LINEAR AND NON-LINEAR THEORY OF GENERALIZED FUNCTIONS AND ITS APPLICATIONS BANACH CENTER PUBLICATIONS, VOLUME 88 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2010

THE ALGEBRA OF POLYNOMIALS ON THE SPACE OF ULTRADIFFERENTIABLE FUNCTIONS

KATARZYNA GRASELA

Institute of Mathematics, Cracow University of Technology Warszawska 24, 31-155 Kraków, Poland E-mail: katarzyna.grasela@gmail.com

Abstract. We consider the space $\mathcal{D}^{\mathcal{M}}$ of ultradifferentiable functions with compact supports and the space of polynomials on $\mathcal{D}^{\mathcal{M}}$. A description of the space $\mathcal{P}(\mathcal{D}^{\mathcal{M}})$ of polynomial ultradistributions as a locally convex direct sum is given.

1. Introduction. Roumieu and Beurling ultradistributions are meant as elements of the dual space to a non-quasi analytic class of infinitely differentiable functions equipped with a natural locally convex topology (see e.g. [9]). In this paper, we will consider the space $\mathcal{P}(\mathcal{D}^{\mathcal{M}})$ of polynomial ultradistributions, where $\mathcal{D}^{\mathcal{M}}$ denotes the space of ultradifferentiable functions (for the definition see Section 2). The space $\mathcal{P}(\mathcal{D}^{\mathcal{M}})$ contains the space of ultradistributions as a proper subspace and it is the smallest space, which is stable under tensor multiplication. We shall describe the space $\mathcal{P}(\mathcal{D}^{\mathcal{M}})$ in terms of the direct sums of symmetric tensor powers of the space $\mathcal{D}'_{\mathcal{M}}$, dual to $\mathcal{D}^{\mathcal{M}}$; we prove that such a direct sum is a convolution algebra. In physics such algebras are known as Borcher's algebras (cp. [1]). It is widely known that the space $\mathcal{D}^{\mathcal{M}}(\mathbb{R}^n)$ of ultradifferentiable functions equipped with a natural locally convex topology is topologically isomorphic to the space $\mathcal{E}(\mathbb{C}^n)$ of entire functions of exponential type [4], via the Fourier-Laplace transformation; we shall prove, however, that this isomorphism can be extended to the corresponding spaces of polynomials.

2. Polynomials on locally convex spaces. In this paper the symbol N_1 denotes the set $N \setminus \{0\}$ of strictly positive integer numbers.

Let $\mathcal{L}^n(X, C)$ denote the space of *n*-linear, continuous forms defined on a locally

The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc88-0-10

²⁰⁰⁰ Mathematics Subject Classification: Primary 46F25; Secondary 46F10, 44A10.

Key words and phrases: ultradistributions of Roumieu type, polynomial ultradistributions, entire functions of exponential type.

convex space X

$$F_n: \prod_{i=1}^n X := \underbrace{X \times \ldots \times X}_n \ni (x_1, \ldots, x_n) \mapsto F_n(x_1, \ldots, x_n) \in C.$$

With any *n*-linear, continuous form $F_n \in \mathcal{L}^n(X, C)$ we can associate the composition

$$P_n = F_n \circ \Delta_n, \quad \Delta_n : X \ni x \mapsto {}^n x := (x, \dots, x) \in \prod_{i=1}^n X,$$

which, according to [2], we shall call a homogenous polynomial of degree n on the space X. The linear space of all homogenous polynomials of degree n will be denoted by $\mathcal{P}_n(X)$.

When we have a polynomial $P_n \in \mathcal{P}_n(X)$ we can get back the linear symmetric form F_n , associated to P_n , by the following polarization formula (comp. i.e [2])

$$F_n(x_1, \dots, x_n) = \frac{1}{2^n n!} \sum_{e_i = \pm 1} e_1 \dots e_n P_n\Big(\sum_{i=1}^n e_i x_i\Big).$$
(1)

On the space $\mathcal{L}^n(X, C)$ we will consider the locally convex topology of uniform convergence on bounded, absolutely convex subsets of $\prod_{i=1}^n X$, this topology will be denoted by τ_β . By τ_β we will also denote the topology on the space $\mathcal{P}_n(X)$ of uniform convergence on bounded, absolutely convex subsets of X.

By the algebra of polynomials on the space X, we mean the locally convex direct sum

$$\mathcal{P}(X) := \sum_{n \in N_1} \mathcal{P}_n(X) = \bigg\{ P(x) = \sum_{n=1}^m P_n(x) : P_n \in \mathcal{P}_n(X); \ m \in N_1 \bigg\}.$$

It is obvious that $\mathcal{P}(X)$ is an algebra with respect to multiplication

$$\mathcal{P}(X) \times \mathcal{P}(X) \ni (P,Q) \mapsto PQ \in \mathcal{P}(X),$$
$$P(x) Q(x) = \sum_{n \in N_1} \sum_{m=1}^n P_m(x) Q_{n-m+1}(x), \qquad x \in X.$$

Now, we would like to introduce some notations, connected with tensor products. Let $\otimes^n X := X \otimes \ldots \otimes X$ denote the algebraic tensor product of *n* copies of the space *X*, and let $\widehat{\otimes}_p^n X$ denote its completion in the projective topology. In the space $\otimes^n X$ we consider the operation of symmetrization

$$\varsigma_n: \otimes^n X \ni x_1 \otimes \ldots \otimes x_n \mapsto x_1 \odot \ldots \odot x_n := \frac{1}{n!} \sum_{\varsigma \in G_n} x_{\varsigma(1)} \otimes \ldots \otimes x_{\varsigma(n)},$$

where G_n is the group of permutations.

The operator ς_n is a projection in the space $\otimes^n X$, continuous with respect to the given topology τ [2], hence it can be extended onto the completion of $\otimes^n X$. This extension will be also denoted by ς_n . In our paper by

$$(x_1 \otimes \ldots \otimes x_m) \odot (x_{m+1} \otimes \ldots \otimes x_n), \quad 1 \leq m \leq n,$$

we shall understand $x_1 \odot x_2 \odot \ldots \odot x_n$ and the operator \odot can be extended by linearity and continuity to an operator $(\widehat{\otimes}_p^m X) \times (\widehat{\otimes}_p^{n-m} X) \to \widehat{\odot}_p^n X$.

We shall use the following notation: $\odot^n X := \varsigma_n(\otimes^n X)$, and $\widehat{\odot}_p^n X := \varsigma_n(\widehat{\otimes}_p^n X)$.

Let χ_n denote the canonical inclusion of the cartesian product into the tensor product

$$\chi_n: \prod_{i=1}^n X \ni (x_1, \dots, x_n) \mapsto x_1 \otimes \dots \otimes x_n \in \otimes^n X.$$

3. The space $D^{\mathcal{M}}$ and its properties. Let us consider N_1^n with lexicographical order and by \overline{k} , \widehat{k} we will denote the predecessor and the successor of k for $k \in N_1^n$.

Let $\mathcal{M} \equiv {\{\mu_k\}_{k \in N_1^n}}$ denote a sequence of positive numbers with the following properties:

- (1M) $\mu_k^2 \leq \mu_{\overline{k}} \mu_{\widehat{k}}$, (logarithmic convexity);
- (2M) $\sum_{k \in N_1^n} \frac{\mu_k}{\mu_{\hat{k}}} < \infty$ (non-quasi analyticity);
- (3M) there are c > 0 and $d_j > 0$ (j = 1, ..., n) such that $\mu_{\hat{k}} \leq cd^k \mu_k$, where $d = (d_1, ..., d_n)$ (stability under differential operators)

If for $a, b \in \mathbb{R}^n$ such that $a_j < b_j (j = 1, ..., n)$, [a, b] denotes the *n*-dimensional interval $\prod_{j=1}^n [a_j, b_j]$ and $\nu \in \operatorname{int} \mathbb{R}^n_+$ is any vector with positive coordinates, then we will consider the following space

$$D^M_{[a,b],\nu}(R^n) := \big\{ \varphi \in C^\infty(R^n) \colon \operatorname{supp} \varphi \subset [a,b], \ \|\varphi\|_{[a,b],\nu} < \infty \big\},$$

where

$$\|\varphi\|_{[a,b],\nu} := \sup_{t \in [a,b]} \sup_{k \in N_1^n} \Big| \frac{D^k \varphi(t)}{\nu^k \mu_k} \Big|$$

with $D^k = D_1^{k_1} \dots D_n^{k_n}$, $D_j^{k_j} = \left(-i\frac{\partial}{\partial t_j}\right)^{k_j}$ and $\nu^k = \nu_1^{k_1} \dots \nu_n^{k_n}$. Let us define an order relation between vectors of P^n namely a

Let us define an order relation between vectors of \mathbb{R}^n , namely $a \succ b$ if and only if $a_j < b_j, j = 1, \ldots, n$.

By $D^{\mathcal{M}}(\mathbb{R}^n)$ we mean the inductive limit of the spaces $D^M_{[a,b],\nu}(\mathbb{R}^n)$, i.e.

$$D^{\mathcal{M}}(\mathbb{R}^n) = \liminf_{\nu \succ 0, \ a \succ b} D^M_{[a,b],\nu}(\mathbb{R}^n),$$

with the inductive limit topology.

The Denjoy-Carleman Theorem implies that $D^{\mathcal{M}}(\mathbb{R}^n)$ is nontrivial. If by $D'_{\mathcal{M}}(\mathbb{R}^n)$ we denote the dual space for $D^{\mathcal{M}}(\mathbb{R}^n)$ then the following properties of $D^{\mathcal{M}}(\mathbb{R}^n)$ and $D'_{\mathcal{M}}(\mathbb{R}^n)$ hold (see [4, Theorem 2.6])

Theorem 3.1.

- (i) Every $D_{[a,b],\nu}^{\mathcal{M}}(\mathbb{R}^n)$ is a Banach space.
- (ii) The inclusions

$$D^M_{[a,b],\nu}(R^n) \mapsto D^M_{[c,d],\mu}(R^n), \quad [a,b] \subset [c,d], \quad \nu \prec \mu$$

are compact.

- (iii) $D^{\mathcal{M}}(\mathbb{R}^n)$ is a nuclear, reflexive, (DF)-space.
- (iv) $D'_{\mathcal{M}}(\mathbb{R}^n)$ is a nuclear, reflexive, (F)-space and an (M^{*}) space in the sense of Silva.

4. The description of the space of polynomials on the space of ultradifferentiable functions. In order to simplify the notation by $\mathcal{D}^{\mathcal{M}}$ we will denote the space $D^{\mathcal{M}}(R^1)$ and by $\mathcal{D}'_{\mathcal{M}}$ the dual space for $\mathcal{D}^{\mathcal{M}}$.

In $D^{\mathcal{M}}(\mathbb{R}^n)$ we consider the following operator

$$\varsigma_n^*: D^{\mathcal{M}}(\mathbb{R}^n) \ni \varphi(t) \mapsto (\varsigma_n^* \circ \varphi)(t) := \frac{1}{n!} \sum_{\varsigma \in G_n} \varphi(t_{\varsigma(1)}, \dots, t_{\varsigma(n)}),$$

where $t = (t_1, \ldots, t_n) \in \mathbb{R}^n$. The operator ς_n^* is a projection on the closed subspace of $D^{\mathcal{M}}(\mathbb{R}^n)$ of symmetric functions

$$\mathcal{D}^{\mathcal{M}}(\mathbb{R}^n) := \mathcal{R}(\varsigma_n^*) \subset D^{\mathcal{M}}(\mathbb{R}^n).$$

We would like to describe the dual space for $\prod_{n \in \mathbb{N}} \mathcal{D}^{\mathcal{M}}(\mathbb{R}^n)$. Let $\mathcal{D}'_{\mathcal{M}}(\mathbb{R}^n)$ denote the dual space for $\mathcal{D}^{\mathcal{M}}(\mathbb{R}^n)$ with the strong topology $\beta \langle \mathcal{D}'_{\mathcal{M}}(\mathbb{R}^n) | \mathcal{D}^{\mathcal{M}}(\mathbb{R}^n) \rangle$. We shall prove the following theorem (comp. [3]):

THEOREM 4.1. The following mappings:

$$\mathcal{D}'_{\mathcal{M}}(R^n) \xrightarrow{\varrho} \widehat{\odot}^n_p \mathcal{D}'_{\mathcal{M}} \xrightarrow{\vartheta} \mathcal{P}_n(\mathcal{D}^{\mathcal{M}}) T_n \xrightarrow{\varrho} \varrho(T_n) = f_n \xrightarrow{\vartheta} F_n$$

are topological isomorphisms. Moreover the second of them

$$\vartheta: \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}} \ni f_n \mapsto F_n := f_n \circ \chi_n \circ \Delta_n \in \mathcal{P}_n(\mathcal{D}^{\mathcal{M}})$$

is given by the formula

$$F_n(\varphi) = \langle f_n \mid \otimes^n \varphi \rangle, \qquad \varphi \in \mathcal{D}^{\mathcal{M}}$$

and is an extension $\chi_n \circ \Delta_n$ of the superposition of canonical mappings

$$\begin{array}{cccc} \mathcal{D}^{\mathcal{M}} & \stackrel{\Delta_n}{\longrightarrow} & \prod_{\iota=1}^n \mathcal{D}^{\mathcal{M}} & \stackrel{\chi_n}{\longrightarrow} & \otimes^n \mathcal{D}^{\mathcal{M}} \\ \varphi & \stackrel{\Delta_n}{\longmapsto} & {}^n \varphi & \stackrel{\chi_n}{\longmapsto} & \otimes^n \varphi \end{array}$$

where $\otimes^n \varphi$ is the scalar function of n real variables,

$$\otimes^n \varphi(t) := \varphi(t_1) \cdot \ldots \cdot \varphi(t_n), \qquad t = (t_1, \ldots, t_n) \in \mathbb{R}^n$$

Proof. Let operators ς_n and ς'_n be mutually adjoint with respect to the dual pair $\langle \otimes^n \mathcal{D}'_{\mathcal{M}} | \otimes^n \mathcal{D}^{\mathcal{M}} \rangle$ given by the bilinear form

$$\langle u_1 \otimes \ldots \otimes u_n | \varphi_1 \otimes \ldots \otimes \varphi_n \rangle = \langle u_1 | \varphi_1 \rangle \ldots \langle u_n | \varphi_n \rangle.$$
 (2)

Then for any $u_1, \ldots, u_n \in \mathcal{D}'_{\mathcal{M}}$ and $\varphi_1, \ldots, \varphi_n \in \mathcal{D}^{\mathcal{M}}$ the operator ς_n satisfies:

$$\langle u_1 \odot \ldots \odot u_n \mid \varphi_1 \otimes \ldots \otimes \varphi_n \rangle = \langle u_1 \otimes \ldots \otimes u_n \mid \varphi_1 \odot \ldots \odot \varphi_n \rangle,$$

$$\varsigma_n : \varphi_1 \otimes \ldots \otimes \varphi_n \mapsto \varphi_1 \odot \ldots \odot \varphi_n := \frac{1}{n!} \sum_{\varsigma \in G_n} \varphi_{\varsigma(1)} \otimes \ldots \otimes \varphi_{\varsigma(n)}.$$

Let $\mathcal{R}(\varsigma_n)$ be denoted by $\odot^n \mathcal{D}^{\mathcal{M}}$.

If the set of seminorms $\{p_i\}_{i\in I}$ defines the topology in $\mathcal{D}^{\mathcal{M}}$, then the set of seminorms

$$(p_{i_1} \otimes \ldots \otimes p_{i_n})(\psi) = \inf_{\psi = \sum_{m \in N_1^n} \varphi_{m_1} \otimes \ldots \otimes \varphi_{m_n} \in \otimes^n \mathcal{D}^{\mathcal{M}}} \sum_{m \in N_1^n} p_{i_1}(\varphi_{m_1}) \ldots p_{i_n}(\varphi_{m_n})$$

defines the projective topology in $\otimes^n \mathcal{D}^M$. We have the following

$$(p_{i_1} \otimes \ldots \otimes p_{i_n})(\varsigma_n \circ \psi) \leq \inf \sum_{m \in N_1^n} \frac{1}{n!} \sum_{\varsigma \in G_n} p_{i_1}(\varphi_{m_{\varsigma(1)}}) \dots p_{i_n}(\varphi_{m_{\varsigma(n)}})$$
$$= \inf \sum_{m \in N_1^n} \frac{1}{n!} \sum_{\varsigma \in G_n} p_{i_{\varsigma(1)}}(\varphi_{m_1}) \dots p_{i_{\varsigma(n)}}(\varphi_{m_n})$$
$$= \varsigma_n \circ (p_{i_1} \otimes \ldots \otimes p_{i_n})(\psi),$$

where

$$\varsigma_n \circ (p_{i_1} \otimes \ldots \otimes p_{i_n}) := \frac{1}{n!} \sum_{\sigma \in G_n} p_{i_{\varsigma(1)}} \otimes \ldots \otimes p_{i_{\varsigma(n)}}$$

is a seminorm in $\otimes^n \mathcal{D}^{\mathcal{M}}$, continuous in the projective topology. Hence the projection ς_n is continuous. The continuity of ς_n and the fact that the subspace $\otimes^n \mathcal{D}^{\mathcal{M}}$ is dense in $\widehat{\otimes}_p^n \mathcal{D}^{\mathcal{M}}$ imply that there exists a continuous extension of ς_n on the completions of the spaces $\otimes^n \mathcal{D}^{\mathcal{M}}$ and $\odot^n \mathcal{D}^{\mathcal{M}}$ respectively, namely $\varsigma_n : \widehat{\otimes}_p^n \mathcal{D}^{\mathcal{M}} \longrightarrow \widehat{\odot}_p^n \mathcal{D}^{\mathcal{M}}$. Hence we can represent the space $\widehat{\otimes}_p^n \mathcal{D}^{\mathcal{M}}$ as locally convex direct sum

$$\widehat{\otimes}_{p}^{n} \mathcal{D}^{\mathcal{M}} = \widehat{\odot}_{p}^{n} \mathcal{D}^{\mathcal{M}} \dotplus \mathcal{N}(\varsigma_{n}).$$
(3)

Let us remark that $(\widehat{\otimes}_p^n \mathcal{D}^{\mathcal{M}})'_{\beta}$ denotes the dual of $\widehat{\otimes}_p^n \mathcal{D}^{\mathcal{M}}$, endowed with the topology of uniform convergence on bounded, absolutely convex subsets, therefore one can replace the notation $((\widehat{\otimes}_p^n \mathcal{D}^{\mathcal{M}})'_{\beta})'_{\beta}$ with the notation $((\widehat{\otimes}_p^n \mathcal{D}^{\mathcal{M}})', \tau_{\beta})$.

Theorem 3.1 implies that $\mathcal{D}^{\mathcal{M}}$ is a nuclear (DF)-space and $\mathcal{D}'_{\mathcal{M}}$ is a (F)-space. For such spaces the following isomorphism

$$(\widehat{\otimes}_{p}^{n}\mathcal{D}^{\mathcal{M}})_{\beta}^{\prime}\simeq\widehat{\otimes}_{p}^{n}\mathcal{D}_{\mathcal{M}}^{\prime}.$$
(4)

holds. The isomorphism (4) implies that the bilinear form (2) defines the dual pair $\langle \widehat{\otimes}_p^n \mathcal{D}'_{\mathcal{M}} | \widehat{\otimes}_p^n \mathcal{D}^{\mathcal{M}} \rangle$ and the operator ς'_n is adjoint to ς_n with respect to this duality. In particular ς'_n is continuous in the strong topology.

Hence, and also from the equality (3) we obtain that the space $\widehat{\otimes}_p^n \mathcal{D}'_{\mathcal{M}}$ can be represented as the locally convex space

$$\widehat{\otimes}_{p}^{n} \mathcal{D}'_{\mathcal{M}} = \widehat{\odot}_{p}^{n} \mathcal{D}'_{\mathcal{M}} \dotplus \mathcal{N}(\varsigma'_{n}).$$
(5)

When in the space $\mathcal{L}^n(\mathcal{D}^M, C)$ the topology τ_β of uniform convergence on bounded absolutely convex subsets is considered we have that

$$\left(\mathcal{L}^{n}(\mathcal{D}^{\mathcal{M}},C),\tau_{\beta}\right)\simeq (\widehat{\otimes}_{p}^{n}\mathcal{D}^{\mathcal{M}})_{\beta}^{\prime}.$$
 (6)

Then from (4), (5) and (6) we get that

$$\left(\mathcal{L}^{n}(\mathcal{D}^{\mathcal{M}},C),\tau_{\beta}\right)\simeq\widehat{\otimes}_{p}^{n}\mathcal{D}_{\mathcal{M}}'\simeq\widehat{\odot}_{p}^{n}\mathcal{D}_{\mathcal{M}}'\dotplus\mathcal{N}(\varsigma_{n}').$$
 (7)

The first isomorphism in (7) implies, in particular, that any form $\bar{f}_n \in \mathcal{L}^n(\mathcal{D}^{\mathcal{M}}, C)$ can be represented as $\bar{f}_n = \bar{F}_n \circ \chi_n$ for some $\bar{F}_n \in \widehat{\otimes}_p^n \mathcal{D}'_{\mathcal{M}}$, and there exists the representation in the form of absolutely convergent series $\bar{F}_n = \sum_{l \in N_1^n} u_{l_1} \otimes \ldots \otimes u_{l_n} \in \widehat{\otimes}_p^n \mathcal{D}'_{\mathcal{M}}$, where $u_{l_{\iota}} \in \mathcal{D}'_{\mathcal{M}}, \, \iota = 1, \ldots, n$ [10, Theorem 6.4]. Hence for any $\varphi_1, \ldots, \varphi_n \in \mathcal{D}^{\mathcal{M}}$ the operator ς'_n satisfies the following equalities

$$(\varsigma_n' \circ \bar{f}_n)(\varphi_1, \dots, \varphi_n) = \frac{1}{n!} \sum_{\varsigma \in G_n} \sum_{l \in N_1^n} \langle u_{l_{\varsigma(1)}} | \varphi_1 \rangle \dots \langle u_{l_{\varsigma(n)}} | \varphi_n \rangle$$
$$= \frac{1}{n!} \sum_{\varsigma \in G_n} \sum_{l \in N_1^n} \langle u_{l_1} | \varphi_{\varsigma(1)} \rangle \dots \langle u_{l_n} | \varphi_{\varsigma(n)} \rangle,$$

which means that the composition $f_n^{\varsigma} := \varsigma'_n \circ \bar{f}_n$ belongs to the space $\mathcal{L}_{\varsigma}^n(\mathcal{D}^{\mathcal{M}}, C)$ of symmetric continuous *n*-linear forms on $\mathcal{D}^{\mathcal{M}}$. The second isomorphism in (7) implies

$$\mathcal{R}(\varsigma_n') = \left(\mathcal{L}_{\varsigma}^n(\mathcal{D}^{\mathcal{M}}, C), \tau_{\beta}\right) \simeq \widehat{\odot}_p^n \mathcal{D}_{\mathcal{M}}'.$$
(8)

Now we shall prove that the following topological isomorphism

$$\left(\mathcal{L}^{n}_{\varsigma}(\mathcal{D}^{\mathcal{M}},C),\tau_{\beta}\right)\simeq\mathcal{P}_{n}(\mathcal{D}^{\mathcal{M}})$$
(9)

holds. For any symmetric form $f_n^{\varsigma} \in \mathcal{L}_{\varsigma}^n(\mathcal{D}^M, C)$ we have the polarization formula (1). Hence its restriction to the diagonal of cartesian product

$$\Delta'_n: \left(\mathcal{L}^n_\varsigma(\mathcal{D}^\mathcal{M}, C), \tau_\beta\right) \ni f_n^\varsigma \longrightarrow f_n^\varsigma \circ \Delta_n \in \mathcal{P}_n(\mathcal{D}^\mathcal{M})$$

should be the isomorphism (9) we are looking for. Since Δ'_n is surjective, then it is enough to prove its continuity. Any continuous seminorm on $\mathcal{P}_n(\mathcal{D}^{\mathcal{M}})$ has the form

$$p_S(f_n^{\varsigma} \circ \Delta_n) = \sup_{\varphi \in S} \left| (f_n^{\varsigma} \circ \Delta_n)(\varphi) \right|, \qquad f_n^{\varsigma} \circ \Delta_n \in \mathcal{P}_n(\mathcal{D}^{\mathcal{M}}),$$

where S is a bounded absolutely convex subset of $\mathcal{D}^{\mathcal{M}}$. The polarization formula (1) implies that

$$p_{S_1...S_n}(f_n^{\varsigma}) \leq \frac{1}{2^n \cdot n!} \sum_{e_{\iota} = \pm 1} \sup_{\iota \in \{1,...,n\}} \sup_{\varphi_{\iota} \in S_{\iota}} \left| (f_n^{\varsigma} \circ \Delta_n) \Big(\sum_{\iota=1}^n e_{\iota} \varphi_{\iota} \Big) \right|$$
$$= \frac{n^n}{2^n \cdot n!} \sum_{e_{\iota} = \pm 1} \sup_{\iota \in \{1,...,n\}} \sup_{x_{\iota} \in S_{\iota}} \sup_{\iota \in S_{\iota}} \left| (f_n^{\varsigma} \circ \Delta_n) \Big(\frac{1}{n} \sum_{\iota=1}^n e_{\iota} \varphi_{\iota} \Big) \right|$$
$$\leq \frac{n^n}{n!} p_S(f_n^{\varsigma} \circ \Delta_n).$$

Hence Δ'_n is the required isomorphism (9).

By combining the isomorphisms (8) and (9) we obtain that the mapping

$$\widehat{\odot}_{p}^{n} \mathcal{D}'_{\mathcal{M}} \ni f_{n} \mapsto \left\langle f_{n} \mid \otimes^{n} \varphi \right\rangle = (f_{n} \circ \chi_{n} \circ \Delta_{n})(\varphi) := F_{n}(\varphi), \tag{10}$$

given for any $\varphi \in \mathcal{D}^{\mathcal{M}}$, is the second isomorphism ϑ . It is known [5, Theorem 2.1] that

$$D^{\mathcal{M}}(\mathbb{R}^n) \simeq \widehat{\otimes}_p^n \mathcal{D}^{\mathcal{M}}.$$
 (11)

Isomorphism (11) implies that the functions of the form $\varphi(t) = \sum_{l \in N_1^n} \varphi_{l_1}(t_1) \dots \varphi_{l_n}(t_n)$, where $\varphi_{l_1}, \dots, \varphi_{l_n} \in \mathcal{D}^{\mathcal{M}}$, form a dense subspace $\otimes^n \mathcal{D}^{\mathcal{M}}$ of the space $\mathcal{D}^{\mathcal{M}}(\mathbb{R}^n)$. Since

$$(\varsigma_n^* \circ \varphi)(t) = \frac{1}{n!} \sum_{l \in N_1^n} \sum_{\varsigma \in G_n} \varphi_{l_1}(t_{\varsigma(1)}) \dots \varphi_{l_n}(t_{\varsigma(n)})$$
$$= \frac{1}{n!} \sum_{l \in N_1^n} \sum_{\varsigma \in G_n} \varphi_{l_{\varsigma(1)}}(t_1) \dots \varphi_{l_{\varsigma(n)}}(t_n) = (\varsigma_n \circ \varphi)(t),$$

the continuity of projections implies that the algebraic equality

$$\mathcal{D}^{\mathcal{M}}(R^n) = \widehat{\odot}_p^n \mathcal{D}^{\mathcal{M}}$$

holds. The topological isomorphism $\mathcal{D}^{\mathcal{M}}(\mathbb{R}^n) \simeq \widehat{\odot}_p^n \mathcal{D}^{\mathcal{M}}$ is a corollary of (11) and the adjoint topological isomorphism

$$\varrho: \mathcal{D}'_{\mathcal{M}}(\mathbb{R}^n) \longrightarrow \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{N}}$$

is obvious.

Let us denote

$$\mathcal{D}'_S := \sum_{n \in N_1} \mathcal{D}'_{\mathcal{M}}(R^n), \qquad \mathcal{D}^{\mathcal{M}}_S := \prod_{n \in N_1} \mathcal{D}^{\mathcal{M}}(R^n).$$

Notice that $\langle \mathcal{D}'_S | \mathcal{D}_S^{\mathcal{M}} \rangle$ is a dual pair according to its canonical bilinear form

$$\langle T \mid \bar{\varphi} \rangle = \sum_{n \in N_1} \langle T_n \mid \varphi_n \rangle$$
 for $T = \sum_{n \in N_1} T_n \in \mathcal{D}'_S$, $\bar{\varphi} = \prod_{n \in N_1} \varphi_n \in \mathcal{D}_S^{\mathcal{M}}$

where $T_n \in \mathcal{D}'_{\mathcal{M}}(\mathbb{R}^n)$ and $\varphi_n \in \mathcal{D}^{\mathcal{M}}(\mathbb{R}^n)$. Let us remark that if $\bar{\varphi} \in \mathcal{D}^{\mathcal{M}}_S$, then $\bar{\varphi} = (\varphi_n)$ and, for different k and n, φ_k is a function of $(x^k_1, x^k_2, \ldots, x^k_k)$ and φ_n is a function of $(x^n_1, x^n_2, \ldots, x^n_n)$, where $(x^k_1, x^k_2, \ldots, x^k_{\min(k,n)})$ and $(x^n_1, x^n_2, \ldots, x^n_{\min(k,n)})$ can be different.

We shall prove the following

Theorem 4.2.

(i) The locally convex space $\sum_{n \in N_1} \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}$ is a topological algebra with respect to convolution, given by the formula

$$f * h := \sum_{n \in N_1} \left(\sum_{m=1}^n f_m \odot h_{n-m+1} \right),$$

where $f = \sum_{n \in N_1} f_n$, $h = \sum_{n \in N_1} h_n \in \sum_{n \in N_1} \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}$ and $f_n, h_n \in \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}$. (ii) The following mappings:

$$\mathcal{D}'_{S} \qquad \stackrel{\varrho}{\longrightarrow} \qquad \sum_{n \in N_{1}} \widehat{\odot}_{p}^{n} \mathcal{D}'_{\mathcal{M}} \quad \stackrel{\vartheta}{\longrightarrow} \quad \mathcal{P}(\mathcal{D}^{\mathcal{M}})$$
$$T = \sum_{n \in N_{1}} T_{n} \quad \stackrel{\varrho}{\longmapsto} \quad f = \sum_{n \in N_{1}} f_{n} \quad \stackrel{\vartheta}{\longmapsto} \quad F = \sum_{n \in N_{1}} F_{n}$$

where $f_n := \varrho(T_n)$ and $F_n := f_n \circ \chi_n \circ \Delta_n = \vartheta(f_n)$, are surjective topological isomorphisms.

(iii) The convolution in the algebra $\sum_{n \in N_1} \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}$ is transformed by the isomorphism ϑ into the product of polynomials in the algebra $\mathcal{P}(\mathcal{D}^{\mathcal{M}})$, i.e.

$$\vartheta(f * h) = F \cdot H, \qquad F = \vartheta(f), \quad H = \vartheta(h) \in \mathcal{P}(\mathcal{D}^{\mathcal{M}}).$$

Proof. If we put

$$\varrho(T) = \sum_{n \in N_1} \varrho(T_n) = \sum_{n \in N_1} f_n = f, \qquad \vartheta(f) = \sum_{n \in N_1} \vartheta(f_n) = \sum_{n \in N_1} F_n = F,$$

then Theorem 4.1 implies that there exist isomorphisms ρ and ϑ .

Now we prove (i); for any $f_n \in \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}$ and $h_m \in \widehat{\odot}_p^m \mathcal{D}'_{\mathcal{M}}$ we have that

$$f_n \odot h_m \in (\widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}) \odot (\widehat{\odot}_p^m \mathcal{D}'_{\mathcal{M}}) \subset \widehat{\odot}_p^{n+m} \mathcal{D}'_{\mathcal{M}}$$

and the convolution " * " in the direct sum $\sum_{n \in N_1} \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}$ is well defined. Its continuity follows from the continuity of the canonical mapping in the symmetric tensor product

$$(\widehat{\odot}_{p}^{n}\mathcal{D}'_{\mathcal{M}})\times(\widehat{\odot}_{p}^{m}\mathcal{D}'_{\mathcal{M}})\ni(f_{n},h_{m})\to f_{n}\odot h_{m}\in\widehat{\odot}_{p}^{n+m}\mathcal{D}'_{\mathcal{M}}.$$

From the formula (10) we obtain that

$$F_n(\varphi) \cdot H_m(\varphi) = \langle f_n \mid \otimes^n \varphi \rangle \cdot \langle h_m \mid \otimes^m \varphi \rangle = \langle f_n \otimes h_m \mid \otimes^{n+m} \varphi \rangle$$
$$= \langle f_n \odot h_m \mid \otimes^{n+m} \varphi \rangle = (f_n \odot h_m) \circ \chi_{n+m} \circ \Delta_{n+m}(\varphi).$$

Hence $F_n \cdot H_m \in \mathcal{P}_{n+m}(\mathcal{D}^{\mathcal{M}})$ and for any polynomial ultradistributions $F = \sum_{n \in N_1} F_n$ and $H = \sum_{n \in N_1} H_n$ belonging to the space $\mathcal{P}(\mathcal{D}^{\mathcal{M}})$ we get that

$$F(\varphi) \cdot H(\varphi) = \sum_{n \in N_1} \sum_{m=1}^n F_m(\varphi) \cdot H_{n-m+1}(\varphi)$$
$$= \sum_{n \in N_1} \sum_{m=1}^n (f_m \odot h_{n-m+1}) \circ \chi_{n+1} \circ \Delta_{n+1}(\varphi)$$
$$= (f * h) \circ \chi_{n+1} \circ \Delta_{n+1}(\varphi).$$

Therefore the mapping

$$\sum_{n \in N_1} \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}} \ni f = \sum_{n \in N_1} f_n \stackrel{\vartheta}{\longmapsto} F = \sum_{n \in N_1} f_n \circ \chi_n \circ \Delta_n \in \mathcal{P}(\mathcal{D}^{\mathcal{M}})$$

transforms the convolution into the product of polynomial ultradistributions.

5. Entire functions of exponential type. Let now $\nu = (\nu_1, \ldots, \nu_n)$ be an arbitrarily chosen vector with positive coordinates and let $a = (a_1, \ldots, a_n)$, $b = (b_1, \ldots, b_n) \in \mathbb{R}^n$ be such that $b \succ a$. Let $\zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$ and $\zeta = \xi + i\tau$, where $\xi = (\xi_1, \ldots, \xi_n)$, $\tau = (\tau_1, \ldots, \tau_n) \in \mathbb{R}^n$. In the space of entire functions we introduce the subspace of functions of exponential type in the following way

$$E_{\nu}[a,b] = \left\{ \Phi : C^n \ni \zeta \mapsto \Phi(\zeta) \in C, \quad \|\Phi\|_{E_{\nu}[a,b]} < \infty \right\},\$$

with the norm given by the formula

$$\|\Phi\|_{E_{\nu}[a,b]} = \sup_{k \in N^n} \sup_{\zeta \in C^n} \frac{\left|\zeta^k \Phi(\zeta) \exp\left(-H_{[a,b]}(\tau)\right)\right|}{\nu^k \mu_k},$$

where for $t = (t_1, \ldots, t_n), \tau = (\tau_1, \ldots, \tau_n) \in \mathbb{R}^n$

$$H_{[a,b]}(\tau) = \sup_{t \in [a,b]} (t,\tau), \qquad (t,\tau) = \sum_{\iota=1}^{n} t_{\iota} \tau_{\iota}$$

is the supporting function of the *n*-dimensional cube $[a, b] \subset \mathbb{R}^n$. We call

$$E(C^n) := \bigcup \left\{ E_{\nu}[a,b] : \nu \in \text{int } R^n_+, \ [a,b] \subset R^n \right\}$$

the space of ultraincreasing functions of exponential type.

140

Let us notice that $E(C^n)$ is contained in the known locally convex space of entire functions of exponential type described for example in [6, 9.1] and [8].

The following theorem gives some connection between $D^{\mathcal{M}}(\mathbb{R}^n)$ and $E(\mathbb{C}^n)$.

THEOREM 5.1 ([4, Theorem 9.1]). The Fourier transform is a surjective topological isomorphism

 $\mathcal{F}: D^{\mathcal{M}}(\mathbb{R}^n) \to E(\mathbb{C}^n).$

The adjoint Fourier transform is a topological isomorphism of dual spaces, endowed with their strong topologies

$$\mathcal{F}': E'(C^n) \to D'_{\mathcal{M}}(R^n).$$

Theorems 3.1 and 5.1 imply in particular that the spaces $E(C^n)$ and $E'(C^n)$ are nontrivial, nuclear, reflexive, locally convex. Moreover $E(C^n)$ is a (LN^*) -space in the sense of Silva and (DF)-space and $E'(C^n)$ is a (M^*) -space in the sense of Silva.

Let E = E(C) denote the space of ultraincreasing entire functions of exponential type of one complex variable. We shall prove a Paley–Wiener type theorem for polynomial ultradistributions.

THEOREM 5.2. The Fourier transform

$$\mathcal{F}: \mathcal{D}^{\mathcal{M}} \to E$$

can be unambiguously extended to the topological isomorphism

$$\overline{\mathcal{F}}'_{\mathcal{P}}: \mathcal{P}(E) \to \mathcal{P}(\mathcal{D}^{\mathcal{M}}).$$

The proof of this theorem is postponed after Theorem 5.3.

The range of the projection

$$(\sigma_n \circ \Phi)(z) = \frac{1}{n!} \sum_{\varsigma \in G_n} \Phi(z_{\varsigma(1)}, \dots, z_{\varsigma(n)}), \qquad \Phi \in E(C^n)$$

is denoted by $\mathcal{E}(C^n) = \mathcal{R}(\sigma_n)$. Obviously $\sigma_1(E) = E$. Let $\mathcal{E}'(C^n)$ be the strong dual space to $\mathcal{E}(C^n)$.

From Theorems 4.1 and 5.1 the linear topological isomorphisms

$$\mathcal{E}'(C^n) \simeq \widehat{\odot}_p^n E' \simeq \mathcal{P}_n(E)$$
 (12)

follow. The symmetric projective tensor product $\odot_p^n E'$ and the space of polynomials $\mathcal{P}_n(E)$ are understood in the same way as $\odot_p^n \mathcal{D}'_{\mathcal{M}}$ and $\mathcal{P}_n(\mathcal{D}^{\mathcal{M}})$. The second of these isomorphisms is determined by the formula

$$\odot_p^n E' \ni \widetilde{P}_n \mapsto \langle \widetilde{P}_n \mid {}^n \Phi \rangle = P_n(\Phi) \in \mathcal{P}_n(E), \qquad \Phi \in E.$$

Let us denote

$$\mathcal{E}' = \sum_{n \in N_1} \mathcal{E}'(C^n), \quad \mathcal{E} = \prod_{n \in N_1} \mathcal{E}(C^n).$$

The following theorem is true:

THEOREM 5.3. The following mappings:

$$\begin{array}{cccc} \mathcal{E}' & \stackrel{\widetilde{\varrho}}{\longrightarrow} & \sum_{n \in N_1} \widehat{\odot}_p^n E' & \stackrel{\widetilde{\vartheta}}{\longrightarrow} & \mathcal{P}(E) \\ T = \sum_{n \in N_1} T_n & \stackrel{\widetilde{\varrho}}{\longmapsto} & f = \sum_{n \in N_1} f_n & \stackrel{\widetilde{\vartheta}}{\longmapsto} & F = \sum_{n \in N_1} F_n \end{array}$$

where $f_n = \tilde{\varrho}(T_n)$ and $F_n = f_n \circ \tilde{\chi}_n \circ \tilde{\Delta}_n = \tilde{\vartheta}(f_n)$, are topological isomorphisms. Proof. The isomorphisms $\tilde{\varrho}, \tilde{\vartheta}$ exist from (12) if we put

$$\widetilde{\vartheta}(f) = \sum_{n \in N_1} \widetilde{\vartheta}(f_n) = \sum_{n \in N_1} F_n = F$$

which completes the proof.

Proof of Theorem 5.2. Let $\mathcal{F}' : E' \longrightarrow \mathcal{D}'_{\mathcal{M}}$ denote the adjoint Fourier transform with respect to dual pairs $\langle E' | E \rangle$ and $\langle \mathcal{D}'_{\mathcal{M}} | \mathcal{D}^{\mathcal{M}} \rangle$ and let the operator $\overline{\mathcal{F}}'$ be defined in the following way

$$\overline{\mathcal{F}}'_{\Pi} := \prod_{n=1}^{\infty} {}^{n} \mathcal{F}' : \sum_{n \in N_{1}} \widehat{\otimes}_{p}^{n} E' \to \sum_{n \in N_{1}} \widehat{\otimes}_{p}^{n} \mathcal{D}'_{\mathcal{M}}$$
$$f = \sum_{n \in N_{1}} f_{n} \mapsto \overline{\mathcal{F}}' f = \sum_{n \in N_{1}} {}^{n} \mathcal{F}' f_{n},$$

where

$${}^{n}\mathcal{F}' := \underbrace{\mathcal{F}' \otimes \ldots \otimes \mathcal{F}'}_{n} : \qquad \widehat{\otimes}_{p}^{n} E' \quad \to \quad \widehat{\otimes}_{p}^{n} \mathcal{D}'_{\mathcal{M}},$$
$$v_{1} \otimes \ldots \otimes v_{n} \quad \mapsto \quad \mathcal{F}' v_{1} \otimes \ldots \otimes \mathcal{F}' v_{n}$$

Theorem 5.1 implies that

$$\mathcal{N}(\mathcal{F}') = \{0\}, \qquad \mathcal{R}(\mathcal{F}') = \mathcal{D}'_{\mathcal{M}}.$$
(13)

For nuclear spaces X and Y and for a linear, continuous operator $A : X \to X$ it is true that $\mathcal{N}(A \otimes I_Y) = \mathcal{N}(A)\widehat{\otimes}_p Y$ (comp. Lemma 9 of [7]). One can also prove that $\mathcal{N}(I_X \otimes B) = X\widehat{\otimes}_p \mathcal{N}(B)$, when B is a linear continuous operator in Y. Since the spaces considered are nuclear and (13) holds, then

$$\mathcal{N}(^{n}\mathcal{F}') = \{0\}, \qquad \overline{\mathcal{R}(^{n}\mathcal{F}')} \simeq \widehat{\otimes}_{p}^{n} \mathcal{D}'_{\mathcal{M}},$$

hence the mapping ${}^n\!\mathcal{F}'$ is a continuous isomorphism with dense image. The inverse mapping is of the form

$$({}^{n}\mathcal{F}')^{-1} := \underbrace{(\mathcal{F}')^{-1} \otimes \ldots \otimes (\mathcal{F}')^{-1}}_{n} : \widehat{\otimes}_{p}^{n} \mathcal{D}'_{\mathcal{M}} \longrightarrow \widehat{\otimes}_{p}^{n} E'$$

and it is continuous as a tensor product of continuous operators. Therefore its domain is equal to $\overline{\mathcal{R}(^{n}\mathcal{F}')} = \mathcal{R}(^{n}\mathcal{F}') = \widehat{\otimes}_{p}^{n}\mathcal{D}'_{\mathcal{M}}$. Hence we obtain that $\overline{\mathcal{F}}'$ is also a topological isomorphism.

From the definitions of the relevant mappings we have isomorphisms

$$\widehat{\odot}_p^n E' \stackrel{^{n_{\mathcal{F}'}}}{\simeq} \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}, \qquad \sum_{n \in N_1} \widehat{\odot}_p^n E' \stackrel{\mathcal{F}'}{\simeq} \sum_{n \in N_1} \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}.$$

Indeed, the composition $\varsigma'_n \circ {}^n \mathcal{F}'$ (where ς_n denotes the symmetrization operator) transforms $\widehat{\odot}_p^n E'$ into $\widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}$ and because $\odot^n \mathcal{D}'_{\mathcal{M}} \subset \mathcal{R}(\varsigma'_n \circ {}^n \mathcal{F}')$, the image of this composition is dense in $\widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}$. The inverse mapping has the form $({}^n \mathcal{F}')^{-1} \circ \varsigma'_n$ and it is defined on $\mathcal{R}(\varsigma'_n \circ {}^n \mathcal{F}')$. The continuity of this mapping implies that there exists an extension of it on $\widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}$, hence $\mathcal{R}(\varsigma'_n \circ {}^n \mathcal{F}') = \widehat{\odot}_p^n \mathcal{D}'_{\mathcal{M}}$.

Since the diagram

$$\begin{array}{ccc}
\mathcal{P}(\mathcal{D}^{\mathcal{M}}) \xrightarrow{\vartheta^{-1}} \sum \widehat{\odot}_{p}^{n} \mathcal{D}_{\mathcal{M}}' \\
\overline{\mathcal{F}}_{\mathcal{P}}' \downarrow & \downarrow \overline{\mathcal{F}}'^{-1} \\
\mathcal{P}(E) \xrightarrow{\widetilde{\vartheta}^{-1}} \sum \widehat{\odot}_{p}^{n} E'
\end{array}$$

should commute, the operator $\mathcal{F}'_{\mathcal{P}}$ is unambiguously defined and it is a topological isomorphism. \blacksquare

References

- H.-J. Borchers, Algebras of unbounded operators in quantum fields theory, Phys. A 124 (1984), 127–144.
- [2] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer, 1999.
- K. Grasela, Generalized derivations and Fourier transform of polynomial ulradistributions, Matematychni Studii 20 (2002), 167–178.
- [4] H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Tokyo, Sect. IA 20 (1973), 25–105.
- H. Komatsu, Ultradistributions II. The kernel theorem and ultradistributions with support in a submanifold, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 24 (1977), 607–628.
- [6] P. Lelong and L. Gruman, *Entire Functions of Several Complex Variables*, Springer, Berlin, 1986.
- B. S. Mityagin, Nucléarité et autres propriétés des espaces de type s, Trudy Mosk. Mat. Ob-va 9 (1960), 317–328.
- [8] V. V. Napalkov, Convolution Equations in Several Variables Spaces, Nauka, Moscow, 1982.
- C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. École Norm. Sup. 77 (1960), 41–121.
- [10] H. Schaefer, *Topological Vector Spaces*, Springer, 1971.