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Abstract. We consider an ordinary or stochastic nonlinear equation with generalized coeffi-
cients as an equation in differentials in the algebra of new generalized functions in the sense
of [8]. Consequently, the solution of such an equation is a new generalized function. We formu-
late conditions under which the solution of a given equation in the algebra of new generalized
functions is associated with an ordinary function or process. Moreover the class of all possible
associated functions and processes is described.

1. Introduction. The theory of generalized functions is one of the most powerful tools
for investigating linear differential equations. However, the distribution theory from the
very beginning has an essential disadvantage: it is inapplicable to solutions of nonlinear
problems. Therefore, various interpretations of solutions of nonlinear differential equa-
tions were proposed by some mathematicians. Unfortunately, different interpretations
of the same equation lead, in general, to different solutions; see e.g. [2, 4, 6,
11, 14, 18]. Usually, differential equations are used to describe the dynamics of real
systems or phenomena. In order to choose an adequate interpretation of such equa-
tions one has to consider reasons that are used for modelling the dynamics of the real
systems.

2000 Mathematics Subject Classification: Primary 34A37, 60H20; Secondary 46F30, 60G20.
Key words and phrases: algebra of generalized functions and stochastic processes, associated
solutions, differential equations with generalized coefficients.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc88-0-3 [31] c© Instytut Matematyczny PAN, 2010



32 N. V. BEDZIUK AND A. L. YABLONSKI

In this paper we will consider the following nonlinear equation with generalized coef-
ficients

Ẋ(t) = f(t,X(t))L̇(t), (1)

where t ∈ [a; b] ⊂ R and L̇(t) is the derivative in the distributional sense. In general, since
L̇(t) is a distribution and f(t,X(t)) is not a smooth function, the product f(t,X(t))L̇(t) is
not well defined and the solution of equation (1) essentially depends on the interpretation.
Let us note that if L is a stochastic process then equation (1) is a stochastic differential
equation.

We will investigate equation (1) by using the algebra of mnemofunctions (new gen-
eralized functions) or mnemoprocesses. It is worth mentioning that the first algebra of
new generalized functions were proposed by J.-F. Colombeau in [3]. Definitions of other
algebras can be found in [5, 16]. The general methods of construction of such algebras
were proposed by A. B. Antonevich and Ya. V. Radyno in [1]. Analogous algebras for
stochastic processes were defined in [8, 12, 13].

In this paper we interpret equation (1) as an equation in differentials in the algebra of
new generalized functions or processes from [8]. Such an approach allows us to investigate
ordinary and stochastic differential equations from the common ground.

Algebraic interpretation states that the solution of equation (1) is a new generalized
function or process. The main purpose of this article is to formulate conditions under
which this new generalized function or process is associated with some ordinary function
or process which can be naturally called a solution of equation (1). Moreover we will
describe all functions and processes which can be solutions of equation (1) in this sense.

2. The algebra of mnemofunctions and mnemoprocesses. In this section we recall
the definition of the algebra of new generalized functions and mnemoprocesses from [8],
see also [9] and [17].

First we define an extended real line R̃ using a construction typical of non-standard
analysis. Let R = {{xn}∞n=1 : xn ∈ R for all n ∈ N} be the set of all real sequences. We
will call two sequences {xn} ∈ R and {yn} ∈ R equivalent if there is a natural number N
such that xn = yn for all natural n > N . The set R̃ of equivalence classes will be called
the extended real line and any of the classes a generalized real number.

It is easy to see that R ⊂ R̃ as one may associate with any ordinary number x ∈ R
the class containing the constant sequence corresponding to x given by xn = x for all
n ∈ N. Operations on generalized real numbers are defined typically for non-standard
analysis. For instance, the product x̃ỹ of two generalized real numbers is defined as the
class of sequences equivalent to the sequence {xnyn}, where {xn} and {yn} are arbitrary
representatives of the classes x̃ and ỹ respectively. It is evident that R̃ is an algebra.

For any segment T = [a; b] ⊂ R one can construct an extended segment T̃ in a similar
way. Let H denote the subset of R̃ of nonnegative “infinitely small numbers”:

H = {h̃ ∈ R̃ : h̃ = [{hn}], hn > 0 for all n ∈ N, limhn = 0}.

Let (Ω,F ,P) be a probability space. Consider the set of sequences of stochastic
processes with infinitely differentiable paths {fn(t, ω)} on R. We will say that two se-
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quences {fn(t, ω)} and {gn(t, ω)} are equivalent if there is a natural number N such
that fn(t, ω) = gn(t, ω) for all natural n > N , t ∈ R and ω ∈ Ω. The set of classes of
equivalent sequences is denoted by G(R,Ω) and its elements are called mnemoprocesses
or generalized stochastic processes. Similarly one can define the space G(T,Ω) for any
interval T = [a; b]. If we replace stochastic processes by deterministic smooth functions
then we obtain the space G(R) or G(T) of mnemofunctions or generalized functions. If we
endow all these spaces with natural operations of addition and multiplication then they
become algebras.

For each distribution f we can construct a sequence {fn} of smooth functions such
that fn converges to f (e.g. one can consider the convolution of f with some δ-sequence).
This sequence defines the mnemofunction which corresponds to the distribution f . Thus
the space of distributions is a subset of the algebra of mnemofunctions. However, in
this case, infinitely many mnemofunctions correspond to one distribution (e.g., by taking
different δ-sequences). We will say that the mnemofunction (mnemoprocess) f̃ = [{fn}]
is associated with a function (process) f from some topological space if fn converges to
f in this space.

Let f̃ = [{fn}] and g̃ = [{gn}] be generalized functions (processes). Then the compo-
sition f̃ ◦ g̃ is defined by f̃ ◦ g̃ = [{fn ◦ gn}] ∈ G(R). Similarly, one can define the value of
the mnemofunction f̃ at the generalized real point x̃ = [{xn}] ∈ R̃ as f̃(x̃) = [{fn(xn)}].

For each h̃ = [{hn}] ∈ H and f̃ = [{fn}] ∈ G(R,Ω) we define a differential dehf̃ ∈
G(R,Ω) by dehf̃(t) = [{fn(t+ hn)− fn(t)}] for t ∈ R. The construction of the differential
was proposed by N. V. Lazakovich (see [8]).

Now we can give an interpretation of equation (1) using the introduced algebras. Let
L(t), t ∈ [a; b] = T, be a right-continuous function of finite variation (or continuous
process). We replace ordinary functions (processes) in equation (1) by the corresponding
new generalized functions (processes) and then write differentials in the algebra. So we
have

dehX̃(t̃) = f̃(t̃, X̃(t̃))dehL̃(t̃), (2)

with the initial value X̃|[ea;eh) = X̃0, where h̃ = [{hn}] ∈ H, ã = [{a}] ∈ T̃, t̃ = [{tn}] ∈ T̃,

X̃ = [{Xn}], f̃ = [{fn}], X̃0 = [{X0
n}], and L̃ = [{Ln}] are elements of G(R) (or G(R,Ω)

for stochastic equations). Moreover f̃ and L̃ are associated with f and L respectively.
If X̃ is associated with some function (process) X then we say that X is a solution of
equation (1).

The following theorem from [9] gives necessary and sufficient conditions for existence
and uniqueness of solutions of equation (2).

Theorem 2.1. Equation (2) with the initial condition X̃|[ea;eh) = X̃0 admits a solution

if and only if the following equality holds for some representatives {fn} ∈ f̃ , {Ln} ∈ L̃,
{X0

n} ∈ X̃0, for all sufficiently large n ∈ N and for all l = 0, 1, . . . :

lim
t→hn−0

dl

dtl
X0
n(t) = lim

t→+0

dl

dtl
(X0

n(t) + fn(t,X0
n(t))(Ln(t+ hn)− Ln(t))).

If a solution exists then it is unique.
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The purpose of the present paper is to investigate when the solution X̃ of equation
(2) is associated with some function (process) and to describe all possible associated
solutions.

3. Ordinary differential equations. In this section we will formulate main results in
case of a non-continuous deterministic function L.

Let L(t), t ∈ T = [a; b], be a right-continuous function of finite variation. We will
assume that L(t) = L(b) if t > b and L(t) = L(a) if t < a. Denote by V vu L the total
variation of the function L on the interval [u; v] ⊂ T. Suppose that f is a Lipschitz
continuous function with a constant C and for all x ∈ R and t ∈ T:

|f(t, x)| ≤ C(1 + |x|). (3)

Consider the following convolutions with a δ-sequence {ρn} as representatives of
mnemofunction L̃ from equation (2):

Ln(t) = (L ∗ ρn)(t) =
∫ 1/n

0

L(t+ s)ρn(s) ds, (4)

where ρn ∈ C∞(R), ρn ≥ 0, supp ρn ⊆ [0; 1/n], and
∫ 1/n

0
ρn(s) ds = 1 for n ∈ N.

In the same way we set

fn(t, x) = (f ∗ ρ̃n)(t, x) =
∫

[0,1/n]2
f(t+ u, x+ v)ρ̃n(u, v) dudv, (5)

where ρ̃n ∈ C∞(R2), ρ̃n ≥ 0, supp ρ̃n ⊆ [0, 1/n]2, and
∫
[0,1/n]2

ρ̃n(u, v) dudv = 1 for
n ∈ N.

By using representatives we can rewrite equation (2) in the following form:{
Xn(t+ hn)−Xn(t) = fn(t,Xn(t))(Ln(t+ hn)− Ln(t)),
Xn|[a;a+hn)(t) = X0

n(t).
(6)

The solution X̃ of equation (2) is associated with some function if and only if the
sequence {Xn} of the solutions of equation (6) converges. Therefore we have to investigate
the limiting behavior of the sequence {Xn}.

Let t be an arbitrary point of T. There exist mt ∈ N and τt ∈ [a; a + hn) such that
t = τt + mthn. Set tk = τt + khn for k = 0, 1, . . . ,mt. Then the solution of equation (6)
can be written as

Xn(t) = X0
n(τt) +

mt−1∑
k=0

fn(tk, Xn(tk))(Ln(tk+1)− Ln(tk)).

Consider the function Fn(x) : [−∞; +∞]→ [0; 1] given by

Fn(x) =
∫ 1/n

x

ρn(s) ds.

Since ρn(s) ≥ 0, then Fn is a non-increasing function, 0 ≤ Fn(x) ≤ 1 and Fn(+∞) = 0,
Fn(−∞) = 1. Denote by F−1

n the inverse function of Fn, i.e., F−1
n : [0; 1] → [−∞; +∞]

and

F−1
n (u) = sup {x : Fn(x) = u} .
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In order to describe the limits of the sequence {Xn} we consider the integral equation

X(t) = x0 +
∫ t

a

f(s,X(s)) dLc(s) +
∑
a<s≤t

(ϕ(∆L(s)f,X(s−), 1)−X(s−)), (7)

where t ∈ T, Lc is the continuous part of the function L, ∆L(s) = L(s+)−L(s−) is the
size of the jump of the function L at s, ϕ(z, x, u) is the solution of the integral equation

ϕ(z, x, u) = x+
∫

[0;u)

z(ϕ(z, x, v))µ(dv), (8)

and µ is a probability measure defined on the Borel subsets of the interval [0; 1].
As was shown in [17] there exists a unique solution of equation (7) if f is a Lipschitz

continuous function.

Definition 3.1. We say that a function σ : [0; 1] → [0; 1] belongs to class G if there is
a system of pairwise-disjoint intervals (ai; bi] ⊆ [0; 1], i ∈ I, such that

σ(u) =
{
bi, u ∈ (ai; bi],
u, u /∈

⋃
i∈I(ai; bi].

Notice that every σ ∈ G is a non-decreasing and right-continuous function, so it uniquely
generates a probability measure defined on the Borel subsets of [0; 1].

The following theorems describe the limits of the sequence {Xn}.

Theorem 3.2. Let f be a Lipschitz function satisfying (3) and L be a right-continuous
function of finite variation. Suppose that

∫
t∈T |X

0
n(τt) − x0| dt → 0 and, for a certain

function σ : [0; 1]→ [0; 1], we have Fn(F−1
n (u)− δhn)→ σ(u) as n→∞ and hn → 0 for

all δ ∈ (0; 1) and for all continuity points u ∈ [0, 1] of σ. Then σ belongs to G and∫
T

|Xn(t)−X(t)| dt→ 0

as n → ∞ and hn → 0, where Xn is the solution of equation (6) and X is the solution
of equation (7) with ϕ being the solution of (8) for the measure µ generated by σ.

Theorem 3.3. Let L be a right-continuous function of finite variation. Suppose that,
for each Lipschitz function f satisfying (3), the solution Xn of equation (6) converges in
L1(T) as n → ∞ and hn → 0. If the function L is continuous, then the limit of Xn is
the solution of equation (7). If L is discontinuous, then there exists a function σ ∈ G
such that Fn(F−1

n (u)− δhn)→ σ(u) as n→∞ and hn → 0 for all δ ∈ (0, 1) and for all
continuity points u ∈ [0, 1] of σ, and the limit of Xn is the solution of equation (7) with
ϕ being the solution of (8) for the measure µ generated by σ.

4. Stochastic differential equations. In this section we will formulate main results
in case L is a continuous stochastic process.

Let B(t), t ∈ T, be a one-dimensional standard process of Brownian motion. If we put
L = B in equation (1) then we obtain a differential equation with generalized stochastic
coefficients. It can be interpreted as a stochastic differential equation. Unfortunately, the
solution of the stochastic equation essentially depends on the stochastic integral which
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is used in the equation. Usually mathematicians use the Itô integral and practicians use
the Stratonovich integral.

Let us recall the definition of the θ-integral which is a generalization of the Itô and
Stratonovich integrals (see e.g. [15]). Suppose that θ ∈ [0; 1] and Z(t) is a stochastic
process. Let t ∈ T and 0 = t0 < t1 < · · · < tm = t be a partition of [0; t]. Set |σ| =
max0≤k≤m−1 |tk+1 − tk|. If, for any t ∈ T, the limit in the formula

(θ)
∫ t

0

X(s) dB(s) = lim
|σ|→0

m−1∑
k=0

(θX(tk+1) + (1− θ)X(tk))(B(tk+1)−B(tk))

exists and does not depend on partitions, then the θ-integral of X exists and is defined
by this formula. For θ = 0 we obtain the Itô integral and for θ = 1/2 it coincides with
the Stratonovich integral.

As in the deterministic case we interpret equation (1) as an equation in differentials in
the algebra of new generalized processes. Proceeding as in the previous section we rewrite
equation (2) in the following form:{

Xn(t+ hn)−Xn(t) = fn(t,Xn(t))(Bn(t+ hn)−Bn(t)),
Xn|[a;a+hn)(t) = X0

n(t).
(9)

Here fn is the convolution of a given Lipschitz function f with a δ-sequence {ρ̃n} as
defined above and Bn is the convolution of B with ρn.

As in the deterministic case the solution X̃ of equation (2) is associated with some
process if and only if the sequence of the solutions Xn of equation (9) converges.

We will characterize limiting behavior of X by using the sequence {K(n, hn)} of the
following functions:

K(n, hn) =
∫∫

0≤u,v≤1/n
|u−v|≤hn

(
1− |u− v|

hn

)
ρn(u)ρn(v) du dv.

It is evident that 0 ≤ K(n, hn) ≤ 1.
In order to describe possible limits ofXn we consider the following stochastic equation:

X(t) = x0 + (θ)
∫ t

0

f(s,X(s)) dB(s), t ∈ T. (10)

For functions f ∈ C2
b(T,R) there exist unique (strong) solutions of equation (10) (see

e.g. [15] or [7]).
The following theorems give a complete description of the limiting behavior of the

sequence {Xn}.

Theorem 4.1. Suppose that f ∈ C2
b(T,R), f 6≡ const, n2hn →∞, and

sup
t∈[0,hn)

E[X0
n(t)− x0]2 → 0

as n → ∞ and hn → 0. Then the solution Xn of equation (9) converges in L2(Ω,F ,P)
and uniformly in t ∈ T if and only if the numerical sequence {K(n, hn)} converges.



SOLUTIONS OF EQUATIONS IN DIFFERENTIALS 37

Theorem 4.2. Suppose that f ∈ C2
b(T,R), θ ∈ [0; 1/2], K(n, hn)→ (1−2θ), n2hn →∞,

and
sup

t∈[0,hn)

E[X0
n(t)− x0]2 → 0

as n→∞ and hn → 0. Then

sup
t∈T

E[Xn(t)−X(t)]2 → 0,

where Xn is the solution of equation (9) and X is the solution of equation (10).

5. Associated solutions. In this section we describe associated solutions of equation
(2) in the deterministic and stochastic cases. In the deterministic case we have

Theorem 5.1. Let f be a Lipschitz function satisfying (3) and L be a right-continuous
function of finite variation. Suppose that for representatives of mnemofunctions f̃ and
L̃ given by formulae (5) and (4) respectively conditions of Theorem 2.1 hold. Then the
solution X̃ of equation (2) is associated with X if and only if X satisfies equation (7)
with some probability measure µ generated by a function from the class G.

Remark 5.2. Let us note that in order to obtain other associated solutions of equation
(2) one has to consider other types of representatives fn and Ln.

In the stochastic case the following result holds:

Theorem 5.3. Let f ∈ C2
b(T,R) and L be a Brownian motion. Suppose that for rep-

resentatives of f̃ and L̃ given by formulae (5) and (4) respectively the conditions of
Theorem 2.1 hold. Then the solution X̃ of equation (2) is associated with X if and only
if X satisfies equation (10) for some θ ∈ [0; 1/2].

Remark 5.4. If θ ∈ [1/2; 1] then the solution of equation (10) is the associated solution of
equation (2) with the “backward” differential dehf given by dehf̃(t) = [{fn(t)−fn(t−hn)}]
for t ∈ R; see [10] for details.

References

[1] A. B. Antonevich and Ya. V. Radyno, On a general method for constructing algebras of
generalized functions, Sov. Math. Dokl. 43 (1991), 680–684.

[2] P. Antosik and J. Ligęza, Products of measures and functions of finite variations, in:
Generalized Functions and Operational Calculus, Proc. Conf., Varna 1975, (1979), 20–26.

[3] J. F. Colombeau, A multiplication of distributions, J. Math. Anal. Appl. 94 (1983), 96–115.
[4] P. C. Das and R. R. Sharma, Existence and stability of measure differential equations,

Czechoslovak Math. J. 22 (1972), 145–158.
[5] Yu. V. Egorov, A contribution to the theory of generalized functions, Russian Math. Sur-

veys 45 (1990), 1–49.
[6] A. F. Filippov, Differential Equations with Discontinuous Right Hand Sides, Mathematics

and its Applications (Soviet Series) 18, Kluwer, Dordrecht, 1988.
[7] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes,

Amsterdam-Oxford-New York, 1981.

http://dx.doi.org/10.1016/0022-247X(83)90007-0


38 N. V. BEDZIUK AND A. L. YABLONSKI

[8] N. V. Lazakovich, Stochastic differentials in the algebra of generalized random processes,
Dokl. Akad. Nauk Belarusi 38 (1994), no. 5, 23–27 (in Russian).

[9] N. V. Lazakovich, S. P. Stashulenok, and I. V. Yufereva, Stochastic differential equations
in the algebra of generalized random processes, Differ. Equ. 31 (1995), 2056–2058.

[10] N. V. Lazakovich and A. L. Yablonski, On the approximation of the solutions of stochastic
equations with θ-integrals, Stochastics and Stochastics Reports 76 (2004), 135–145.

[11] J. Ligęza, On generalized solutions of some differential nonlinear equations of order n,
Ann. Polon. Math. 31 (1975), 115–120.

[12] Z. Lozanov-Crvenković and S. Pilipović, Some classes of Colombeau’s generalized random
processes, Novi Sad J. Math. 27 (1997), 133–143.

[13] M. Oberguggenberger, Generalized functions and stochastic processes, Progr. Probab. 36
(1995), 215–229.

[14] S. G. Pandit and S. G. Deo, Differential Systems Involving Impulses, Lect. Notes in Math.
954, Springer, Berlin, 1982.

[15] V. S. Pugachev and I. N. Sinitsyn, Stochastic Differential Systems. Analysis and Filtering,
Wiley, Chichester, 1987.

[16] E. E. Rosinger, Generalized Solutions of Nonlinear Partial Differential Equations, North-
Holland, Amsterdam, 1987.

[17] A. L. Yablonski, Differential equations with generalized coefficients, Nonlinear Anal. 63
(2005), 171–197.

[18] S. T. Zavalishchin and A. N. Sesekin, Dynamic Impulse Systems. Theory and Applications,
Mathematics and its Applications 394, Kluwer, Dordrecht, 1997.

http://dx.doi.org/10.1080/10451120410001704090
http://dx.doi.org/10.1016/j.na.2005.03.108

	Introduction
	The algebra of mnemofunctions and mnemoprocesses
	Ordinary differential equations
	Stochastic differential equations
	 Associated solutions

