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Abstract. We present a geometric approach to diffeomorphism invariant full Colombeau alge-

bras which allows a particularly clear view of the construction of the intrinsically defined algebra

Ĝ(M) on the manifold M given in [9].

1. Introduction. In the early 1980-ies J. F. Colombeau [2], [3] constructed algebras of
generalised functions containing the vector space D′ of distributions as a subspace and
the space of C∞-functions as a subalgebra. As associative and commutative differential
algebras they combine a maximum of favourable differential algebraic properties with a
maximum of consistency properties with respect to classical analysis, according to the
Schwartz impossibility result ([14]). Colombeau algebras since then have proved to be a
useful tool in nonlinear analysis, in particular in nonlinear PDE with non-smooth data
(see [13] and references therein) and have increasingly been used in geometric applications
such as Lie group analysis of differential equations (see, e.g. [5]) and general relativity
(for a recent review see [15]).

In this work we shall be exclusively interested in so called full Colombeau algebras
which possess a canonical embedding of distributions. One drawback of the early construc-
tions (given e.g. in [2]) was their lack of diffeomorphism invariance. (Note that this is in
contrast to the situation for the so-called special algebras, which do not possess a canon-
ical embedding of D′: The definition of special algebras is automatically diffeomorphism
invariant, hence these algebras lend themselves naturally to geometric constructions, see
e.g. [8, Ch. 3.2]. For matters of embedding D′ into special algebras in the manifold con-
text see [8, Ch. 3.2.2].) It was only after a considerable effort that the full construction
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could be suitably modified to obtain diffeomorphism invariance ([4, 11, 6]). Moreover,
the construction of a (full) Colombeau algebra Ĝ(M) on a manifold M exclusively using
intrinsically defined building blocks was given in [9]. Note that such an intrinsic construc-
tion is vital for applications in a geometric context, e.g. in relativity. The natural next
step, i.e., the construction of generalised tensor fields on manifolds again proved to be
rather challenging. For details we refer to the forthcoming work [10]. Among other tasks
(that are in part discussed in [7]) it was necessary to develop a new point of view on the
construction given in [9], in particular, on the property that the Lie derivative commutes
with the embedding.

In this short note we elaborate on this new point of view by presenting a geomet-
ric approach to the construction of the algebra Ĝ(M) of [9]. We believe that this novel
approach serves two purposes: It provides a short introduction into diffeomorphism in-
variant full Colombeau algebras for readers not familiar with this topic and it suggests
to the experts a very useful shift of focus.

To set the stage for our main topic to be presented in section 2 we begin by recalling
the general characteristics of Colombeau’s construction on open subsets of Rn. It provides
associative and commutative differential algebras—from now on denoted by G—satisfying
the following distinguishing properties:

(i) There exists a linear embedding ι : D′ ↪→ G and the function f(x) = 1 is the unit
in G.

(ii) There exist derivative operators ∂ : G → G that are linear and satisfy the Leibniz
rule.

(iii) The operators ∂, when restricted to D′, coincide with the usual partial derivatives,
i.e., ∂ ◦ ι = ι ◦ ∂.

(iv) Multiplication in G, when restricted to C∞ × C∞, coincides with the usual product
of functions.

Recall that these properties are optimal in the light of the impossibility result of L.
Schwartz ([14]). Roughly the construction consists of the following steps (for a more
elaborate scheme of construction see [6, Ch. 3]):

(A) Definition of a basic space E that is an algebra, together with linear embeddings
ι : D′ ↪→ E and σ : C∞ ↪→ E where σ is an algebra homomorphism. Definition of
derivative operators on E that coincide with the usual derivatives on D′.

(B) Definition of the spaces EM of moderate and N of negligible elements of the basic
space E such that EM is a subalgebra of E and N is an ideal in EM that contains
(ι− σ)(C∞). Definition of the algebra as the quotient G := EM/N .

Many different versions of this construction have appeared over the years, adapted to
special situations or specific applications. In the next section we shall focus on step (A)
above in a geometrical context.

2. A geometric approach to Colombeau algebras. In this main part of our work we
present a geometric approach to diffeomorphism invariant full Colombeau algebras. We
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will carry out our construction on an oriented paracompact smooth Hausdorff manifold
M of dimension n and proceed in three steps.

2.1. The basic space and the embeddings. We want to embed the space of distribu-
tions D′(M) := (Ωnc (M))′ (with Ωnc denoting the space of compactly supported n-forms)
as well as C∞(M) into our forthcoming basic space Ê(M): a natural choice therefore
would be C∞(Ωnc (M)×M). However, for technical reasons one actually restricts the first
slot to elements of Ωnc with unit integral. Denoting their space by Â0(M) we define the
basic space by

Ê(M) := C∞(Â0(M)×M).

Elements of the basic space will be denoted by R and its arguments by ω and p. Now it
is natural to define the embeddings σ and ι by

σ(f)(ω, p) := f(p) resp. ι(u)(ω, p) := 〈u, ω〉.

Note that we clearly have σ(fg) = σ(f)σ(g). On the other hand, the formula for ι might
seem a little unusual to those acquainted with the works of Colombeau [2, 3]. In the local
situation—that is, on an open subset Ω of Rn—it has been used by Jeĺınek in [11] while
the more familiar formula (found e.g. in [3], however, with an additional reflection) for
embedding a distribution u on Ω is (ϕ ∈ D(Ω), x ∈ Ω)

ι(u)(ϕ, x) := (u ∗ ϕ)(x) = 〈u, ϕ(.− x)〉. (1)

In the local situation these two formulae give rise to different formulations (“Jeĺınek
formalism” vs. “Colombeau formalism”) which in turn have been shown to give rise to
equivalent theories in [6, Ch. 5]. (As a historical remark we mention that, in fact, the
embedding of distributions in Colombeau’s first approach ([1]), if written out explicitly,
would take the form ι(T )(ω) = 〈T, ω〉, thus anticipating “half” of Jeĺınek’s formula. For
a detailed discussion of the algebra introduced in [1, Def. 3.4.6], see [8, Ch. 1.6].)

In the “Colombeau formalism” property (iii) is an easy consequence of the inter-
play between convolution and differentiation. Indeed, for any multi-index α we have
(ι∂αu)(ϕ, x) = (∂αu ∗ ϕ)(x) = ∂α(u ∗ ϕ)(x) = (∂αι(u))(ϕ, x).

However, on a manifold—in the absence of a concept of convolution—no analogue to
formula (1) exists and Jeĺınek’s embedding becomes the only one possible. Also on M

partial derivatives have to be replaced by Lie derivatives with respect to smooth vector
fields, which—to keep the presentation simple—we will generally assume to be complete.
Recall that the Lie derivative of a smooth function f on M w.r.t. the vector field X is
defined by LXf := d

dτ |τ=0

(
FlXτ

)∗
f, where (FlXτ )∗ denotes the pullback under the flow

of X. So, in order to define derivative operators on our basic space, we first have to
introduce the pullback action of diffeomorphisms induced on Ê(M), which we shall do
next.

2.2. Action of diffeomorphisms. Let µ : M → M denote a diffeomorphism of the
manifold M . Classically we have the following action of µ on smooth functions resp.
distributions

µ∗f(p) := f(µp) and 〈µ∗u, ω〉 := 〈u, µ∗ω〉,
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where we have used µp as shorthand notation for µ(p) and µ∗ω denotes the pushforward
of the n-form ω: when written in coordinates the second of the above formulae takes the
familiar form of the usual pullback of distributions. Therefore the natural definition of
the action of µ on Ê(M) which we denote by µ̂∗ is given by

µ̂∗R(ω, p) := R(µ∗ω, µp).

This definition guarantees that the embeddings are diffeomorphism invariant. Indeed we
have

µ̂∗ ◦ σ = σ ◦ µ∗ and µ̂∗ ◦ ι = ι ◦ µ∗,

by the following simple calculation

µ̂∗(ι(u))(ω, p) = ι(u)(µ∗ω, µp) = 〈u, µ∗ω〉 = 〈µ∗u, ω〉 = ι(µ∗(u))(ω, p),

and similarly for σ. We are now ready to define our derivative operators on Ê(M).

2.3. Lie derivatives. Let X be a smooth vector field on M and R ∈ Ê(M). We define
the Lie derivative of R w.r.t. X by

L̂XR :=
d

dτ

∣∣∣∣
τ=0

(F̂lXτ )∗R.

Note that property (iii) is now immediate. In fact, the Lie derivative automatically com-
mutes with the embeddings since the action of a diffeomorphism does, i.e., we have

L̂X ◦ σ = σ ◦ LX and L̂X ◦ ι = ι ◦ LX .

Rather than giving the one-line proof—which would actually be little more than a repli-
cation of the above calculation showing that ι commutes with µ∗—we derive an explicit
formula for L̂XR. We have

L̂XR(ω, p) =
d

dτ

∣∣∣∣
τ=0

(F̂lXτ )∗R(ω, p) =
d

dτ

∣∣∣∣
τ=0

R((FlXτ )∗ω,FlXτ p)

= d1R(ω, p)
d

dτ

∣∣∣∣
τ=0

(FlXτ )∗ω︸ ︷︷ ︸
(FlX−τ )

∗ω

+d2R(ω, p)
d

dτ

∣∣∣∣
τ=0

FlXτ p︸ ︷︷ ︸
X(p)

= −d1R(ω, p)LXω + LXR(ω, .) |p, (2)

where in the second line we have used the chain rule. Note that already in the definition
of Ê(M) we have used calculus in infinite dimensions, but it is at this point where we can
emphasise the inevitability of using it: In a manifold setting, there is only “Jeĺınek’s for-
malism” available. To have the embedding commute with the action of diffeomorphisms
respectively Lie derivatives, the structure of the very formula (2) clearly necessitates tak-
ing derivatives also w.r.t. the ω-slot. This is the ultimate reason for requiring smoothness
w.r.t. all variables in the definition of the basic space. For a detailed account on this
matters see [8, pp. 103–107]. However, in order to keep our presentation simple, we only
remark that Chapters 4, 6 and 14 of [6] provide all relevant details as to calculus in
convenient vector spaces (see [12]) for the setting at hand, and (cf. [4], p. 362) ‘we invite
the reader to admit the [respective] smoothness properties’.
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Rather we would like to draw the attention of our readers to the fact that formula (2)—
in the local context—already appeared in Remark 22 of [11]. However, in that reference
it is an operational consequence of Jeĺınek’s formalism, whereas here it arises as a simple
consequence of our natural choice of definitions.

To end this section, we digress to remark that the geometric approach to the definition
of the Lie derivative can also be employed to define the usual derivative for distributions,
say on the real line. Indeed, taking X = ∂x, the flow is given by a translation, i.e.,
FlXτ x = x+ τ and we have

〈u′, ϕ〉 = 〈LXu, ϕ〉 =
〈
d

dτ

∣∣∣∣
τ=0

(FlXτ )∗u, ϕ
〉

=
d

dτ

∣∣∣∣
τ=0

〈u, (FlX−τ )∗ϕ〉 = 〈u,−LXϕ〉 = −〈u, ϕ′〉.

Observe the somehow amusing fact that in this approach no explicit reference to integra-
tion by parts occurs. Indeed, in this way integration by parts follows from the translation
invariance of the integral.

3. Summary and conclusions. To sum up we have constructed the basic space for the
Colombeau algebra Ĝ(M) of [9] together with the embeddings of smooth functions resp.
distributions and the Lie derivative. Recall that our definitions were all geometrically
motivated and allowed us to obtain properties (i)–(iii) in a remarkably effortless way.

Finally we sketch how one establishes property (iv), i.e., the constructions outlined in
step (B) above. To this end we employ a quotient construction to identify the images of
C∞(M) under the two embeddings σ and ι. More precisely, we want to identify the two
middle terms of

σ(f)(ω, p) = f(p) ∼
∫
f(q)ω(q) = ι(f)(ω, p).

The obvious idea is to set ω(q) = δp(q) which clearly is only possible asymptotically. At
this point the usual asymptotic estimates (‘tests’ in the language of [6]) come into play
(for the present case see [9, Defs. 3.10, 3.11]) and are used to single out the moderate
resp. the negligible elements of Ê(M). Denoting the respective spaces by Êm(M) resp.
N̂ (M) we finally may define the Colombeau algebra on the manifold M by

Ĝ(M) := Êm(M)/N̂ (M).

It is a differential algebra with respect to the Lie derivative w.r.t. smooth vector fields and
the Lie derivative commutes with the embedding of distributions. Moreover it localises
appropriately to the diffeomorphism invariant local algebra Gd(Ω) of [6].

The new aspect we have demonstrated in this contribution is the following: The fact
that the Lie derivative commutes with both embeddings (on the level of the basic space,
hence with the embedding of distributions after taking the quotient) is a consequence of
diffeomorphism invariance of the embeddings which itself is due to a natural choice of the
definition of the action of diffeomorphisms on the basic space as well as of the natural
definition of the embeddings themselves. Hence in the global setting property (iii)—which
in the local context follows from the properties of the convolution—is a direct consequence
of the diffeomorphism invariance of the construction.
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