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Abstract. A new approach to the generalization of Schwartz’s kernel theorem to Colombeau

algebras of generalized functions is given. It is based on linear maps from algebras of classical

functions to algebras of generalized ones. In particular, this approach enables one to give a

meaning to certain hypotheses in preceding similar work on this theorem. Results based on the

properties of G∞-generalized functions class are given. A straightforward relationship between

the classical and the generalized versions of Schwartz’s kernel theorem is established.

1. Introduction. Let Y and X denote pure finite dimensional manifolds. With standard
notation, as given by [6], the Schwartz kernel theorem states that to every linear map
T from D(Y ) to D′(X) whose restriction to each DM (Y ) is continuous from DM (Y ) to
D′(X) where D′(X) is endowed with its weak topology, is associated a unique kernel
distribution K ∈ D′(Y ×X) such that for every u ∈ D(Y ) and every v ∈ D(X), one has
〈K,u⊗ v〉 = 〈T (u), v〉.

The purpose of this paper is to complement a recent work of [5] on Schwartz’s kernel
theorem in the framework of Colombeau algebras of generalized functions.

In [5] Schwartz kernel type theorems are considered through the notion of continuously
moderate net (Lε)ε of linear maps Lε : D(Rp) → E(Rm), 0 < ε ≤ 1, involving growth
properties of Lε(f) as ε→ 0 (a precise definition is given in section 4). It is shown that
a continuously moderate net has a linear extension L : Gc(Rp) → G(Rm) where Gc(Rp)
and G(Rm) are the respective Colombeau algebras. Moreover, under additional growth
properties with respect to the parameter ε, L can be represented by a kernel which is a
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generalized function HL on Rn ×Rm. A relationship with the classical Schwartz’s kernel
theorem is also established in a weak sense. Similar results, using the notion of Lb,c-
strongly continuously moderate net which is associated to certain subalgebras of Gc(Rp)
containing the subalgebra G∞c (Rp), are also given.

Our approach to Schwartz’s kernel theorem is the converse of that of [5]: we take a
linear map T from D(Y ) to G(X) where Y and X are open sets of Rp and Rm respectively
and seek conditions for a kernel representation of T . Here we use a sequential construction
of Colombeau algebras but this is not important in the comparison of our method with
that of [5]. Since T is necessarily defined by a (at most one) sequence (Tn) of linear
maps Tn : D(Y ) to E(X), this leads, due to the hypothesis of continuity in the classical
Schwartz’s kernel theorem, to the notion of r-continuity which means that there exists
such a sequence where each Tn is continuous. Moreover, for each given f ∈ D(Y ) the
sequence (Tn(f))n must be moderate, that is (Tn(f))n ∈ EM (X) (see section 2), this
fact introduces a quite natural notion of a moderateness. Now the question of a possible
relationship between r-continuous moderate sequences and continuously moderate ones
becomes evident. In fact we prove that these two notions are equivalent by using a
standard Baire space argument. In some sense, this justifies the notion of continuously
moderate nets.

In the sequel, we first provide background material on Colombeau algebras, then we
give results on extension of linear maps which are applicable in our setting. In particular
it is shown that every linear map from D(Y ) to G(X) can be extended to a linear map
from Gc(Y ) to G(X). Next we give details on continuity and moderateness as previously
mentioned. The last section is devoted to our version of the Schwartz kernel theorem in
the framework of Colombeau algebras and related results. We prove a strong relationship
of our Schwartz’s kernel theorem with its classical version, results involving properties of
G∞ type are also given.

2. Basic definitions and notation. Here we give background material on Colombeau’s
theory of generalized functions, more details can be found e.g. in [3, 4, 7, 10].

Let Ω be an open set in Rd and E(Ω) be the space of smooth functions on Ω with its
usual topology. The notation K b Ω means that K is a compact set in Ω. Then the set
EM (Ω) of moderate sequences consists of sequences (fn)n ∈ E(Ω)N such that

∀K b Ω, ∀α ∈ Nd, ∃r ∈ R, ∃C > 0, ‖∂αfn‖L∞(K) ≤ Cnr, n ≥ 1.

The set N (Ω) of negligible sequences consists of sequences (fn)n ∈ E(Ω)N satisfying

∀K b Ω, ∀α ∈ Nd, ∀q ∈ R, ∃C > 0, ‖∂αfn‖L∞(K) ≤ Cnq, n ≥ 1.

EM (Ω) is an algebra and moreover N (Ω) is an ideal of EM (Ω). The simplified Colom-
beau algebra G(Ω) is defined as the quotient G(Ω) = EM (Ω)/N (Ω). The class of an
element (fn)n ∈ EM (Ω) will be denoted by cl(fn). It is seen that EM (Ω) is a differential
algebra. If one considers sequences (fn)n consisting of constant functions on Ω, then one
obtains the corresponding spaces EM andN0. Then, the Colombeau algebra of generalized
complex numbers is C = EM/N0. We notice that C is a ring but not a field, see e.g. [1]
and [2].
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The subalgebra of generalized functions with compact support will be denoted by
Gc(Ω). In [2] it is proved that Gc(Ω) is a dense ideal. The subset of G(Ω) consisting of
elements having a representative (and then all) (fn)n such that:

∀K b Ω, ∃r ∈ R, ∀α ∈ Nd, ∃C > 0, ‖∂αfn‖L∞(K) ≤ Cnr, n ≥ 1,

is a subalgebra of G(Ω) denoted by G∞(Ω).
Let (rn)n denote a sequence of positive numbers such that

lim rn =∞ and lim rqnn
−1 = 0

for every q ∈ N. Similarly to [5] Lemma 9 or [9] section 1.2.2, we choose a sequence (θn)n
such that:

(A) (θn)n ∈ EM (Rd);
(B) supp θn ⊂ B(0, r−1

n ), n ≥ 1;
(C) ∀χ ∈ D(Ω), ((θn ∗ χ− χ)|Ω)n ∈ N (Ω).

This can be done as follows. Take ψ ∈ D(Rd) having the unit closed ball as support
such that ψ = 1 on a neighborhood of zero and choose ρ ∈ S(Rd) such that∫

Rd

ρ(t)dt = 1 and
∫

Rd

tαρ(t)dt = 0, α ∈ Nd \ {0}.

Then for t ∈ Rd we set
θn(t) = np+mρ(nt)ψ(rnt).

Moreover it is seen that (θn)n satisfies the following two properties:

(A1)
∫

Rd θn(t)dt = 1 + o(n−q) as n→∞, q ∈ N;
(B1)

∫
Rd t

αθn(t)dt = o(n−q) as n→∞, q ∈ N, α ∈ Nd \ {0}

where tα = tα1
1 ...tαd

d and |α| = α1 + ...+ αd.
The embedding of the Schwartz distribution space D′(Ω) is then realized by the linear

mapD′(Ω) 3 f 7→ cl(f∗θn|Ω) ∈ G(Ω). The image of a distribution through this embedding
is called a generalized distribution.

The integral of f ∈ G(Ω) over L b Ω is defined as the generalized complex number
cl(
∫
L
fn(x)dx) and does not depend on the chosen representative (fn)n. If f has compact

support, one defines
∫

Ω
f as

∫
L
f where L is an arbitrary compact set in Ω which contains

suppf in its interior.
If A and B are vector spaces, we denote by L(A,B) the vector space of linear maps

(without continuity) from A to B.

3. Factorization and extension of linear maps. The aim of this section is to estab-
lish some results on factorization and extension of linear maps with a view to application
to generalized algebras. It is easily seen from elementary algebra arguments that

Proposition 3.1. Let A,B,Xα and Xβ denote vector spaces or algebras over a field K.
Let Πα : Xα → A and Πβ : Xβ → B be two linear maps.
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(i) If T : A → B is a linear map and Πβ is surjective, then there exists a linear map
Φ : Xα → Xβ such that

(∗) T ◦Πα = Πβ ◦ Φ.

(ii) Conversely, let Φ : Xα → Xβ be a linear map and assume that Πα is surjective.
Then, there exists a linear map T : A → B such that (∗) is fulfilled if and only if
Φ(ker Πα) ⊂ ker Πβ. If this condition is fulfilled, then one has Π−1

α (kerT ) = ker Φ.
Moreover, there exists a linear map pα : A → Xβ such that

pα ◦Πα = Φ and Πβ ◦ pα = T.

In particular, with obvious notations, Φ1 and Φ2 being given, one has T1 = T2 for the
corresponding maps T1 and T2, if and only if Πβ ◦ Φ1 = Πβ ◦ Φ2.

With the notation of Proposition 3.1, we denote by L∗(Xα,Xβ) the subspace of
L(Xα,Xβ) whose elements Φ satisfy Φ(ker Πα) ⊂ ker Πβ . Then, we have

Corollary 3.2. Assume that Πα and Πβ are both surjective. The linear map Π̂β :
L∗(Xα,Xβ) → L(Xα,B) defined by Π̂β(Φ) = Πβ ◦ Φ is surjective. Moreover we have the
following vector space isomorphisms:

L(A,B) ' L
∗(Xα,Xβ)

ker Π̂β

' L(Xα,B).

Proof. We show that Π̂β is surjective. Let q ∈ L(Xα,B). Since Πα is surjective, it fol-
lows that there exists T ∈ L(A,B) such that T ◦ Πα = q. Since Πβ is surjective, from
Proposition 3.1(i), there exists Φ ∈ L(Xα,Xβ) such that T ◦ Πα = Πβ ◦ Φ. This equality
implies that Φ(ker Πα) ⊂ ker Πβ , that is Φ ∈ L∗(Xα,Xβ). Hence, q = Π̂β(Φ) proving
the surjectivity of Π̂β . From a classical elementary theorem of algebra this implies the
isomorphism L∗(Xα,Xβ)/ ker Π̂β ' L(Xα,B).

We define a linear map Γ : L(A,B)→ L∗(Xα,Xβ)/ ker Π̂β as follows. Let T ∈ L(A,B).
As already seen, there exists Φ ∈ L∗(Xα,Xβ) such that T ◦Πα = Π̂β(Φ). We set Γ(T ) =
cl(Φ) (the class of Φ). This definition makes sense because if Φ′ ∈ L∗(Xα,Xβ) satisfies
T ◦Πα = Π̂β(Φ′), it follows that Φ−Φ′ ∈ ker Π̂β and then cl(Φ) = cl(Φ′). Obviously, Γ is
a linear map; we show that it is injective. For, let T, T ′ ∈ L(A,B) satisfy Γ(T ) = Γ(T ′).
Set Γ(T ) = Φ and Γ(T ′) = Φ′. Hence, we have Φ − Φ′ ∈ ker Π̂β , which means that
T ◦ Πα = T ′ ◦ Πα. Since Πα is surjective, it follows that T = T ′ proving the injectivity
of Γ. We now show the surjectivity of Γ. Let g ∈ L∗(Xα,Xβ)/ ker Π̂β and set g = cl(Φ).
Since Φ ∈ L∗(Xα,Xβ), we have Φ(ker Πα) ⊂ ker Πβ . It follows from Proposition 3.1(ii)
that there exists T ∈ L(A,B) such that T ◦ Πα = Π̂β(Φ). Hence Γ(T ) = cl(Φ), that is,
g = Γ(T ). The corollary is then proved

With the previous notation, assume that A and B are factor spaces of Xα and Xβ
respectively, Πα and Πβ being the canonical maps. Then, the associated map Φ given by
Proposition 3.1 is called a representative of T .

Corollary 3.3. Assume that Πα is surjective and let σ : X → Xα be an injective linear
map such that σ(X ) ∩ ker Πα = {0} (neutrix condition). Then, for every linear map
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Ψ : X → B there exist linear maps Φ : Xα → B and T : A → B such that Φ ◦ σ = Ψ and
T ◦Πα = Φ.

In particular, X can be identified to a subspace of A and then, every linear map
Ψ : X → B can be extended to a linear map T : A → B.

Proof. Let E be a subspace of Xα such that Xα = σ(X ) ⊕ ker Πα ⊕ E. Define Φ by
Φ(σ(x)) = Ψ(x), Φ| ker Πα⊕E = 0. It is easily seen that Φ is a well defined a linear map
from Xα to B, and Φ ◦ σ = Ψ. Since ker Πα ⊂ ker Φ, it follows from Proposition 3.1(ii),
that there exists a linear map T : A → B such that T ◦ Πα = Φ. We show that Πα ◦ σ
is injective. For, let (x, y) ∈ X 2 be such that (Πα ◦ σ)(x) = (Πα ◦ σ)(y). Then we have
(Πα ◦σ)(x− y) = 0, that is σ(x− y) ∈ σ(X )∩ ker Πα. It follows from the hypothesis that
σ(x − y) = 0, and since σ is injective, then x = y. We have T ◦ (Πα ◦ σ) = Φ ◦ σ = Ψ.
Hence, through the mentioned identification T is an extension of Ψ

Notice that if moreover Πα and σ are both morphisms of algebras, this holds true for
Πα ◦ σ and then, X may be identified to a subalgebra of A.

Example 3.4. Let Y and X denote open sets in Rp and Rm respectively. Take X =
D(Y ), Xα = EM,c (subalgebra of EM whose elements have a compact support), A =
Gc(Y ) (subalgebra of G(Y ) whose element have a compact support). We may take for
example, B = G(X). We have an embedding of algebras σ : D(Y ) → EM,c(Y ) defined
by σ(ϕ) = (ϕ)n (constant sequence = ϕ). We take Πα as the canonical surjective map
ic : EM,c → Gc(Y ). It is easily seen that the neutrix condition σ(X ) ∩ ker ic = {0} is
satisfied. Hence, every linear map from D(Y ) to G(X) can be extended to a linear map
from Gc(Y ) to G(X).

4. Continuity and moderateness. With the previous notation, if Xα and Xβ are
topological spaces, T will be said to be r-continuous if T admits a representative Φ which
is continuous. In the sequel we shall be concerned with the case where A = Xα = X and
where σ = Πα = IdX (the identity map).

Let E denote a topological algebra or vector space over K and let Xβ be a subalgebra
or a subspace of EN. A representative Φ of T assumed to be valued in EN will be written
in the sequential form Φ = (Φn)n with Φn : Xα → E. Then the r-continuity of T means
that each Φn is continuous.

Now, let Y and X denote open sets in Rp and Rm respectively. If M denotes a compact
set in Y , as usual DM (Y ) denotes the subset of D(Y ) consisting of elements with support
in M . Let Φ = (Φn)n : D(Y )→ E(X)N be a linear map. The continuity of Φ means that
for each n and each compact set M ⊂ Y , Φn : DM (Y )→ E(X) is continuous. That is for
every compact set N ⊂ X and every β ∈ Nm there are j ∈ N and Cn > 0 such that

‖∂β(Φn(ϕ))‖L∞(N) ≤ Cn sup
|α|≤j

‖∂αϕ‖L∞(Y ), ϕ ∈ DM (Y ). (1)

If Φ is valued in EM (X), it will be called moderate which means that: ϕ being fixed
in DM (Y ), for every compact set N ⊂ X and every β ∈ Nm, there exist C > 0, r ∈ R
such that

‖∂β(Φn(ϕ))‖L∞(N) ≤ Cnr, n ∈ N∗.
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We have similar definitions for Φ = (Φn)n : D(Y )→ CN and T : D(Y )→ C.
In our sequential setting of Colombeau algebras, according to [5] Definition 20, a

sequence (Φn)n of C-linear maps, Φn : D(Y )→ E(X) is said to be continuously moderate
(resp. negligible) if it satisfies (1) with a moderate (resp. negligible) sequence (Cn)n . We
have the following theorem:

Theorem 4.1. A linear map Φ = (Φn)n : D(Y ) → E(X)N (or CN) is continuous and
moderate if and only if it is continuously moderate.

Proof. Obviously, if (1) is satisfied as mentioned, then Φ is continuous and moderate. We
now prove the converse. To do that it is enough to consider the case of E(X)N. With the
previous notation we set:

fn(ϕ) =
ln ‖∂β(Φn(ϕ))‖L∞(N)

lnn
, ϕ ∈ DM (Y ), n ≥ 2.

From the moderateness of Φ, for each ϕ ∈ DM (Y ) there exists r(ϕ) ∈ R such that

fn(ϕ) ≤ r(ϕ), n ≥ 2.

It is easily seen that the fn are lower semi-continuous maps from DM (Y ) to [−∞,+∞]. It
follows that f = supn fn is also lower semi-continuous and f(ϕ) ≤ r(ϕ) for each fixed ϕ.
Since DM (Y ) is a Baire space, it follows that there exists a non-void open set U ⊂ DM (Y )
on which f is uniformly bounded. Hence, there exists r ∈ R such that

fn(ϕ) ≤ r, ϕ ∈ U, n ≥ 2.

From the linearity of ∂β ◦Φn and the triangle inequality applied to ‖.‖L∞(N), there exist
a neighborhood V of zero in DM (Y ) and s ∈ R such that fn(ϕ) ≤ s, ϕ ∈ V, n ≥ 2.
Moreover V contains a neighborhood W of zero of the form

W = {ϕ ∈ DM (Y ) : sup
|ν|≤j

‖∂νϕ‖∞ ≤ C}.

Let ϕ ∈ DM (Y ), ϕ 6= 0. We have

µ(ϕ) =: sup
|ν|≤j

‖∂νϕ‖∞ 6= 0 and
Cϕ

µ(ϕ)
∈W.

It follows that fn( Cϕ
µ(ϕ) ) ≤ s, n ≥ 2; that is

‖∂β(Φn(ϕ))‖L∞(N) ≤ C−1ns sup
|ν|≤j

‖∂νϕ‖∞, n ≥ 2.

This inequality is also true for ϕ = 0. The theorem is thus proved.

5. The Schwartz kernel theorem. Let Y and X denote two open sets of Rp and Rm.
We use notation of section 2 with Ω = Y ×X. The embedding of D′(Y ) (resp. D′(X))
in G(Y ) (resp. G(X)) will be defined with the sequence (θpn)n (resp. (θmn )n) constructed
similarly to (θn)n. If K ∈ G(Y × X), then one may define a linear integral operator
K̃ : Gc(Y )→ G(X), u 7→ K̃(u) by

K̃(u) = cl
(∫

Y

Kn(y, .)un(y)dy
)
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where (Kn)n and (un)n are arbitrary representatives of K and u respectively (see e.g. [5]
and [12], section 4). It is easily seen that if K ∈ G∞(Y ×X), then K̃(Gc(Y )) ⊂ G∞(X).
The main results of [5] on Schwartz’s kernel theorem are given in Proposition 21(i), (ii);
Theorem 24 and Proposition 27. Translated in our sequential setting this gives:

(a) Any continuously moderate sequence (Ln)n ∈ (L(D(Rp), E(Rm))N can be extended to
a map L ∈ L(Gc(Rp),G(Rm)) defined by

L(f) = cl(Ln(fn)),

where (fn)n is any representative of f .
(b) The extension L depends on the sequence (Ln)n only in the following way: if (Rn)n
is a negligible sequence of maps, then the extensions of (Ln)n and (Ln +Rn)n are equal.
(c) If the constant Cn in (1) satisfies Cn = O(nr(|β|)) as n→∞ for some sequence r of
positive integers satisfying lim supl→∞(r(l)/l) < 1, then

∀f ∈ G∞c (Rp), L(f) = cl
(∫

Rp

HL,n(., y)fn(y)dy
)
,

where (HL,n)n (resp. (fn)n) is any representative of HL (resp. f).
(d) Let (φn)n ∈ D(Rp)N be a sequence of mollifiers such that for all k ∈ N and all
α ∈ Np \ {0},

∫
Rp φn(x)dx = 1 + O(n−k) and

∫
Rp x

αφn(x)dx = O(n−k) as n → ∞. Let
s ∈ (0, 1) and Λ ∈ L(D(Rp),D′(Rm)) be continuous in the strong topology and consider
the family (Ln)n of linear maps defined by

Ln : D(Rp)→ E(Rm), f 7→ Λ(f) ∗ φns .

Then (Ln)n is continuously moderate and Λ(f) is equal to H̃L(f) in the generalized
distribution sense for any f ∈ (D(Rp), that is

∀φ ∈ D(Rm), 〈Λ(f), φ〉 =
∫

Rm

H̃L(f)φ in C.

The proof of the above results follows closely from the classical Schwartz’s kernel
theorem as given by Hörmander ([8], chap. V) and uses Cartan’s approximation lemma
([8], Lemma 4.1.3). Our approach takes advantage of Theorem 4.1 by using the explicit
form of the kernel of a continuous linear map from D(Y ) to D(X) as given by the classical
Schwartz’s kernel theorem. Unlike [5] we do not need the strong topology of D′. We also
use recent results from the embedding of the algebra G∞(Ω) in the space L(D(Ω),C) of
C-linear maps from D(Ω) to C (see [11] and [12]). In particular our approach enables us
to get a strongest relationship with the classical Schwartz’s kernel theorem (see Theorem
(5.5)). We now state our Schwartz kernel theorem.

Theorem 5.1. Let Y and X denote open sets in Rp and Rm respectively and let T be
an r-continuous linear map from D(Y ) to G(X). Then, there exists a kernel generalized
function K ∈ G(Y ×X) such that for every u ∈ D(Y ) and every v ∈ D(X), one has:∫

Y×X
K(u⊗ v) =

∫
X

T (u)v. (2)
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Moreover there exists at most one generalized distribution K and at most one generalized
function K in G∞(Y ×X) satisfying (2).

Proof. Let Φ = (Φn)n denote a continuous representative of T . Since Φn is linear con-
tinuous from D(Y ) to E(X), it follows from the Schwartz kernel theorem that it admits
a unique distribution kernel Hn ∈ D′(Y ×X) defined by

Hn(χ) =
∫
X

Φn(χ(., x))(x)dx, χ ∈ D(Y ×X),

where Φn(χ(., x))(x) is the value at x of the image of y 7→ χ(y, x) under Φn.
We show that H = (Hn)n is moderate. To see this, let M b Y ×X and set

M1 = {y ∈ Y : ∃x ∈ X, (y, x) ∈M}; M2 = {x ∈ X : ∃y ∈ Y, (y, x) ∈M}.

Obviously, M1 and M2 are compact sets. Moreover for every x ∈ X and every χ ∈
DM (Y ×X), one has suppχ(., x) ⊂M1. Let ψ ∈ DM1(Y ). Since Φ is moderate:

∃C > 0, ∃r ∈ R, ‖Φn(ψ)‖L∞(M2) ≤ Cnr, n ≥ 1.

Hence, we have
‖Φn(χ(., x))‖L∞(M2) ≤ Cnr, n ≥ 1.

Denoting by λ the Lebesgue measure, it follows that

|Hn(χ)| ≤ λ(M2)Cnr, n ≥ 1.

Finally, H being continuous and moderate, for every compact set M in Y ×X, there are
j ∈ N and (Dn)n ∈ EM such that for every χ ∈ DM (Y ×X),

|Hn(χ)| ≤ Dn sup
|γ|≤j

‖∂γyχ‖L∞(M). (3)

First step. We assume that H = (Hn)n has compact support. We set

Gn = Hn ∗ θ̌n,

where θn is defined in section 2 and θ̌(t) = θ(−t). Let ζ ∈ Y ×X and let ν ∈ Np+m. We
have Gn(ζ) = Hn(θn(.−ζ)) and then ∂νGn(ζ) = (−1)|ν|Hn(∂νθn(.−ζ)). Let M b Y ×X.
There exists M ′ b Y × X such that: ∀ζ ∈ M, supp θn(. − ζ) ⊂ M ′. Hence, with the
notation of (3) we have an inequality of the form

‖∂νGn‖L∞(M) ≤ Dn sup
|γ|≤j

‖∂γy ∂νθn‖∞.

It follows that (Gn)n ∈ EM (Y × X). We denote by K the class of (Gn)n in G(Y × X).
Since the distribution Gn is a smooth function we then have

Gn(χ) =
∫
Y×X

Gnχ, χ ∈ D(Y ×X). (4)

Let χ ∈ D(Y ×X). From (B), there exists n(χ) ∈ N such that supp(θn ∗χ−χ) b Y ×X
for n ≥ n(χ). Then we have:

(Gn −Hn)(χ) = Hn(θn ∗ χ− χ), n ≥ n(χ).

It is easily seen that moderate (resp. negligible) sequences with compact support are sent
to moderate (resp. negligible) ones by continuous moderate maps. Hence, using property
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(C) above, we get
((Gn −Hn)(χ))n ∈ N0, χ ∈ D(Y ×X). (5)

From the definition of Hn, we have

Hn(u⊗ v) =
∫
X

Φn(u)v, (u, v) ∈ D(Y )×D(X).

It follows from (4) and (5) that(∫
Y×X

Gn(u⊗ v)−
∫
X

Φn(u)v
)
n

∈ N0, (u, v) ∈ D(Y )×D(X).

Since K = cl(Gn), it follows from the definition of the integral of a generalized function
that for every (u, v) ∈ D(Y )×D(X) we have∫

Y×X
K(u⊗ v) =

∫
X

T (u)v.

The existence part of the theorem is then proved when suppH is a compact set.

Second step. We assume that suppH is an arbitrary closed set of Y × X. Let (Ui)i
be an open covering of Y ×X where Ui is a relatively compact subset. Let (σi)i denote
a partition of unity subordinated to this covering. Set

Hi
n = σiHn, Gin = Hi

n ∗ θ̌n.

Since suppHi
n b Ui, it follows that for n large enough, suppGin b Ui. We set

Ki = cl(Gin|Y ×X) ∈ Gc(Y ×X).

We then have suppKi ⊂ Ui. It follows that the sum
∑
iK

i is locally finite and then we
may define K ∈ G(Y ×X) as

K =
∑
i

Ki.

Similarly to (5) we have ((Gin −Hi
n)(χ))n ∈ N0, χ ∈ D(Y ×X) and then(∫

Y×X
Gin(u⊗ v)−Hi

n(u⊗ v)
)
n

∈ N0.

It follows that∑
i

(∫
Y×X

Gin(u⊗ v)−Hi
n(u⊗ v)

)
n

=
(∫

Y×X
Gn(u⊗ v)−Hn(u⊗ v)

)
n

∈ N0,

which means that (
∫
Y×X Gn(u ⊗ v) −

∫
X

Φn(u)v)n ∈ N0. Expressed in term of classes
this is equivalent to ∫

Y×X
K(u⊗ v) =

∫
X

T (u)v,

proving the first part of the theorem.

Third step. We use the following

Theorem ([12], Theorem 4.2). Let K ∈ G∞(Y × X) and let TK be defined on
Gc(Y ×X) by TK(w) =

∫
Y×X Kw. Then, the following conditions are equivalent

i) K = 0;
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ii) TK |D(Y )⊗D(X) = 0;
iii) K̃|D(Y ) = 0;
iv) tK̃|D(X) = 0.

Now assume that L∈G(Y ×X) is a generalized distribution such that
∫
Y×X L.(u⊗v)

= 0 for all (u, v) ∈ D(Y )×D(X). Denote by J ∈ D′(Y ×X) the associated distribution.
If (Ln)n is a representative of L, then we have limn→∞ Ln = J in D′(Y ×X). It follows
that 0 = limn→∞

∫
Y×X Ln(u⊗ v) = J(u⊗ v), showing that J vanishes on D(Y )⊗D(X).

Hence J = 0 and thus L = 0. Also there exists at most one K ∈ G∞(Y × X) which
satisfies (2). To see this, suppose that

∫
Y×X L(u ⊗ v) = 0 for all (u, v) ∈ D(Y ) × D(X)

with L ∈ G∞(Y ×X). Then, it follows from [12], Theorem 4.2 that L = 0. This proves
the theorem

Remark 5.2. It is well-known ([4], section 2.6) that the map Λ defined by:

Λ : G(Ω)→ L(D(Ω),C), [Λ(f)](u) =
∫

Ω

fu,

is not injective. It follows generally that there is no uniqueness if we remove in Theorem 5.1
the assumption that K is a generalized distribution or a generalized function of class G∞.

We give two corollaries of Theorem 5.1 involving properties of G∞.

Corollary 5.3. If (K̃ − T )(D(Y )) ⊂ G∞(X), then K̃ is an r-continuous extension of
T to Gc(Y ).

Proof. From the injectivity of the restriction of Λ to G∞(X) and since (2) may be written
as
∫
X
K̃(u).v =

∫
X
T (u).v, it follows that T = K̃|D(Y ). Let (Kn)n denote a representative

of K and consider Ψ : D(Y )N → E(X)N defined by Ψ[(ϕn)n] = (K̃n.ϕn)n. It is easily
seen that Ψ is a continuous linear map such that Φ(EM,c(Y )) ⊂ EM (X) and then Φ :
EM,c(Y ) → EM (X) defined by Φ[(ϕn)n] = Ψ[(ϕn)n] is a continuous representative of K̃
proving the corollary.

We denote by suppY T the complement of the set of points y ∈ Y for which there
exists an open neighborhood Vy such that

T (u) = 0, u ∈ D(Y ), suppu ⊂ Vy.

In the following Proj1 denotes the first projection Y ×X → Y, (y, x) 7→ y.

Corollary 5.4. If K ∈ G∞(Y ×X) then Proj1(suppK) ⊂ suppY T .

Proof. Let y ∈ Y \ suppY T and let Vy denote an open neighborhood of y such that
T (u) = 0 for all u ∈ D(Y ) with suppu ⊂ Vy. It follows that∫

X

K̃(u).v =
∫
X

T (u).v = 0, v ∈ D(X).

Since K ∈ G∞(Y × X) we have K̃(u) ∈ G∞(X) and then K̃|D(Vy) = 0. From [12]
Theorem 4.2, it follows that K|Vy×X = 0. Hence suppK ⊂ (Y \ Vy) × X that is
Proj1(suppK) ⊂ Y \ Vy. It follows that Proj1(suppK) ⊂ suppY T .

We now examine the relationship with the classical Schwartz kernel theorem. Let
S : D(Y ) → D′(X) be a continuous linear map where D′(X) is equipped with its weak
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topology. This means that for each compact set M b Y , for all sequence (ϕk)k such
that limk ϕk = 0 in DM (Y ) and for every v ∈ D(X), we have limk[S(ϕk)](v) = 0. Let
L ∈ D′(Y × X) denote the Schwartz kernel of S. We denote by j the embedding of
D′(Y ×X) in G(Y ×X) and by i that of D′(X) in G(X). The associated linear map to
S is then T = i ◦ S : D(Y )→ G(X). With this notation we have the following:

Theorem 5.5. Let S : D(Y ) → D′(X) be a continuous linear map where D′(X) is
endowed with its weak topology. Let H denote its Schwartz kernel in D′(Y ×X) and let
T = i ◦S. Then, T is an r-continuous linear map from D(Y ) to G(X) which has j(H) as
(unique) kernel generalized distribution.

Proof. Let (Xi)i denote an open covering of X and let (τi)i be a partition of unity
subordinated to this covering. We define Si = τiS by

[Si(u)](V ) = [S(u)](τiv), (u, v) ∈ D(Y )×D(X).

It follows that S may be written as a locally finite sum S =
∑
i Si where the Si are valued

in E ′(X). Obviously the Si’s as defined are continuous. If Hi is the Schwartz kernel of Si,
we have Hi(u⊗ v) = [Si(u)](v) = [S(u)](τiv) for all (u, v) ∈ D(Y )×D(X). By summing
up we find

∑
iHi(u⊗ v) = [S(u)](v); showing that

∑
iHi(u⊗ v) = H(u⊗ v). This being

true for all (u, v) ∈ D(Y )×D(X), it follows that H =
∑
iHi (a locally finite sum). Hence,

applying j on both sides of the previous equality shows that we may assume that S is
valued in E ′(X).

Let (θmn )n be a sequence defining the embedding of D′(X) in G(X) and defined simi-
larly to (θn)n. We define ĩ : D′(X)→ EM (X) by ĩ(f) = (f ∗ θ̌mn )n. Hence a representative
of T is Φ = ĩ ◦ S : D(Y ) → EM (X). If we write Φ in the form Φ = (Φn)n, then we have
Φn(u) = S(u) ∗ θ̌mn . Since [S(u) ∗ θ̌mn ](v) = [S(u)](θmn ∗ v) and S is continuous, it follows
that Φn is also continuous. A kernel K of T is already given from the proof of Theorem
5.1 by K = cl(Kn) with Kn = H ∗ θ̌n, that is K = j(H).

Remark 5.6. Denote by (θpn)n the sequence defining the embedding of D′(Y ) in G(Y ).
If cl(θn) = cl(θpn ⊗ θmn ), then we can prove that j(H) is the kernel of T as follows:

Let (u, v) ∈ D(Y )×D(X). We have

[Φn(u)](v) = [S(u) ∗ θ̌mn ](v) = [S(u)](θmn ∗ v),
= H(u⊗ (θmn ∗ v)).

We notice that cl[H(u⊗ (θmn ∗ v))] = cl[H((θpn ∗ u)⊗ (θmn ∗ v))]. Since we have

H((θpn ∗ u)⊗ (θmn ∗ v)) = H(θpn ⊗ θmn ) ∗ (u⊗ v)),
H((θpn ∗ u)⊗ (θmn ∗ v)) = (H ∗ θ̌n)(u⊗ v) + ψn,

where (ψn)n ∈ N0, it follows that

(Φn(u).(v)− (H ∗ θ̌n).(u⊗ v))n ∈ N0.

The above relation means that∫
X

T (u)(v) =
∫
Y×X

j(H)(u⊗ v),

since T (u) = cl(Φn(u)).
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