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Abstract. We consider the space DM of ultradifferentiable functions with compact supports

and the space of polynomials on DM. A description of the space P(DM) of polynomial ultra-

distributions as a locally convex direct sum is given.

1. Introduction. Roumieu and Beurling ultradistributions are meant as elements of the
dual space to a non-quasi analytic class of infinitely differentiable functions equipped with
a natural locally convex topology (see e.g. [9]). In this paper, we will consider the space
P(DM) of polynomial ultradistributions, where DM denotes the space of ultradifferen-
tiable functions (for the definition see Section 2). The space P(DM) contains the space of
ultradistributions as a proper subspace and it is the smallest space, which is stable under
tensor multiplication. We shall describe the space P(DM) in terms of the direct sums of
symmetric tensor powers of the space D′M, dual to DM; we prove that such a direct sum
is a convolution algebra. In physics such algebras are known as Borcher’s algebras (cp.
[1]). It is widely known that the space DM(Rn) of ultradifferentiable functions equipped
with a natural locally convex topology is topologically isomorphic to the space E(Cn) of
entire functions of exponential type [4], via the Fourier-Laplace transformation; we shall
prove, however, that this isomorphism can be extended to the corresponding spaces of
polynomials.

2. Polynomials on locally convex spaces. In this paper the symbol N1 denotes the
set N \ {0} of strictly positive integer numbers.

Let Ln(X,C) denote the space of n-linear, continuous forms defined on a locally
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convex space X

Fn :
n∏
ı=1

X := X × . . .×X︸ ︷︷ ︸
n

3 (x1, . . . , xn) 7→ Fn(x1, . . . , xn) ∈ C.

With any n-linear, continuous form Fn ∈ Ln(X,C) we can associate the composition

Pn = Fn ◦∆n, ∆n : X 3 x 7→ nx := (x, . . . , x) ∈
n∏
ı=1

X,

which, according to [2], we shall call a homogenous polynomial of degree n on the space
X. The linear space of all homogenous polynomials of degree n will be denoted by Pn(X).

When we have a polynomial Pn ∈ Pn(X) we can get back the linear symmetric form
Fn, associated to Pn, by the following polarization formula (comp. i.e [2])

Fn(x1, . . . , xn) =
1

2n n!

∑
eı=±1

e1 . . . en Pn

( n∑
ı=1

eıxı

)
. (1)

On the space Ln(X,C) we will consider the locally convex topology of uniform con-
vergence on bounded, absolutely convex subsets of

∏n
ı=1X, this topology will be denoted

by τβ . By τβ we will also denote the topology on the space Pn(X) of uniform convergence
on bounded, absolutely convex subsets of X.

By the algebra of polynomials on the space X, we mean the locally convex direct sum

P(X) :=
∑
n∈N1

Pn(X) =
{
P (x) =

m∑
n=1

Pn(x) : Pn ∈ Pn(X); m ∈ N1

}
.

It is obvious that P(X) is an algebra with respect to multiplication

P(X)× P(X) 3 (P,Q) 7→ PQ ∈ P(X),

P (x)Q(x) =
∑
n∈N1

n∑
m=1

Pm(x)Qn−m+1(x), x ∈ X.

Now, we would like to introduce some notations, connected with tensor products. Let
⊗nX := X ⊗ . . .⊗X denote the algebraic tensor product of n copies of the space X, and
let ⊗̂npX denote its completion in the projective topology. In the space ⊗nX we consider
the operation of symmetrization

ςn : ⊗nX 3 x1 ⊗ . . .⊗ xn 7→ x1 � . . .� xn :=
1
n!

∑
ς∈Gn

xς(1) ⊗ . . .⊗ xς(n),

where Gn is the group of permutations.
The operator ςn is a projection in the space ⊗nX, continuous with respect to the given

topology τ [2], hence it can be extended onto the completion of ⊗nX. This extension will
be also denoted by ςn. In our paper by

(x1 ⊗ . . . ⊗ xm) � (xm+1 ⊗ . . . ⊗ xn), 1 ≤ m ≤ n,

we shall understand x1 � x2 � . . .� xn and the operator � can be extended by linearity
and continuity to an operator (⊗̂mp X)× (⊗̂n−mp X)→ �̂npX.

We shall use the following notation: �nX := ςn(⊗nX), and �̂npX := ςn(⊗̂npX ).
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Let χn denote the canonical inclusion of the cartesian product into the tensor product

χn :
n∏
ı=1

X 3 (x1, . . . , xn) 7→ x1 ⊗ . . .⊗ xn ∈ ⊗nX.

3. The space DM and its properties. Let us consider Nn
1 with lexicographical order

and by k, k̂ we will denote the predecessor and the successor of k for k ∈ Nn
1 .

LetM≡ {µk}k∈Nn1 denote a sequence of positive numbers with the following proper-
ties:

(1M) µ2
k ≤ µk µbk, (logarithmic convexity);

(2M)
∑
k∈Nn1

µk
µbk <∞ (non-quasi analyticity);

(3M) there are c > 0 and dj > 0 (j = 1, . . . , n) such that µbk ≤ cdkµk, where d =
(d1, . . . , dn) (stability under differential operators)

If for a, b ∈ Rn such that aj < bj (j = 1, . . . , n), [a, b] denotes the n-dimensional
interval

∏n
j=1[aj , bj ] and ν ∈ intRn+ is any vector with positive coordinates, then we will

consider the following space

DM
[a,b],ν(Rn) :=

{
ϕ ∈ C∞(Rn) : suppϕ ⊂ [a, b], ‖ϕ‖[a,b],ν <∞

}
,

where

‖ϕ‖[a,b],ν := sup
t∈[a,b]

sup
k∈Nn1

∣∣∣Dkϕ(t)
νkµk

∣∣∣
with Dk = Dk1

1 . . . Dkn
n , D

kj
j =

(
− i ∂∂tj

)kj
and νk = ν1

k1 . . . νn
kn .

Let us define an order relation between vectors of Rn, namely a � b if and only if
aj < bj , j = 1, . . . , n.

By DM(Rn) we mean the inductive limit of the spaces DM
[a,b],ν(Rn), i.e.

DM(Rn) = lim ind
ν�0, a�b

DM
[a,b],ν(Rn),

with the inductive limit topology.
The Denjoy-Carleman Theorem implies that DM(Rn) is nontrivial. If by D′M(Rn)

we denote the dual space for DM(Rn) then the following properties of DM(Rn) and
D′M(Rn) hold (see [4, Theorem 2.6])

Theorem 3.1.

(i) Every DM[a,b],ν(Rn) is a Banach space.
(ii) The inclusions

DM
[a,b],ν(Rn) 7→ DM

[c,d],µ(Rn), [a, b] ⊂ [c, d], ν ≺ µ

are compact.
(iii) DM(Rn) is a nuclear, reflexive, (DF)-space.
(iv) D′M(Rn) is a nuclear, reflexive, (F)-space and an (M∗) space in the sense of Silva.
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4. The description of the space of polynomials on the space of ultradifferen-
tiable functions. In order to simplify the notation by DM we will denote the space
DM(R1) and by D′M the dual space for DM.

In DM(Rn) we consider the following operator

ς∗n : DM(Rn) 3 ϕ(t) 7→ (ς∗n ◦ ϕ)(t) :=
1
n!

∑
ς∈Gn

ϕ(tς(1), . . . , tς(n)),

where t = (t1, . . . , tn) ∈ Rn. The operator ς∗n is a projection on the closed subspace of
DM(Rn) of symmetric functions

DM(Rn) := R(ς∗n) ⊂ DM(Rn).

We would like to describe the dual space for
∏
n∈N DM(Rn). Let D′M(Rn) denote the

dual space for DM(Rn) with the strong topology β〈D′M(Rn) | DM(Rn)〉. We shall prove
the following theorem (comp. [3]):

Theorem 4.1. The following mappings:

D′M(Rn)
%−→ �̂npD′M

ϑ−→ Pn(DM)

Tn
%7−→ %(Tn) = fn

ϑ7−→ Fn

are topological isomorphisms. Moreover the second of them

ϑ : �̂npD′M 3 fn 7→ Fn := fn ◦ χn ◦∆n ∈ Pn(DM)

is given by the formula

Fn(ϕ) =
〈
fn | ⊗nϕ

〉
, ϕ ∈ DM

and is an extension χn ◦∆n of the superposition of canonical mappings

DM ∆n−→
n∏
ι=1
DM χn−→ ⊗nDM

ϕ
∆n7−→ nϕ

χn7−→ ⊗nϕ
where ⊗nϕ is the scalar function of n real variables,

⊗nϕ(t) := ϕ(t1) · . . . · ϕ(tn), t = (t1, . . . , tn) ∈ Rn.

Proof. Let operators ςn and ς ′n be mutually adjoint with respect to the dual pair
〈⊗nD′M | ⊗nDM〉 given by the bilinear form

〈u1 ⊗ . . .⊗ un|ϕ1 ⊗ . . .⊗ ϕn〉 = 〈u1|ϕ1〉 . . . 〈un|ϕn〉. (2)

Then for any u1, . . . , un ∈ D′M and ϕ1, . . . , ϕn ∈ DM the operator ςn satisfies:

〈u1 � . . .� un | ϕ1 ⊗ . . .⊗ ϕn〉 = 〈u1 ⊗ . . .⊗ un | ϕ1 � . . .� ϕn〉,

ςn : ϕ1 ⊗ . . .⊗ ϕn 7→ ϕ1 � . . .� ϕn :=
1
n!

∑
ς∈Gn

ϕς(1) ⊗ . . .⊗ ϕς(n) .

Let R(ςn) be denoted by �nDM.
If the set of seminorms {pi}i∈I defines the topology in DM, then the set of seminorms

(pi1 ⊗ . . .⊗ pin)(ψ) = inf
ψ=

P
m∈N1n

ϕm1⊗...⊗ϕmn∈⊗nDM

∑
m∈N1

n

pi1(ϕm1) . . . pin(ϕmn)
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defines the projective topology in ⊗nDM. We have the following

(pi1 ⊗ . . .⊗ pin)(ςn ◦ ψ) ≤ inf
∑

m∈N1
n

1
n!

∑
ς∈Gn

pi1(ϕmς(1)) . . . pin(ϕmς(n))

= inf
∑

m∈N1
n

1
n!

∑
ς∈Gn

piς(1)(ϕm1) . . . piς(n)(ϕmn)

= ςn ◦ (pi1 ⊗ . . .⊗ pin)(ψ),

where

ςn ◦ (pi1 ⊗ . . .⊗ pin) :=
1
n!

∑
σ∈Gn

piς(1) ⊗ . . .⊗ piς(n)

is a seminorm in ⊗nDM, continuous in the projective topology. Hence the projection ςn
is continuous. The continuity of ςn and the fact that the subspace ⊗nDM is dense in
⊗̂npDM imply that there exists a continuous extension of ςn on the completions of the
spaces ⊗nDM and �nDM respectively, namely ςn : ⊗̂npDM −→ �̂

n

pDM. Hence we can
represent the space ⊗̂npDM as locally convex direct sum

⊗̂npDM = �̂npDM +̇ N (ςn). (3)

Let us remark that (⊗̂npDM)′β denotes the dual of ⊗̂npDM, endowed with the topology
of uniform convergence on bounded, absolutely convex subsets, therefore one can replace
the notation (⊗̂npDM)′β with the notation ((⊗̂npDM)′, τβ).

Theorem 3.1 implies that DM is a nuclear (DF )-space and D′M is a (F )-space. For
such spaces the following isomorphism

(⊗̂npDM)′β ' ⊗̂
n

pD′M. (4)

holds. The isomorphism (4) implies that the bilinear form (2) defines the dual pair
〈⊗̂npD′M | ⊗̂npDM〉 and the operator ς ′n is adjoint to ςn with respect to this duality.
In particular ς ′n is continuous in the strong topology.

Hence, and also from the equality (3) we obtain that the space ⊗̂npD′M can be repre-
sented as the locally convex space

⊗̂npD′M = �̂npD′M +̇ N (ς ′n). (5)

When in the space Ln(DM, C) the topology τβ of uniform convergence on bounded
absolutely convex subsets is considered we have that(

Ln(DM, C), τβ
)
' (⊗̂npDM)′β . (6)

Then from (4), (5) and (6) we get that(
Ln(DM, C), τβ

)
' ⊗̂npD′M ' �̂

n

pD′M +̇ N (ς ′n). (7)

The first isomorphism in (7) implies, in particular, that any form f̄n ∈ Ln(DM, C) can
be represented as f̄n = F̄n ◦χn for some F̄n ∈ ⊗̂

n

pD′M, and there exists the representation
in the form of absolutely convergent series F̄n =

∑
l∈N1

n ul1 ⊗ . . .⊗ uln ∈ ⊗̂
n

pD′M, where
ulι ∈ D′M, ι = 1, . . . , n [10, Theorem 6.4]. Hence for any ϕ1, . . . , ϕn ∈ DM the operator
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ς ′n satisfies the following equalities

(ς ′n ◦ f̄n)(ϕ1, . . . , ϕn) =
1
n!

∑
ς∈Gn

∑
l∈N1

n

〈ulς(1) | ϕ1〉 . . . 〈ulς(n) | ϕn〉

=
1
n!

∑
ς∈Gn

∑
l∈N1

n

〈ul1 | ϕς(1)〉 . . . 〈uln | ϕς(n)〉,

which means that the composition f ςn := ς ′n ◦ f̄n belongs to the space Lnς (DM, C) of
symmetric continuous n-linear forms on DM. The second isomorphism in (7) implies

R(ς ′n) =
(
Lnς (DM, C), τβ

)
' �̂npD′M. (8)

Now we shall prove that the following topological isomorphism(
Lnς (DM, C), τβ

)
' Pn(DM) (9)

holds. For any symmetric form f ςn ∈ Lnς (DM, C) we have the polarization formula (1).
Hence its restriction to the diagonal of cartesian product

∆′n :
(
Lnς (DM, C), τβ

)
3 f ςn −→ f ςn ◦∆n ∈ Pn(DM)

should be the isomorphism (9) we are looking for. Since ∆′n is surjective, then it is enough
to prove its continuity. Any continuous seminorm on Pn(DM) has the form

pS(f ςn ◦∆n) = sup
ϕ∈S

∣∣(f ςn ◦∆n)(ϕ)
∣∣, f ςn ◦∆n ∈ Pn(DM),

where S is a bounded absolutely convex subset of DM. The polarization formula (1)
implies that

pS1...Sn(f ςn) ≤ 1
2n · n!

∑
eι=±1

sup
ι∈{1,...,n}

sup
ϕι∈Sι

∣∣∣(f ςn ◦∆n)
( n∑
ι=1

eιϕι

)∣∣∣
=

nn

2n · n!

∑
eι=±1

sup
ι∈{1,...,n}

sup
xι∈Sι

∣∣∣(f ςn ◦∆n)
( 1
n

n∑
ι=1

eιϕι

)∣∣∣
≤ nn

n!
pS(f ςn ◦∆n).

Hence ∆′n is the required isomorphism (9).
By combining the isomorphisms (8) and (9) we obtain that the mapping

�̂npD′M 3 fn 7→
〈
fn | ⊗nϕ

〉
= (fn ◦ χn ◦∆n)(ϕ) := Fn(ϕ), (10)

given for any ϕ ∈ DM, is the second isomorphism ϑ. It is known [5, Theorem 2.1] that

DM(Rn) ' ⊗̂npDM. (11)

Isomorphism (11) implies that the functions of the form ϕ(t) =
∑
l∈Nn1

ϕl1(t1) . . . ϕln(tn),
where ϕl1 , . . . , ϕln ∈ DM, form a dense subspace ⊗nDM of the space DM(Rn). Since

(ς∗n ◦ ϕ)(t) =
1
n!

∑
l∈N1

n

∑
ς∈Gn

ϕl1(tς(1)) . . . ϕln(tς(n))

=
1
n!

∑
l∈N1

n

∑
ς∈Gn

ϕlς(1)(t1) . . . ϕlς(n)(tn) = (ςn ◦ ϕ)(t),
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the continuity of projections implies that the algebraic equality

DM(Rn) = �̂npDM

holds. The topological isomorphism DM(Rn) ' �̂npDM is a corollary of (11) and the
adjoint topological isomorphism

% : D′M(Rn) −→ �̂npD′M
is obvious.

Let us denote

D′S :=
∑
n∈N1

D′M(Rn), DMS :=
∏
n∈N1

DM(Rn).

Notice that 〈D′S | DMS 〉 is a dual pair according to its canonical bilinear form

〈T | ϕ̄〉 =
∑
n∈N1

〈Tn | ϕn〉 for T =
∑
n∈N1

Tn ∈ D′S , ϕ̄ =
∏
n∈N1

ϕn ∈ DMS ,

where Tn ∈ D′M(Rn) and ϕn ∈ DM(Rn). Let us remark that if ϕ̄ ∈ DMS , then ϕ̄ = (ϕn)
and, for different k and n, ϕk is a function of (xk1, x

k
2, . . . , x

k
k) and ϕn is a function of

(xn1, x
n

2, . . . , x
n
n), where (xk1, x

k
2, . . . , x

k
min(k,n)) and (xn1, x

n
2, . . . , x

n
min(k,n)) can be

different.
We shall prove the following

Theorem 4.2.

(i) The locally convex space
∑
n∈N1

�̂npD′M is a topological algebra with respect to con-
volution, given by the formula

f * h :=
∑
n∈N1

( n∑
m=1

fm � hn−m+1

)
,

where f =
∑
n∈N1

fn, h =
∑
n∈N1

hn ∈
∑
n∈N1

�̂npD′M and fn, hn ∈ �̂
n

pD′M.
(ii) The following mappings:

D′S
%−→

∑
n∈N1

�̂npD′M
ϑ−→ P(DM)

T =
∑
n∈N1

Tn
%7−→ f =

∑
n∈N1

fn
ϑ7−→ F =

∑
n∈N1

Fn

where fn := %(Tn) and Fn := fn ◦ χn ◦ ∆n = ϑ(fn), are surjective topological
isomorphisms.

(iii) The convolution in the algebra
∑
n∈N1

�̂npD′M is transformed by the isomorphism
ϑ into the product of polynomials in the algebra P(DM), i.e.

ϑ(f * h) = F ·H, F = ϑ(f), H = ϑ(h) ∈ P(DM).

Proof. If we put

%(T ) =
∑
n∈N1

%(Tn) =
∑
n∈N1

fn = f, ϑ(f) =
∑
n∈N1

ϑ(fn) =
∑
n∈N1

Fn = F,

then Theorem 4.1 implies that there exist isomorphisms % and ϑ.
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Now we prove (i); for any fn ∈ �̂
n

pD′M and hm ∈ �̂
m
p D′M we have that

fn � hm ∈ (�̂npD′M) � (�̂mp D′M) ⊂ �̂n+m
p D′M

and the convolution ” * ” in the direct sum
∑
n∈N1

�̂npD′M is well defined. Its continuity
follows from the continuity of the canonical mapping in the symmetric tensor product

(�̂npD′M)× (�̂mp D′M) 3 (fn, hm)→ fn � hm ∈ �̂
n+m
p D′M.

From the formula (10) we obtain that

Fn(ϕ) ·Hm(ϕ) = 〈fn | ⊗nϕ〉 · 〈hm | ⊗mϕ〉 = 〈fn ⊗ hm | ⊗n+mϕ〉
= 〈fn � hm | ⊗n+mϕ〉 = (fn � hm) ◦ χn+m ◦∆n+m(ϕ).

Hence Fn ·Hm ∈ Pn+m(DM) and for any polynomial ultradistributions F =
∑
n∈N1

Fn
and H =

∑
n∈N1

Hn belonging to the space P(DM) we get that

F (ϕ) ·H(ϕ) =
∑
n∈N1

n∑
m=1

Fm(ϕ) ·Hn−m+1(ϕ)

=
∑
n∈N1

n∑
m=1

(fm � hn−m+1) ◦ χn+1 ◦∆n+1(ϕ)

= (f * h) ◦ χn+1 ◦∆n+1(ϕ).

Therefore the mapping∑
n∈N1

�̂npD′M 3 f =
∑
n∈N1

fn
ϑ7−→ F =

∑
n∈N1

fn ◦ χn ◦∆n ∈ P(DM)

transforms the convolution into the product of polynomial ultradistributions.

5. Entire functions of exponential type. Let now ν = (ν1, . . . , νn) be an arbitrarily
chosen vector with positive coordinates and let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn
be such that b � a. Let ζ = (ζ1, . . . , ζn) ∈ Cn and ζ = ξ + iτ , where ξ = (ξ1, . . . , ξn),
τ = (τ1, . . . , τn) ∈ Rn. In the space of entire functions we introduce the subspace of
functions of exponential type in the following way

Eν [a, b] =
{

Φ : Cn 3 ζ 7→ Φ(ζ) ∈ C, ‖Φ‖Eν [a,b] <∞
}
,

with the norm given by the formula

‖Φ‖Eν [a,b] = sup
k∈Nn

sup
ζ∈Cn

∣∣ζkΦ(ζ) exp
(
−H[a,b](τ)

)∣∣
νkµk

,

where for t = (t1, . . . , tn), τ = (τ1, . . . , τn) ∈ Rn

H[a,b](τ) = sup
t∈[a,b]

(t, τ), (t, τ) =
n∑
ι=1

tιτι

is the supporting function of the n-dimensional cube [a, b] ⊂ Rn. We call

E(Cn) :=
⋃{

Eν [a, b] : ν ∈ int Rn+, [a, b] ⊂ Rn
}

the space of ultraincreasing functions of exponential type.
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Let us notice that E(Cn) is contained in the known locally convex space of entire
functions of exponential type described for example in [6, 9.1] and [8].

The following theorem gives some connection between DM(Rn) and E(Cn).

Theorem 5.1 ([4, Theorem 9.1]). The Fourier transform is a surjective topological iso-
morphism

F : DM(Rn)→ E(Cn).

The adjoint Fourier transform is a topological isomorphism of dual spaces, endowed with
their strong topologies

F ′ : E′(Cn)→ D′M(Rn).

Theorems 3.1 and 5.1 imply in particular that the spaces E(Cn) and E′(Cn) are
nontrivial, nuclear, reflexive, locally convex. Moreover E(Cn) is a (LN∗)-space in the
sense of Silva and (DF)-space and E′(Cn) is a (M∗)-space in the sense of Silva.

Let E = E(C) denote the space of ultraincreasing entire functions of exponential type
of one complex variable. We shall prove a Paley–Wiener type theorem for polynomial
ultradistributions.

Theorem 5.2. The Fourier transform

F : DM → E

can be unambiguously extended to the topological isomorphism

F ′P : P(E)→ P(DM).

The proof of this theorem is postponed after Theorem 5.3.
The range of the projection

(σn ◦ Φ)(z) =
1
n!

∑
ς∈Gn

Φ(zς(1), . . . , zς(n)), Φ ∈ E(Cn)

is denoted by E(Cn) = R (σn). Obviously σ1(E) = E. Let E ′(Cn) be the strong dual
space to E(Cn).

From Theorems 4.1 and 5.1 the linear topological isomorphisms

E ′(Cn) ' �̂npE′ ' Pn(E) (12)

follow. The symmetric projective tensor product �npE′ and the space of polynomials
Pn(E) are understood in the same way as �npD′M and Pn(DM). The second of these
isomorphisms is determined by the formula

�npE′ 3 P̃n 7→ 〈P̃n | nΦ〉 = Pn(Φ) ∈ Pn(E), Φ ∈ E.

Let us denote
E ′ =

∑
n∈N1

E ′(Cn), E =
∏
n∈N1

E(Cn).

The following theorem is true:
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Theorem 5.3. The following mappings:

E ′ e%−→ ∑
n∈N1

�̂npE′
eϑ−→ P(E)

T =
∑
n∈N1

Tn
e%7−→ f =

∑
n∈N1

fn
eϑ7−→ F =

∑
n∈N1

Fn,

where fn = %̃(Tn) and Fn = fn ◦ χ̃n ◦ ∆̃n = ϑ̃(fn), are topological isomorphisms.

Proof. The isomorphisms %̃, ϑ̃ exist from (12) if we put

ϑ̃(f) =
∑
n∈N1

ϑ̃(fn) =
∑
n∈N1

Fn = F

which completes the proof.

Proof of Theorem 5.2. Let F ′ : E′ −→ D′M denote the adjoint Fourier transform with
respect to dual pairs 〈E′ | E〉 and 〈D′M | DM〉 and let the operator F ′ be defined in the
following way

F ′Π :=
∞∏
n=1

nF ′ :
∑
n∈N1

⊗̂npE′ →
∑
n∈N1

⊗̂npD′M

f =
∑
n∈N1

fn 7→ F ′f =
∑
n∈N1

nF ′fn,

where
nF ′ := F ′ ⊗ . . .⊗F ′︸ ︷︷ ︸

n

: ⊗̂npE′ → ⊗̂npD′M,

v1 ⊗ . . .⊗ vn 7→ F ′v1 ⊗ . . .⊗F ′vn.
Theorem 5.1 implies that

N (F ′) = {0}, R(F ′) = D′M. (13)

For nuclear spaces X and Y and for a linear, continuous operator A : X → X it is
true that N (A ⊗ IY ) = N (A)⊗̂pY (comp. Lemma 9 of [7]). One can also prove that
N (IX ⊗ B) = X⊗̂pN (B), when B is a linear continuous operator in Y. Since the
spaces considered are nuclear and (13) holds, then

N (nF ′) = {0}, R(nF ′) ' ⊗̂npD′M,

hence the mapping nF ′ is a continuous isomorphism with dense image. The inverse map-
ping is of the form

(nF ′)−1 := (F ′)−1 ⊗ . . .⊗ (F ′)−1︸ ︷︷ ︸
n

: ⊗̂npD′M −→ ⊗̂
n
pE
′

and it is continuous as a tensor product of continuous operators. Therefore its domain
is equal to R(nF ′) = R(nF ′) = ⊗̂npD′M. Hence we obtain that F ′ is also a topological
isomorphism.

From the definitions of the relevant mappings we have isomorphisms

�̂npE′
nF ′' �̂npD′M,

∑
n∈N1

�̂npE′
F ′'
∑
n∈N1

�̂npD′M.



ULTRADIFFERENTIABLE FUNCTIONS 143

Indeed, the composition ς ′n ◦ nF ′ (where ςn denotes the symmetrization operator) trans-
forms �̂npE′ into �̂npD′M and because �nD′M ⊂ R(ς ′n◦nF ′), the image of this composition
is dense in �̂npD′M. The inverse mapping has the form (nF ′)−1 ◦ ς ′n and it is defined on
R(ς ′n ◦ nF ′). The continuity of this mapping implies that there exists an extension of it
on �̂npD′M, hence R(ς ′n ◦ nF ′) = �̂npD′M.

Since the diagram

P(DM) ϑ−1

−→
∑
�̂npD′M

F ′P ↓ ↓ F ′
−1

P(E)
eϑ−1

−→
∑
�̂npE′

should commute, the operator F ′P is unambiguously defined and it is a topological iso-
morphism.
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