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Abstract. Given an equibounded (C0)-semigroup of linear operators with generator A on a

Banach space X, a functional calculus, due to L. Schwartz, is briefly sketched to explain frac-

tional powers of A. Then the (modified) K-functional with respect to (X,D((−A)α)), α > 0, is

characterized via the associated resolvent R(λ;A). Under the assumption that the resolvent sat-

isfies a Nikolskii type inequality, ‖λR(λ;A)f‖Y ≤ cϕ(1/λ)‖f‖X , for a suitable Banach space Y,

an Ulyanov inequality is derived. This will be of interest if one has good control on the resolvent

but not on the semigroup.

1. Introduction. Let (X, ‖ · ‖X) be a Banach space, {T (t) : t ≥ 0} be an equibounded
semigroup of class (C0) of linear operators from X into itself, that is,

T (t1)T (t2) = T (t1 + t2) for t1, t2 ≥ 0, T (0) = I,

lim
t→0+

‖T (t)f − f‖X = 0 for each f ∈ X ((C0)-property).

‖T (t)‖L(X) ≤M for all t ≥ 0, M being a constant.

The infinitesimal generator A of {T (t) : t ≥ 0} is a closed linear operator defined by

Af := lim
t→0+

t−1[T (t)f − f ]
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for all f ∈ X for which this limit exists in the norm topology of X. The set of all
these elements f ∈ X is the domain D(A) of A; it is dense in X. For positive real α
we introduce the fractional power operator (−A)α of A with domain D((−A)α) by a
functional calculus due to L. Schwartz [6] (see Section 2) and consider the (modified)
K-functional for the couple (X,D((−A)α))

K(tα, f ;X,D((−A)α)) := inf
g∈D((−A)α)

{‖f − g‖+ tα‖(−A)αg‖}.

As is well-known, K-functionals give rise to a real interpolation method, due to J. Peetre
[5]. In connection with embedding theorems it may be interesting to relate K-functionals
on X to corresponding ones on another Banach space Y.

The aim of this paper is to give some results in this direction which continue former
investigations in a recent paper [8]. To be more precise, let us denote for a moment the
initial semigroup on X by {TX(t) : t ≥ 0} and its infinitesimal generator by AX . Assume
that (Y, ‖ · ‖Y ) is a further Banach space which is compatible with X, i.e., X and Y are
continuously embedded in some Hausdorff topological vector space. Let AY denote the
infinitesimal generator of an equibounded (C0)-semigroup {TY (t) : t ≥ 0} on Y, which is
consistent with the given semigroup on (X, ‖ ·‖X), i.e., TX(t)f = TY (t)f if f ∈ X ∩Y. If
there is no confusion we drop the subscripts X and Y in the notation of the semigroups
and their infinitesimal generators, and under the assumptions just described we say that
{T (t) : t ≥ 0} is a consistent semigroup on the compatible pair (X,Y ) of Banach spaces.

If {T (t) : t ≥ 0} is such a semigroup let us assume, in addition, that for each
positive t the operator T (t) maps X continuously into Y and satisfies some Nikolskii
type condition

(Nϕ) ‖T (t)T (t)f‖Y ≤ c ϕ(t) ‖T (t)f‖X for all f ∈ X, t > 0,

where c > 0 is independent of f ∈ X and t > 0, and ϕ : (0,∞)→ (0,∞) is an essentially
decreasing function, i.e., ϕ(s) ≤ c ϕ(t) for all s > t > 0.

Under these assumptions the following theorem was proved in [8].

Theorem A. If for some f ∈ X and some α > 0∫ t

0

ϕ(u)K(uα, f ;X,DX((−A)α))
du

u
<∞, t > 0,

then f ∈ Y and the following Ulyanov type inequality holds

K(tα, f ;Y,DY ((−A)α)) ≤ c
∫ t

0

ϕ(u)K(uα, f ;X,DX((−A)α))
du

u
.

Concerning applications we often have the situation that an explicit representation
of the semigroup generated by some closed linear operator is not available. Having the
theorem of Hille-Yosida in mind, it might be convenient in these cases to replace the
Nikolskii type condition (Nϕ) by an estimate involving the resolvent of the infinitesimal
generator instead of the semigroup.

Condition (N∗ϕ,λ0
). Let {T (t) : t ≥ 0} be a consistent semigroup with generator A on

a compatible pair (X,Y ) of Banach spaces. Let ϕ : (0,∞) → (0,∞) be an essentially
decreasing function and λ0 ≥ 0. We say that {T (t)} satisfies a Nikolskii type condition
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(N∗ϕ,λ0
) with respect to (X,Y ), if for each λ > λ0 the resolvent operator R(λ;A) :=

(λI −A)−1 maps X continuously into Y such that

‖λR(λ;A)f‖Y ≤ c ϕ(λ−1) ‖f‖X , f ∈ X, λ > λ0.

If we consider Ulyanov type inequalities for integer α, the underlying semigroup need
not be equibounded.

Example 1.1. Let Ω ⊂ Rn be an open and bounded set with a uniformly C2-boundary
∂Ω – see [3, p. 2]. Consider a uniformly elliptic [3, p. 71] second order differential operator

A(x,D) =
n∑

i,j=1

aij(x)Dij +
n∑
i=1

bi(x)Di + c(x)I

with real, uniformly continuous and bounded coefficients aij , bi, c. Let X = Lp(Ω), 1 <
p <∞, and set

D(Ap) = W 2,p(Ω) ∩W 1,p
0 (Ω), Apu = A(·, D)u for u ∈ D(Ap);

here W 2,p(Ω) is the standard second order Sobolev space on Lp(Ω), W 1,p
0 (Ω) the com-

pletion (with respect to the first order Sobolev norm) of the C∞-functions with compact
support in Ω. Then Ap is a closed linear operator, densely defined in Lp(Ω). By [3, p. 73],
there exist ωp ∈ R and Mp > 0 such that {λ ∈ C : Reλ ≥ ωp} ⊂ ρ(Ap) and

|λ| ‖u‖p ≤Mp‖λu−Apu‖p Reλ ≥ ωp, u ∈ D(Ap).

Thus, Ap is a sectorial operator and generates a holomorphic semigroup of class (C0) on
Lp(Ω). From now on we assume that p > n. Then, by [1, p. 98, p. 108]

W 2,p(Ω) ↪→ C1(Ω), W 2,p(Ω) ↪→ Lq(Ω), p ≤ q ≤ ∞.

Here C1(Ω) is the subset of those elements of C1(Ω) which are bounded and uniformly
continuous on Ω together with their first partial derivatives. Now the following Nikolskii
inequality holds (replace u by R(λ;Ap)u):

If n < p < q ≤ ∞, then there exists a λp > 0 such that

‖λu‖q ≤ c λ
n
2 (1/p−1/q)‖λu−Apu‖p , λ ≥ λp.

For q =∞ this is just Theorem 3.1.19 in [3] (observe that we may choose there g0 = 0);
in the case q < ∞ note |u(x)|q = |u(x)|q−p|u(x)|p, apply upon the first factor the
(q =∞)-estimate, whereas for the second factor observe that ‖λu‖p ≤ c ‖λu−Apu‖p.

Theorem 1.2. Let {T (t) : t ≥ 0} be a consistent semigroup on a compatible pair (X,Y )
of Banach spaces satisfying a Nikolskii type condition (N∗ϕ,λ0

). If for some f ∈ X and
α > 0 ∫ t

0

ϕ(u)K(uα, f ;X,DX((−A)α))
du

u
<∞, 0 < t < λ−1

0 ,

then f ∈ Y and for all λ > λ0

K(λ−α, f ;Y,DY ((−A)α)) ≤ c
∫ 1/λ

0

ϕ(u)K(uα, f ;X,DX((−A)α))
du

u
.

For α ∈ N the assumption of the equiboundedness of the semigroup can be omitted.
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Let us rewrite Theorem 1.2 in terms of generalized moduli of continuity. To this end
consider the fractional difference operator [I − T (s)]α, α > 0,

[I − T (s)]α =
∞∑
j=0

(−1)j
(
α

j

)
T (js),

(
β

j

)
=

j∏
k=1

β − k + 1
k

, β ∈ R.

Now we observe that the associated modulus of continuity

ωα(t, f ; {T (·)})X := sup
0<s<t

‖ [I − T (s)]αf‖X

gives a characterization of the K-functional (see [7, Theorem 1.1]),

ωα(t, f ; {T (·)})X ≈ K(tα, f ;X,DX((−A)α)),

and thus we arrive at the following result.

Corollary 1.3. Under the hypotheses of Theorem 1.2,

ωα(t, f ; {T (·)})Y ≤ c
∫ t

0

ϕ(u)ωα(u, f ; {T (·)})X
du

u
.

Our proof of Theorem 1.2 depends on the following characterization of the K-functio-
nal via the resolvent of the generator A.

Theorem 1.4. Let {T (t) : t ≥ 0} be an equibounded (C0)-semigroup of operators on a
Banach space X with infinitesimal generator A. Then, for all f ∈ X, λ > 0, and α > 0,

K(λ−α, f ;X,D((−A)α)) ≈ ‖ [I − λR(λ;A)]αf ‖.

2. Functional calculus. To explain fractional powers of operators associated with the
infinitesimal generator of an equibounded (C0)-semigroup we use a functional calculus
due to Laurent Schwartz [6] (see also [9]) which is an elegant and powerful tool for our
purposes. Concerning an approach to fractional powers of operators in the framework of
the more general class of non-negative operators we refer, e.g., to the book of Martinez
and Sanz [4].

Let X be a Banach space and L(X) be the Banach algebra of endomorphisms of X.
Let {T (t) : t ≥ 0} be an equibounded (C0)-semigroup of operators in L(X) with in-
finitesimal generator A. Denote by M(R+) the space of finite Borel measures on the
interval [ 0,∞). For µ ∈M(R+) consider the Laplace transform of µ,

µ̂(z) :=
∫ ∞

0

e−ztdµ(t), Re z > 0.

Then the formal correspondence e−zt ∼ T (t) = etA gives rise to the definition of an
operator G(µ) ∈ L(X)

G(µ)f :=
∫ ∞

0

T (t)f dµ(t), f ∈ X.

If µ has a density with respect to the Lebesgue measure, say dµ(t) = h(t) dt with
h ∈ L1(0,∞), then we set

G(h)f := G(µ)f =
∫ ∞

0

h(t)T (t)f dt, f ∈ X.
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For instance, the Dirac measure δt at t ≥ 0 yields the semigroup operator G(δt) = T (t),
while the resolvent of A is given by

G(eλχ(0,∞))f =
∫ ∞

0

e−λtT (t)f dt = R(λ;A)f, f ∈ X,

where eλ denotes the exponential function eλ(t) := e−λt, λ > 0, t ∈ R, and χ(0,∞) is
the characteristic function of the interval (0,∞).

The mapping µ 7→ G(µ) is an algebra homomorphism of M(R+) into L(X). It can
be extended to a class of integrable distributions in the following way.

Let D′L1(R+) be the class of distributions on R which are finite sums of derivatives of
finite Borel measures and whose supports are contained in the interval [ 0,∞). Consider
the filter F on D(R) with base {Fε : ε > 0}, where

Fε :=
{
ϕ ∈ D(R) : ϕ ≥ 0, suppϕ ⊂ [ 0, ε),

∣∣∣∣ ∫ ∞
0

ϕ(t) dt− 1
∣∣∣∣ < ε

}
.

This filter converges to the Dirac measure δ with respect to the topology of D′(R). If
U ∈ D′L1(R+) and ϕ ∈ D(R) with suppϕ ⊂ [ 0,∞), then the convolution of U and
ϕ, U ∗ ϕ, belongs to L1(0,∞). Thus the operator G(U) is defined by the formula

G(U)f := lim
F
G(U ∗ ϕ)f = lim

F

∫ ∞
0

(U ∗ ϕ)(t)T (t)f dt,

where the limit is taken with respect to the norm topology of X, as ϕ approaches δ

following the filter F . The domain D(G(U)) is the set of all f ∈ X for which the limit
exists. G(U) is a closed linear operator and its domain is dense in X.

The most effective tool of the functional calculus G associated with the semigroup
{T (t) : t ≥ 0} is the Convolution Theorem.

Theorem 2.1 (Convolution). Let U, V ∈ D′L1(R+) and f ∈ D(G(V )). Then U ∗ V ∈
D′L1(R+), and f ∈ D(G(U ∗ V )) if and only if G(V )f ∈ D(G(U)). In this case

G(U ∗ V )f = G(U)G(V )f.

One easily verifies that

G(δn) = (−A)n, n ∈ N,

where δn denotes the n-th derivative of the Dirac measure δ. More generally, fractional
powers (−A)α for non-integer positive α may be defined with the aid of fractional deriva-
tives of δ. The family {δα : α ∈ C} is an analytic family of tempered distributions on
R whose supports are contained in [ 0,∞) and which have the Laplace transforms

δ̂α(z) = zα, Re z > 0.

We are interested only in the real α’s. Thus, δ0 := δ, and for α > 0 we have the
representations

〈ϕ, δ−α〉 =
1

Γ(α)

∫ ∞
0

uα−1ϕ(u) du, ϕ ∈ D(R),

〈ϕ, δα〉 =
(−1)m

Γ(m− α)

∫ ∞
0

um−α−1ϕ(m)(u) du, 0 < α < m, m ∈ N, ϕ ∈ D(R).
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As δα ∈ D′L1(R+) for α > 0, we define

(−A)α := G(δα), α > 0.

By the convolution theorem,

(−A)α(−A)γ = (−A)α+γ , α, γ > 0.

The operator A − λI, λ > 0 generates the equibounded (C0)-semigroup {eλ(t)T (t) :
t ≥ 0}, thus the fractional powers (λI − A)α, α > 0, are well-defined by the functional
calculus associated with this semigroup. One easily shows that

(λI −A)α = G(eλδα), α, λ > 0,

and D((λI −A)α) = D((−A)α) for all λ > 0. As eλδ−α, α > 0, is a regular distribution
generated by an L1(0,∞)-function and satisfying

eλδ
−α ∗ eλδα = δ,

the operator G(eλδ−α) is the bounded inverse of (λI −A)α. Note that G(eλδ−α) is just
the resolvent of A if α = 1. Thus we set

Rα(λ;A)f := G(eλδ−αf) =
1

Γ(α)

∫ ∞
0

tα−1e−λtT (t)f dt, α, λ > 0, f ∈ X.

We collect some properties of the operators Rα(λ;A) which are needed in the sequel.
Obviously,

‖λαRα(λ;A)‖ ≤M, α, λ > 0,

Rα(λ;A)Rγ(λ;A) = Rα+γ(λ;A), α, γ, λ > 0. (1)

Moreover, for 0 ≤ λ ≤ σ, σ > 0 fixed, we have

eλδ
α ∗ eσδ−α =

∞∑
j=0

(−1)j
(
α

j

)
(σ − λ)jeσδ−j =: ραλ,σ, (2)

where the right hand side defines a finite Borel measure ραλ,σ on [ 0,∞). Thus, G(ραλ,σ) ∈
L(X) and

G(ραλ,σ) =
∞∑
j=0

(−1)j
(
α

j

)
(σ − λ)jRj(σ;A).

Since (σ−λ)R(σ;A)−I generates an equibounded (even uniformly continuous) semigroup
{S(t) : t ≥ 0},

S(t) := e−t
∞∑
j=0

tj(σ − λ)j

j!
Rj(σ;A), t > 0,

the representation
G(ραλ,σ) = [I − (σ − λ)R(σ;A)]α

can be verified. Note that

‖[I − (σ − λ)R(σ;A)]α‖ ≤
∞∑
j=0

∣∣∣(α
j

)∣∣∣M =: Cα. (3)
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By the convolution theorem we obtain from (2) that for each f ∈ X, Rα(σ;A)f ∈
D((−A)α) and

(λI −A)αRα(σ;A)f = [I − (σ − λ)R(σ;A)]αf, σ > 0, 0 ≤ λ ≤ σ. (4)

In particular, if we replace f ∈ X by Rα(λ;A)f we have for each f ∈ X

Rα(σ;A)f = [I − (σ − λ)R(σ;A)]αRα(λ;A)f, 0 < λ ≤ σ. (5)

For later reference we note

[I − σR(σ;A)]αf = (−A)αRα(σ;A)f, f ∈ X, 0 < λ ≤ σ,
= [I − (σ − λ)R(σ;A)]α[I − λR(λ;A)]αf. (6)

3. Proofs

3.1. Proof of Theorem 1.4. For all g ∈ D((−A)α) we have

‖[I − λR(λ;A)]αf‖ ≤ ‖[I − λR(λ;A)]α(f − g)‖+ ‖[I − λR(λ;A)]αg‖
≤ Cα ‖f − g‖+ ‖Rα(λ;A)(−A)αg‖
≤ c {‖f − g‖+ λ−α‖(−A)αg‖}.

Taking the infimum with respect to g ∈ D((−A)α) yields

‖[I − λR(λ;A)]αf‖ ≤ cK(λ−α, f ;X,D((−A)α)).

For the converse we consider the following family of operators {Zλ : λ > 0}: Let r ∈ N
be such that r − 1 < α ≤ r and set

Zλ :=
∞∑
k=1

(−1)k
(
α

k

) r∑
j=1

(−1)j
(
r

j

)
jkλkRk(jλ;A).

Certainly, this family is uniformly bounded with respect to λ and

I − Zλ =
r∑
j=1

(−1)j−1

(
r

j

)
[I − jλR(jλ;A)]α.

Now observe, by (6) with σ = jλ, that

[I − jλR(jλ;A)]α = [I − (j − 1)λR(jλ;A)]α[I − λR(λ;A)]α.

Therefore,

I − Zλ =
r∑
j=1

(−1)j−1

(
r

j

)
[I − (j − 1)λR(jλ;A)]α[I − λR(λ;A)]α

and hence by (3), for all f ∈ X,

‖[I − Zλ]f‖ ≤ Cα
r∑
j=1

(
r

j

)
‖[I − λR(λ;A)]αf‖.

It remains to show that Zλf ∈ D((−A)α) for all f ∈ X and

λ−α‖(−A)αZλf‖ ≤ c ‖[I − λR(λ;A)]αf‖. (7)
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To this end we split the infinite sum in the definition of Zλ into two parts:

Zλ =
( r−1∑
k=1

+
∞∑
k=r

)
(−1)k

(
α

k

) r∑
j=1

(−1)j
(
r

j

)
jkλkRk(jλ;A) =: S1 + S2.

Let us first discuss S2: For all k ≥ r we have by (1) and (6)

(−A)αRk(jλ;A) = Rk−α(jλ;A)(−A)αRα(jλ;A)

= Rk−α(jλ;A) [I − (j − 1)λR(jλ;A)]α[I − λR(λ;A)]α.

Hence, S2f ∈ D((−A)α) for all f ∈ X and

(−A)αS2f = λα
∞∑
k=r

(−1)k
(
α

k

) r∑
j=1

(−1)j
(
r

j

)
jα(jλ)k−αRk−α(jλ;A)

× [I − (j − 1)λR(jλ;A)]α[I − λR(λ;A)]αf

and thus, for all f ∈ X,

λ−α‖(−A)αS2f‖ ≤ c ‖[I − λR(λ;A)]αf‖. (8)

Let us now discuss the contribution coming from S1: For all λ > 0 we have that S1 is a
linear combination of the linear operators Uλ,k, k = 1, . . . , r − 1,

Uλ,k :=
r∑
j=1

(−1)j
(
r

j

)
jkλkRk(jλ;A).

We claim that Uλ,k can be represented in the form

Uλ,k = Hλ,kλ
rRr(λ;A), (9)

where

Hλ,k = r!

(
r∑

m=k+1

(−1)m
(
r

m

))
I

+
k∑

m=0

(
r

m

) r∑
j=1

(−1)j
(
r

j

)
jk(1− j)r−mλk−mRk−m(jλ;A).

Clearly, for k = 1, . . . , r− 1, we have that {Hλ,k : λ > 0} is a uniformly bounded family
(with respect to λ > 0) of linear operators. Further, by (1) and (4),

(−A)αUλ,k = λαHλ,kλ
r−αRr−α(λ;A)(−A)αRα(λ;A)

= λαHλ,kλ
r−αRr−α(λ;A)[I − λR(λ;A)]α.

Hence, S1f ∈ D((−A)α) for all f ∈ X and

(−A)αS1f =
r−1∑
k=1

(−1)k
(
α

k

)
(−A)αUλ,kf

= λα
r−1∑
k=1

(−1)k
(
α

k

)
Hλ,kλ

r−αRr−α(λ;A)[I − λR(λ;A)]αf.



FRACTIONAL POWERS OF OPERATORS 281

Taking norms we obtain for all f ∈ X

1
λα
‖(−A)αS1f‖ ≤

r−1∑
k=1

∣∣∣(α
k

)∣∣∣ ‖Hλ,k‖M ‖[I − λR(λ;A)]αf‖.

This together with (8) proves (7), provided (9) is true, and the desired converse direction
will follow:

K

(
1
λα
, f ;X,D((−A)α)

)
≤ ‖f − Zλf‖+

1
λα
‖(−A)αZλf‖ ≤ c ‖[I − λR(λ;A)]αf‖.

It remains to show that (9) is true. First observe that it is enough to prove (9) for λ = 1.
By (1) and (5) we have for k = 1, . . . , r − 1

Rk(j;A) = (jI −A)r−kRr(j;A) = (jI −A)r−k[I − (j − 1)R(j;A)]rRr(1;A).

Thus,

U1,k =
( k∑
m=0

+
r∑

m=k+1

)( r
m

) r∑
j=1

(−1)j
(
r

j

)
jk(1− j)r−m(jI −A)r−kRr−m(j;A)Rr(1;A)

=: Q1 +Q2.

Clearly, Q1 coincides with the corresponding term in (9) for λ = 1. Concerning Q2 note
that

r∑
j=1

(−1)j
(
r

j

)
jk(1− j)r−m(jI −A)m−kRr(1;A)

=
m−k∑
ρ=0

(
m− k
ρ

) r∑
j=1

(−1)j
(
r

j

)
jk+ρ(1− j)r−m(−A)m−k−ρRr(1;A)

= (−1)mr!Rr(1;A),

since for k = 1, . . . , r − 1 and m = k + 1, . . . , r we have
r∑
j=1

(−1)j
(
r

j

)
jk+ρ(1− j)r−m =

{
0, ρ = 0, 1, . . . ,m− k − 1,
(−1)m r!, ρ = m− k,

cf., e.g. [2], p. 98. Therefore,

Q2 = r!
( r∑
m=k+1

(−1)m
(
r

m

))
Rr(1;A),

and the representation (9) is established; thus Theorem 1.4 is proved.

3.2. Proof of Theorem 1.2. Set Bλ := [I − λR(λ;AX)]α, λ > λ0, and use the abbre-
viation A := AX . For all h ∈ X we have limλ→∞ ‖Bλh‖X = 0. Since by (6)

B2λ = [I − 2λR(2λ;A)]α = [I − λR(2λ;A)]α[I − λR(λ;A)]α,

we have

B2λ −Bλ =
∞∑
k=1

(−1)k
(
α

k

)
λkRk(2λ;A)[I − λR(λ;A)]α.
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By the hypothesis (N∗ϕ,λ0
) we have B2λf −Bλf ∈ Y for each f ∈ X and

‖B2λf −Bλf‖Y ≤
∞∑
k=1

∣∣∣(α
k

)∣∣∣ 2−k‖(2λ)kRk(2λ;A)[I − λR(λ;A)]αf‖Y

≤ c ϕ
(

1
2λ

) ∞∑
k=1

2−k‖(2λ)k−1Rk−1(2λ;A)[I − λR(λ;A)]αf‖X

≤ c ϕ
(

1
2λ

)
K(λ−α, f ;X,D((−A)α))

since the norm terms in the last sum can be estimated by

≤M ‖[I − λR(λ;A)]αf‖X ≈ K(λ−α, f ;X,D((−A)α)).

If 1/(4λ) < u < 1/(2λ), then ϕ(1/(2λ)) ≤ c ϕ(u) and K(λ−α, f ;X,D((−A)α)) ≤
cK(uα, f ;X,D((−A)α)) and, therefore,

ϕ

(
1

2λ

)
K(λ−α, f ;X,D((−A)α)) ≤ c

∫ 1/(2λ)

1/(4λ)

ϕ(u)K(uα, f ;X,D((−A)α))
du

u

dominates ‖B2λf −Bλf‖Y . Now observe that for m > k

‖B2mλf −B2kλf‖Y ≤
m∑

`=k+1

‖[B2`λf −B2`−1λf ]‖Y

≤ c
m∑

`=k+1

∫ 1/(2`λ)

1/(2`+1λ)

ϕ(u)K(uα, f ;X,D((−A)α))
du

u

=
∫ 1/(2k+1λ)

1/(2m+1λ)

ϕ(u)K(uα, f ;X,D((−A)α))
du

u

which tends to 0 for m, k →∞. Since for k = 0 we have

‖B2mλf −Bλf‖Y ≤ c
∫ 1/(2λ)

1/(2m+1λ)

ϕ(u)K(uα, f ;X,D((−A)α))
du

u
,

we see by the previous estimate that (B2mλf −Bλf)m is a Cauchy sequence in Y. Since
X and Y are compatible, the limit has to be −Bλf. Thus Bλf ∈ Y and

‖Bλf‖Y ≤ c
∫ 1/λ

0

ϕ(u)K(uα, f ;X,D((−A)α))
du

u
.

Now f = Bλf −
∑∞
k=1(−1)k

(
α
k

)
λkRk(λ;A)f ∈ Y. Thus, by Theorem 1.4,

K(λ−α, f ;Y,DY ((−A)α)) ≈ ‖Bλf‖Y ≤ c
∫ 1/λ

0

ϕ(u)K(uα, f ;X,D((−A)α))
du

u
,

i.e., we have shown the assertion.
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referee’s suggestion for which the authors are grateful.
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