zn

Ψj
G,k+2j+Ll

(x), x ∈ R
n, (4.36)

where j ∈ N0 and k ∈ Pn
j . In other words, one extends the distinguished wavelets with

off-points in Tn periodically to R
n and with u ∈ N as in (4.2)-(4.6) one gets by Definition

25,

Ψj
G,k,per ∈ Cu(Rn) ∩As,per

pq (Rn), s < u,

for all admitted p, q. Let

Ψj,per
G,k (x) = Ψj

G,k,per(x), x ∈ Tn, k ∈ P
n
j , (4.37)

be the restriction or Ψj
G,k,per to the n-torus T

n. Then one gets the periodic wavelet bases

on R
n and Tn we are looking for with

Ψj,per
G,k ∈ Cu(Tn) ∩As

pq(T
n), s < u, k ∈ P

n
j .

Now one can construct wavelet bases both for the spaces As,per
pq (Rn) and the spaces on

Tn. We restrict ourselves to the spaces on Tn. Furthermore we will be very brief shifting

details to later occasions.

Proposition 30. Let u ∈ N. Then

{Ψj,per
G,k : j ∈ N0, G ∈ Gj , k ∈ P

n
j } (4.38)

is an orthonormal basis in L2(T
n).

Proof. One obtains from the corresponding assertion for Ψj
G,k and (4.35) that the func-

tions in (4.38) are orthonormal. The completeness follows from Proposition 29 and a

related assertion for L2(R
n, wα).

Next we introduce the periodic counterpart of the sequence spaces in Definition 17.

Let χjk below be the characteristic function of a cube with the left corner 2−j−Lk and

of side-length 2−j−L, where j ∈ N0 and k ∈ Pn
j which is a subcube of Tn.

Definition 31. Let s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞. Then bs,per
pq is the collection of all

sequences

µ = {µj,G
k ∈ C : j ∈ N0, G ∈ Gj , k ∈ P

n
j } (4.39)

such that

‖µ |bs,per
pq ‖ =

( ∞∑

j=0

2j(s−n
p
)q

∑

G∈Gj

( ∑

k∈P
n
j

|µj,G
k |p

)q/p)1/q

<∞ (4.40)

and fs,per
pq is the collection of all sequences (4.39) such that

‖µ |fs,per
pq ‖ =

∥∥∥
( ∑

j,G,k

2jsq|µj,G
k χjk(·)|q

)1/q

|Lp(T
n)

∥∥∥ <∞ (4.41)

with the usual modifications if p = ∞ and /or q = ∞.
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Remark 32. Of course, the summation over j,G, k in (4.41) is the same as in (4.40).

After these preparations one can now formulate the periodic counterpart of Theorem 19.

While (f, g) stands for the dual pairing in (S(Rn), S′(Rn)), we denote the dual pairing

in (D(Tn), D′(Tn)) by (f, g)π.

Theorem 33. (i) Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R and let {Ψj,per
G,k } be the orthonormal

wavelet basis in L2(T
n) as in (4.38) with

u > max(s, σp − s).

Let f ∈ D′(Tn). Then f ∈ Bs
pq(T

n) if, and only if, it can be represented as

f =
∑

j,G,k

µj,G
k 2−jn/2 Ψj,per

G,k , µ ∈ bs,per
pq , (4.42)

unconditional convergence being in D′(Tn) and in any spaces Bσ
pq(T

n) with σ < s. The

representation (4.42) is unique,

µj,G
k = 2jn/2 (f,Ψj,per

G,k )π, j ∈ N0, G ∈ Gj , k ∈ P
n
j , (4.43)

and

I : f 7→ {2jn/2 (f,Ψj,per
G,k )π} (4.44)

is an isomorphic map of Bs
pq(T

n) onto bs,per
pq . If, in addition, p <∞, q <∞, then (4.38)

is an unconditional basis in Bs
pq(T

n).

(ii) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R, and

u > max(s, σpq − s).

Let f ∈ D′(Tn). Then f ∈ F s
pq(T

n) if, and only if, it can be represented as

f =
∑

j,G,k

µj,G
k 2−jn/2 Ψj,per

G,k , µ ∈ fs,per
pq , (4.45)

unconditional convergence being in D′(Tn) and in any space F σ
pq(T

n) with σ < s. The

representation (4.45) is unique with (4.43) and I in (4.44) is an isomorphic map of

F s
pq(T

n) onto fs,per
pq . If, in addition, q < ∞, then (4.38) is an unconditional basis in

F s
pq(T

n).

Proof. Without going into detail the key steps to prove the above assertion are quite

clear by the above discussion. Let A = B. By Definition 25 any f ∈ Bs,per
pq (Rn) can

be considered as a periodic element of Bs
pq(R

n, wα) and expanded according to (4.22),

(4.23). One checks that

(f,Ψj
G,k+2j+Ll

) = (f,Ψj,per
G,k )π, k ∈ P

n
j , l ∈ Z

n. (4.46)

Collecting the corresponding terms in (4.22) one gets by (4.36),

f =
∞∑

j=0

∑

G∈Gj

∑

k∈P
n
j

µj,G
k 2−jn/2 Ψj

G,k,per, µ ∈ bs,per
pq ,

where we used (4.46) in (4.23), (4.43). Then (4.37) and Proposition 29 prove the theo-

rem.
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[17] H. Triebel, A note on wavelet bases in function spaces, in: Orlicz Centenary Volume,

Banach Center Publ. 64, Polish Acad. Sci., Warszawa, 2004, 193-206.

[18] H. Triebel, Theory of Function Spaces III, Birkhäuser, Basel, 2006.
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