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Abstract. In this expository paper we consider various approaches to multisummability. We

apply it to nonlinear ODE’s and give a somewhat modified proof of multisummability of formal

solutions of ODE’s with levels 1 and 2 via Écalle’s method involving convolution equations.

1. Introduction. Multisummability has been introduced by Écalle. His definition can
be found in [Eca92]. It is useful if one wants to give analytic meaning to divergent formal
series solutions of differential and difference equations and to formal diffeomorphisms.
Multisummability has been explained in several ways in [MR91, Bal92, MR92, Ram93,
Bal94, Mal95, Bal00]. Here we will give an overview of these definitions of multisumma-
bility following mainly the exposition given by Malgrange in [Mal95]. After that we show
how this notion can be applied to ODE’s with 2 levels. The general case with several levels
has been treated in [Bra92, Bal94, RS94]. Here we give a somewhat modified version of
the proof in [Bra92] using the original method of Écalle involving convolution equations.

The organization of the paper is as follows. First we give some properties of Laplace
and Borel transforms. After that we give several equivalent definitions of multisumma-
bility and finally show its applicability to ODE’s with two levels.

1.1. Laplace and Borel transforms. I will denote an open interval (α, β) of R and
|I| = β − α. We consider sectors S(I) := {x ∈ C∗ : arg x ∈ I}. If I ′ = (α1, β1) with
α < α1 < β1 < β we write I ′ b I. By ∆(0, r) we mean a disc in C of radius r > 0
centered at the origin. A neighborhood of 0 in S(I) is a set U ⊂ S(I) such that for all
I ′ b I there exists r > 0 such that S(I ′) ∩∆(0, r) ⊂ U . If f is a function defined on a
neighborhood of 0 in S(I), then f has asymptotic expansion f̂(x) =

∑∞
n=0 anx

n as x→ 0
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in U if for all I ′ b I there exists r > 0 such that for all N ∈ N∗ there exists CN > 0
such that |f(x) −

∑N−1
n=0 anx

n| ≤ CN |x|N for all x ∈ S(I ′) ∩ ∆(0, r). Then we write
f(x) ∼ f̂(x), x→ 0 in S(I). A(I) will denote the space of all such functions. If f ∈ A(I)
then also f ′ ∈ A(I) with as asymptotic expansion the formal series f̂ differentiated term
by term.

If k > 0, then A≤k(I) will denote the space of functions f ∈ A(I) such that f is
analytic in the complete sector S(I) and for all I ′ b I there exist A > 0, B > 0 such that
|f(x)| ≤ A exp(B|x|k) for all x ∈ S(I ′).

Laplace transform L. Suppose f ∈ tνA≤1(I), I = (α, β), ν > −1. If θ ∈ I we
define (Lf)(x) =

∫∞:θ

0
e−t/xf(t) dt, where the path of integration is the ray arg t = θ,

|arg x− θ| < π/2 and |x| sufficiently small positive. Varying θ ∈ I we obtain an analytic
function Lf ∈ xν+1A(I+), where I+ := (α− π

2 , β+ π
2 ). We have (Ltν)(x) = Γ(ν+ 1)xν+1

and if f(x) ∼ f̂(x), x → 0 in S(I) as above, then (Lf)(x) ∼ L̂f̂(x) as x → 0 in S(I+),
where L̂f̂(x) is the formal Laplace transform of f̂ obtained by applying L to each term
of the formal series f̂ .

Furthermore, L : tνA≤1(I) → xν+1A(I+) is an isomorphism, where I, I+, ν are as
above. The inverse of the Laplace transform L is the Borel transform B. So (Bxν+1)(t) =
tν/Γ(ν + 1). If a is a constant we define Ba = 0. Moreover, if f, g ∈ xν+1A(I+), then
B(fg) = Bf ∗ Bg, where (F ∗G)(t) :=

∫ t
0
F (t− s)G(s) ds.

An integral representation of Bf can be given as follows: Assume f ∈ xνA(I), I =
(α, β), |I| > π. Let I ′ = [α′, β′] b I, |I ′| > π. Then f is analytic in D := S(I ′) ∩ ∆(r)
for some r > 0. Let γ be the contour in C from 0 along the ray arg x = β′ to some point
x1 ∈ D, then along the circle |x| = |x1| in negative sense till its intersection x2 with the
ray arg x = α′ and finally from x2 along this ray to 0. Then

(Bf)(t) :=
1

2πi

∫
γ

et/xf(x) d(x−1) if arg t ∈ (α′ + π
2 , β

′ − π
2 ).

Varying α′, β′ we obtain Bf ∈ tνA≤1(I∗), where I∗ := (α + π
2 , β −

π
2 ). Moreover, if

f(t) ∼ f̂ as t → 0 in S(I), then (Bf)(x) ∼ (B̂f̂)(x) as x → 0 in S(I∗), where (B̂f̂) is
obtained by applying B to each term in the formal series f̂ .

The Laplace transform may be extended to the incomplete Laplace transform as fol-
lows: Let f ∈ tνA(I), ν > −1 and I ′ b I. Then f is analytic in D := S(I ′) ∩ ∆(0, r0)
for some r0 > 0. Let τ ∈ D and define (L(τ)f)(x) =

∫ τ
0
e−t/xf(t) dt. This is an ana-

lytic function in C∗ and L(τ)f ∈ xν+1A(Iτ ), where Iτ := (arg τ − π
2 , arg τ + π

2 ) and if
f ∼ f̂ = tν

∑∞
0 ant

n in S(I), then L(τ)f ∼ L̂f̂ as x→ 0 in S(Iτ ).
Consider τ1 and τ2 in D. Suppose 0 ≤ arg τ1−arg τ2 ≤ π−ε and let r = min(|τ1|, |τ2|).

Then ∣∣(L(τ1)f − L(τ2)f)(x)
∣∣ ≤ A exp

(
−r sin(ε/2)|x|−1

)
for x ∈ S(I ′′), where I ′′ := (arg τ1− π−ε

2 , arg τ2 + π−ε
2 ) and A is a positive constant. This

motivates the following definition: for k > 0 set

A≤−k(I) := {g : g analytic in a neighborhood of 0 in S(I) and if I ′ b I, then

there exist A,B, ρ > 0 such that |g(x)| ≤ A exp(−B|x|−k) for all x ∈ S(I ′)∩∆(0, ρ)}.
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So in the previous case we have L(τ1)f −L(τ2)f ∈ A≤−k(I ′′). This gives rise to the notion
of k-precise quasi-function of Ramis (cf. [Ram93]).

Let I be an open interval, k > 0, ν > −1 and J an index-set. Let {Ij}j∈J be an open
cover of I, fj ∈ xνA(Ij) such that fj−fh ∈ A≤−k(Ij∩Ih) if Ij∩Ih 6= ∅. Then {fj , Ij}j∈J
is a k-precise quasi-function on I and all fj have the same asymptotic expansion. If
{gj , I ′j}j∈H is also a k-precise quasi-function on I, then this one is equivalent to the
previous one if fj−gh ∈ A≤−k(Ij∩I ′h) if Ij∩I ′h 6= ∅. The corresponding set of equivalence
classes is denoted by A/A≤−k(I). In [Mal95] this is interpreted in terms of sheaves.

In particular, if f ∈ tνA(I), ν > −1, then the incomplete Laplace transforms L(τ)f

give rise to a 1-precise quasi-function L̃f : L̃f ∈ xν+1A/A≤−1(I+), where if I = (α, β),
then I+ = (α− π

2 , β + π
2 ).

Now we have: L̃ is an isomorphism from xνA(I) to xν+1A/A≤−1(I+) with I, I+ as
above. The inverse is a modified Borel transform B̃. Malgrange gave an integral repre-
sentation for B̃ in [Mal95].

If p ≥ 1 and 1
p + 1

q = 1, then L̃ : A≤p(I) → x(A/A≤−q)(I+) is an isomorphism if I
and I+ are as above (cf. [Mal95]).

Laplace and Borel transforms of arbitrary order. Let k > 0 and (ρkf)(x) := f(x1/k).
Define Lk = ρ−1

k ◦ L ◦ ρk and Bk = ρ−1
k ◦ B ◦ ρk and similarly with L,B replaced by L̃, B̃.

Then (Lktν)(x) = Γ(1 + ν/k)xν+k, (Bkxν+k)(t) = tν

Γ(1+ν/k) if ν > −k. If a is a constant
we define Bka = 0. From the results on L and B we have the following

Theorem 1.1. Let k > 0, ν > −k, I = (α, β) and I+ = (α− π
2k , β + π

2k ). Then

1. Lk is an isomorphism from tνA≤k(I) to xν+kA(I+) with inverse Bk.
2. L̃k is an isomorphism from tνA(I) to xν+kA/A≤−k(I+) with inverse B̃k.
3. If p, q, k > 0 with 1

p + 1
q = 1

k , then L̃k is an isomorphism from tνA≤p(I) to
xν+kA/A≤−q(I+) with inverse B̃k.

Remark 1.1. Écalle introduced the acceleration operator Al,k which may be defined as
Al,k = B̃l ◦L̃k, where l > k > 0. From the assertions 3 with q = l, p = κ := (k−1− l−1)−1,
ν > −k and 2 in Theorem 1.1 it follows that it is an isomorphism from tνA≤κ(I) to
tν+k−lA(I ′), where if I = (α, β), then I ′ = (α− π

2κ , β + π
2κ ).

1.2. Gevrey properties and k-summability. Let f̂ =
∑∞
n=0 anx

n be a formal series.
Suppose there exist s > 0, A > 0 and B > 0 such that |an| ≤ ABnΓ(1+ns) for all n ∈ N.
Then f̂ is called a Gevrey series of order s and the class of such series with s fixed is
denoted by C[[x]]s.

Suppose f̂ =
∑∞
n=0 anx

n and there exists f ∈ A(I) such that for all I ′ b I there exist
positive C and r with the property that for all N ∈ N∗ we have∣∣∣f(x)−

N−1∑
n=0

anx
n
∣∣∣ ≤ CNΓ(1 +Ns)|x|N for all x ∈ S(I ′) ∩∆(0, r).

Then f is said to be a Gevrey function of order s on S(I), denoted by f ∼s f̂ on S(I).
It follows that f̂ ∈ C[[x]]s. The set of Gevrey functions of order s on S(I) is denoted by
A(s)(I). Let A<0(I) denote the subset of functions f ∈ A(I) with asymptotic expansion 0.
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Then one may show
A(s)(I) ∩ A<0(I) = A≤−k(I), (1)

where here and in the following always k = 1/s. Furthermore A≤−k(I) = 0 if |I| > π/k

and therefore the map A(s)(I)→ C[[x]]s is injective if |I| > sπ.
If f̂ ∈ C[[x]]s and f̂ =

∑∞
n=0 anx

n, then tk−1B̂kf̂ =
∑∞
n=1 an

tn−1

Γ(n/k) ∈ C{t} with

sum φ̃. Let φ = t1−kφ̃. Then we will say that φ is the sum of B̂kf̂ ∈ t1−kC{t}. From
assertion 2 of Theorem 1.1 it follows that f := a0 + L̃k(φ) ∈ A/A≤−k(R). Also one may
show

C[[x]]s ' A/A≤−k(R) = A(s)/A≤−k(R). (2)

Let f̂ ∈ C[[x]]s, |I| > sπ, k = 1/s. Then f̂ is said to be k-summable on I if there
exists f ∈ A(s)(I) such that f ∼s f̂ on S(I). This k-sum is unique because of (1) and
A≤−k(I) = 0.

An equivalent definition is as follows: Let φ be the sum of B̂kf̂ ∈ t1−kC{t} as above.
Assume that φ has an analytic continuation such that φ ∈ t1−kA≤k(I ′), where I ′ =
(α′, β′). Then f := a0 + Lkφ exists in a neighborhood of 0 in S(I) where
I = (α′ − π

2k , β
′ + π

2k ) and is said to be the k-sum of f̂ on S(I). Here again f ∈ A(s)(I)
and f ∼s f̂ on S(I).

1.3. Definitions of multisummability. First we consider as example the notion of
(1, 2)-summability and give three equivalent definitions.

Suppose f̂ =
∑∞
n=0 anx

n ∈ C[[x]]1. Then the definition of (1, 2)-summability given by
Malgrange and Ramis (cf. [MR92]) reads: let f0 ∈ A/A≤−1(R) correspond to f̂ (cf.(2))
and assume that there exist f1 ∈ A/A≤−2(I1) and f2 ∈ A(I2) with I2 ⊂ I1, |Ij | > π/j

for j = 1, 2 such that fj |Ij+1 = fj+1 mod A≤−(j+1) for j = 0, 1. Then f̂ is said to be
(1, 2)-summable on (I1, I2) with sum (f1, f2). This sum is uniquely determined on (I1, I2)
and fj ∼ f̂ on S(Ij), j = 1, 2.

The original definition of Écalle (cf. [Eca85, Eca92, MR91]) is closely related to the
previous one. Let φ1 be the sum of B̂f̂ ∈ C{t}. Assume that φ1 can be analytically
continued to φ1 ∈ A≤2(I ′1), where I ′1 = (α′1, β

′
1). Then using Remark 1.1 we have φ2 :=

A2,1φ1 ∈ t−1A(I ′′1 ), where I ′′1 = (α′1 − π
4 , β

′
1 + π

4 ).
Assume that φ2 can be analytically extended to φ2 ∈ t−1A≤2(I ′2), where I ′2 =

(α′2, β
′
2) ⊂ I ′′1 . Then f2 := a0 +L2φ2 ∈ A(I2) with I2 = (α2, β2), α2 = α′2− π

4 , β2 = β′2 + π
4

and |I2| > π/2. Then f̂ is said to be (1, 2)-summable with sum f2 on a neighborhood
of 0 in S(I2). The sum defined in this way is uniquely associated with I ′1 and I2, and
f2 ∼ f̂ in this sector S(I2). The relation with the definition of Malgrange and Ramis is
given by f1 := a0 + L̃1φ1 ∈ A/A≤−2(I1), where I1 := (α1, β1), α1 = α′1− π

2 , β1 = β′1 + π
2

(cf. Theorem 1.1).
Another definition due to Balser (cf. [Bal92]) reads: f̂ is (1, 2)-summable on (I1, I2) iff

f̂ = ĥ1 +ĥ2, where ĥj is j-summable on Ij , j = 1, 2, and I2 ⊂ I1, |Ij | > π
j , j = 1, 2. Balser

also gave a definition through iterated Laplace transforms in [Bal94] which is useful in
numerical calculations. An inductive definition also has been given by Balser in [Bal94]
and by Tougeron (cf. [Mal95]).

Next we consider shortly the general case.
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Let 0 < m1 < . . . < mr and f̂ ∈ C[[x]]1/m1 . Then f̂ corresponds to a unique f0 in
A/A≤−m1(R) by (2). Let Ij , j = 1, . . . , r, be intervals with |Ij | > π/mj and Ij ⊂ Ij−1,
j = 2, . . . , r. Assume there exist fj ∈ A/A≤−mj+1(Ij), j = 1, . . . , r with mr+1 =∞, and
therefore fr ∈ A(Ir), such that fj |Ij+1 = fj+1 mod A≤−mj+1 , j = 0, . . . , r − 1. Then f̂ is
said to be (m1, . . . ,mr)-summable on (I1, . . . , Ir) with multisum (f1, . . . , fr). This sum is
unique.

Écalle’s definition runs as follows using the same notation as above. Let φ1 be the sum
of B̂m1 f̂ ∈ t1−m1C{t}. Let κ−1

j := m−1
j −m

−1
j+1, mr+1 = ∞, Ij = (αj , βj), |Ij | > π/mj

and I ′j := (αj + π
2mj

, βj − π
2mj

) =: (α′j , β
′
j).

f̂ is said to be (m1, . . . ,mr)-summable on the set of intervals (I1, . . . , Ir) if the
following holds: Suppose for j = 1, . . . , r consecutively: φj has an analytic extension
φj ∈ t1−mjA≤κj (I ′j) and if j < r define φj+1 = Amj+1,mjφj (cf. Remark 1.1) and so
φj+1 ∈ t1−mj+1A(I ′j+), where I ′j+ := (α′j− π

2κj
, β′j+

π
2κj

). Finally, fr = a0+Lmrφr ∈ A(Ir)

is the (m1, . . . ,mr)-sum of f̂ associated with (I1, . . . , Ir). Here the elements fj in the def-
inition of Malgrange and Ramis are given by L̃mjφj .

The definition of Balser reads: f̂ is said to be (m1, . . . ,mr)-summable on (I1, . . . , Ir)
if there exist ĝj , j = 1, . . . , r, such that f̂ =

∑r
j=1 ĝj and gj is kj-summable on Ij , where

the intervals Ij are as above.
The definitions of Balser and Tougeron mentioned before in the case of (1, 2)-summa-

bility also may be extended to the general case.
The definitions above have been formulated for scalar functions but they may be

extended in an obvious way to functions with values in Cn.

2. ODE’s with 2 levels. In this section we consider the system

diag{xI(1), x2I(2)}x dy
dx

= Λy + xg(x, y), (3)

where I(j) denotes the identity matrix of dimension nj ∈ N and n = n1 + n2, y ∈ Cn,
Λ = diag{λ1, . . . , λn}, and g is analytic at (0,0) in C × Cn. We also assume that Λ is
invertible. Because of the powers 1 and 2 of x in the left-hand side of (3) this equation
is said to have levels 1 and 2. The equation has a formal solution ŷ =

∑∞
j=1 cjx

j as may
be verified easily. Moreover, from the recurrence relations for the coefficients one may
deduce that this series is Gevrey of order 1. If y = (y1, . . . , yn), yj ∈ C, then we define
y(1) := (y1, . . . , yn1), y(2) := (yn1+1, . . . , yn) and similarly for Λ and g. Then

Theorem 2.1. The formal solution ŷ of (3) is (1, 2)-summable on (I1, I2), where I1 =
(α1 − π/2, β1 + π/2) with α1 < β1 and λj 6∈ S(α1, β1) for j = 1, . . . , n1, and I2 =
((α2−π/2)/2, (β2+π/2)/2) with α2 < β2, I2 ⊂ I1 and λj 6∈ S(α2, β2) for j = n1+1, . . . , n.

Remark 2.1. The conditions on I1 and I2 may be reformulated in terms of Stokes rays.
At these rays there is a change of growth order of solutions of (3). For example in case
g = 0 there are solutions exp(−λj/x)ej if j ≤ n1 and exp(−λj/(2x2))ej if j > n1. Here
there is a change of growth order at the rays arg x = τj± = arg(λj) ± π/2, j ≤ n1 and
arg x = τj± = (arg(λj) ± π/2)/2, j > n1, and these rays are the Stokes rays of level 1
and 2 respectively. Then the conditions on I1 and I2 may be reformulated as S(Ih) does
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not contain any pair of Stokes rays τj+ and τj− of level h and I2 ⊂ I1, |Ih| > π/h for
h = 1, 2.

We give a proof of the theorem via convolution equations as in [Bra92]. First we
apply the formal Borel transform to (3). Let B̂ŷ = φ, G = B̂

(
xg(x, ŷ(x))

)
. Then φ is a

convergent power series in a disc ∆(0, ρ0) with ρ0 > 0, its sum will also be denoted by φ.
Then f0 := L̃φ ∈ A(1)/A≤−1(R) (cf. (2)) and f0 is a solution of (3) modA<0, and in view
of (1) also modA≤−1. From the Taylor expansion g(x, y) =

∑
j�0 gj(x)yj we deduce that

G(t, φ) =
∑
Gj(t) ∗ φ∗j(t), where Gj = B(xgj(x)). Since B(x) = 1, B(x2 dy

dx ) = tφ(t), we
obtain from the formal Borel transform of (3),

(tI(1) − Λ(1))φ(1) = G(1)(t, φ),

1 ∗ (tφ(2)) = Λ(2)φ(2) +G(2)(t, φ)
(4)

which can be written as φ = Tφ, where

(Tφ)(1) := (tI(1) − Λ(1))−1G(1)(t, φ),

(Tφ)(2) := (Λ(2))−1
[(

1 ∗ (tφ(2))
)
−G(2)(t, φ)

]
.

(5)

We already have the analytic solution φ in ∆(0, ρ0). Next we solve (5) on the sector S(I),
where I := (α1, β1), α1 and β1 as in Theorem 2.1. We will show

Proposition 2.1. There exists a unique analytic solution φ of (4) on S(I) ∪ ∆(0, ρ0)
and φ ∈ A≤2(I).

We delay the proof to Subsection 2.1. From this proposition and Theorem 1.1 it follows
that

f1 := L̃1φ ∈ A/A≤−2(I1).

Moreover, f1 is solution of (3) modA≤−2. Here I1 is as in Theorem 2.1.
Next we consider an acceleration of φ. From f1 = L̃1φ and Remark 1.1 we deduce

that B̃2f1 = B̃2 ◦ L̃1φ = A2,1φ ∈ t−1A(I ′), where I ′ := (α1 − π/4, β1 + π/4). Let
ψ := ρ2 ◦ A2,1φ = ρ2 ◦ B̃2f1 = B̃u1 if u1 := ρ2(f1). From (3) it follows that u1 satisfies
modA≤−1

2x2 du

dx
= diag{

√
x I(1), I(2)}

(
Λu+

√
x g(
√
x, u)

)
. (6)

We apply the Borel transform to this equation. From ρ−1
2 ψ = A2,1φ ∈ t−1A(I ′) it

follows that there exists ρ > 0 such that ψ exists in U := ∆(0, ρ) ∩ S(I+), where
I+ := (2α1 − π/2, 2β1 + π/2) and ψ satisfies

2tψ(t) = diag
{ 1√

πt
∗ (Λψ)(1), (Λψ)(2)

}
+ F (t, ψ), where

F (1)(t, ψ) :=
(
B
(
xg(1)(

√
x, u(x))

))
(t), F (2)(t, ψ) :=

(
B
(√
x g(2)(

√
x, u(x))

))
(t),

(7)

where we used (B
√
x)(t) = 1√

πt
. Here g has a Taylor expansion

g(x, y) =
∑
j�0

gj(x)yj =
∑
j�0

∞∑
m=0

gj,mx
myj (8)

convergent for |x| ≤ r1, |y| ≤ r2 for some positive r1, r2 and

|gj(x)| ≤Mr
|j|
2 , |gj,m| ≤Mr

|j|
2 r−m1 , (9)
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for some M > 0. Hence
F (ψ) =

∑
j�0

Fj ∗ ψ∗j , where

F
(1)
j (t) =

∞∑
m=0

g
(1)
j,m

tm/2

Γ((m/2) + 1)
, F

(2)
j (t) =

∞∑
m=0

g
(2)
j,m

t(m−1)/2

Γ((m+ 1)/2)
,

(10)

the series being convergent because of (9). So t1/2Fj(t) is an entire function of t1/2 for
all j.

We rewrite (7) as

ψ = P (ψ) := D0{D1(ψ) + F (ψ)}, where

D0 : = diag
{

(2t)−1I(1), (2t− Λ(2))−1
}
, D1(ψ) = diag

{
[(πt)−1/2 ∗ (Λψ)](1), 0(2)

}
.

(11)

So ψ satisfies (11) and we extend ψ in the following two lemmas.

Lemma 2.1. The solution ψ can be analytically continued on S̃ := S(Ĩ), where Ĩ =
(α2, β2) ⊂ I+ and S̃ does not contain any eigenvalue λj/2, j = n1 + 1, . . . , n, of Λ(2)/2.

Lemma 2.2. ψ ∈ t−1/2A≤1(Ĩ).

We will delay the proofs to Subsections 2.2 and 2.3. The last lemma implies A2,1φ =
ρ−1

2 ψ ∈ t−1A≤2(I ′), I ′ := (α2/2, β2/2) and Theorem 2.1 follows.

2.1. Proof of Proposition 2.1. It is sufficient to prove this proposition in the case
that β1 − α1 ≤ π/2 − ε, ε > 0, since if I ′ b I, then I ′ is the union of a finite number
of these more special intervals and the solutions on the corresponding sectors glue to a
unique analytic function because they already coincide on ∆(0, ρ0). For the proof in the
case β1 − α1 ≤ π/2− ε we consider θ0 := (α1 + β1)/2, c 6= 0, c = |c|e−2iθ0 , and the space
C(I) of continuous functions f on S(I) which are analytic in the interior of S(I) and
such that ‖f‖ := supt∈S(I) |e−ct

2
f(t)| <∞. Now Proposition 2.1 is a consequence of

Lemma 2.3. The operator T introduced in (5) defines a contraction on the ball B2 :=
{f ∈ C(I) : ‖f‖ ≤ δ} for sufficiently large |c| if δ > 2M with M as in (9).

For the proof of this lemma we use some properties of the space C(I) with I = I ′ as
above.

Lemma 2.4. If f, g ∈ C(I), then

1. f ∗ g ∈ C(I) and ‖f ∗ g‖ ≤
(
π/(|c| sin ε)

)1/2‖f‖ · ‖g‖.
2. ‖ep|t|‖ = ep

2/(4|c| sin ε) if p ∈ R.
3. ‖1 ∗ (tf)‖ ≤ ‖f‖/(2|c| sin ε).

Proof. We have |(f ∗ g)(t)| ≤ ‖f‖ · ‖g‖R(t) with R(t) = |ect2 | ∗ |ect2 |. If t = reiθ ∈
S(I), r ≥ 0, θ ∈ R and c0 := |c| cos(2θ − 2θ0), then c0 ≥ c1 := |c| sin ε and R(t) ≤∫ r

0
ec0((r−σ)2+σ2) dσ = ec0r

2 ∫ r
0
e−c0σ(2r−σ) dσ ≤ ec0r

2 ∫∞
0
e−c0σ

2
dσ = 1

2e
c0r

2
( πc0 )1/2 ≤

|ect2 |( πc1 )1/2 and item 1. follows.
Item 2. follows from ‖ep|t|‖ ≤ supr≥0 exp(pr− c0r2) = exp(p2/(4c0)). Finally, item 3.

follows from |1 ∗ (tf)| =
∣∣∫ t

0
sf(s) ds

∣∣ ≤ ‖f‖ · ∫ t
0
|secs2 ds| ≤ ‖f‖

∫ r
0
σec0σ

2
dσ ≤

(ec0r
2
/(2c0))‖f‖.
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Now the proof of Proposition 2.1 may be given as follows: Using (8) and (9) we may
estimate Gj := B(xgj(x)) by |Gj(t)| ≤

∑
|gj,mtm/m!| ≤Mr

|j|
2 exp(|t|/r1). From this and

item 2. in Lemma 2.4 we deduce that ‖Gj‖ ≤Mr
|j|
2 exp{1/(4r2

1|c| sin ε)} ≤ (δ/2)r|j|2 if |c|
is sufficiently large. Then using items 1. and 2. of Lemma 2.4 we see that if φ ∈ B2, then
‖φ∗j‖ ≤ (π/(|c| sin ε))(|j|−1)/2δ|j| and ‖Gj ∗ φ∗j‖ ≤ (δ/2)(πr2

2δ
2/(|c| sin ε))|j|/2 for all j.

Hence G(t, φ) =
∑
j Gj ∗φ∗j exists and maps B2 into itself if |c| is sufficiently large. From

the boundedness of |(tI(1) − Λ(1))−1| on S(I) it follows also that T maps B2 into itself
if |c| is sufficiently large. Next we show that T is a contraction. For this we use that if
v, w ∈ C(I) and l � 0, then∥∥(v + w)∗l − v∗l

∥∥ ≤ |l|(‖v‖+ ‖w‖
)|l|−1‖w‖. (12)

This may be shown by induction (cf. [Cos09, p. 175]). From this and Lemma 2.4 it follows
that T defines a contraction on B2. Hence we have a unique solution of (4) in B2 which
evidently coincides with the convergent series for φ on ∆(0, ρ0) defined before.

2.2. Proof of Lemma 2.1. It is sufficient to give the proof for the case Ĩ b I+.
First we give an extension of the usual convolution product due to Écalle. Choose

t0 ∈ U , where U is defined after (6), with 0 < |t0| =: r0 < ρ. Choose 0 < r ≤ r0 with
r0 + r > ρ and consider U0 := ∆(0, r0) ∩ S̃ and V := {t ∈ C : t − t0 ∈ S̃, |t − t0| ≤ r}.
For t ∈ V we define γ(t) to be the path from 0 to t consisting of the rectilinear segments
[0, t− t0], [t− t0, t0], [t0, t]. Then [0, t− t0] ∪ [t− t0, t0] ⊂ U0.

If f and g are continuous scalar functions on U0 ∪ V then we define for t ∈ V :
(f ∗ g)(t) =

∫
γ(t)

f(t − s)g(s) ds. Then f ∗ g = g ∗ f and if f |U0 = g|U0 = 0, then
(f ∗ g)|V = 0. If f and g are analytic on the interior of U0 ∪ V , then f ∗ g is analytic
on the interior of V and if moreover they are analytic in a neighborhood of t0, then the
extended f ∗ g is the analytic continuation of the usual f ∗ g.

Let W be the space of continuous functions f : V → Cn which are analytic in the
interior of V and ‖f‖ := supt∈V |f(t)|. Let ψ be the solution of (11) on U , H(t) = ψ(t),
h(t) = 0 if t ∈ U0 and H(t) = ψ(t0) if t ∈ V , h|V ∈ W . We want to determine h such
that ψ = H + h satisfies (11) on V . Hence h has to satisfy

h = P (H + h)− P (H) +R(H) =:M(h), where R(H) := P (H)−H. (13)

From (10) and (11) it follows that

F (H + h) =
∑
l�0

Fl ∗ (H + h)∗l =
∑
j�0

qj ∗ h∗j ,

qj =
∑
m�0

(
j +m

j

)
Fj+m ∗H∗m, F (H) = q0,

P (H + h)− P (H) = D0

(
D1(h) +

∑
j�0

qj ∗ h∗j
)
.

(14)

Since |H(t)| ≤ K0 for some K0 > 0 we have |H∗m(t)| ≤ K
|m|
0 |t||m|−1/(|m| − 1)!.

Since
√
t Fj(t) is analytic in

√
t the same holds for

√
t qj(t). From h|U0 = 0 it follows

that hj ∗ hl = 0 and therefore h∗m = 0 if |m| > 0. Hence we may restrict the sum
over j in the first part of (14) to |j| ≤ 1 and in the last part to |j| = 1. Therefore
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√
tR(H)(t) and

√
t (P (H + h) − P (H)) are analytic in

√
t . So (13) implies M(h)(t) =

D0(t)
∫ t
t0
B(t − s)h(s) ds + R(H), where

√
tB(t) is analytic in

√
t . So h = M(h) is a

Volterra equation with a weak singularity and therefore Ml is a contraction on W for
some integer l (cf. [Mik64]) and there is a unique analytic solution on V . In this way also
the reasoning on p. 535 of [Bra92] may be corrected.

Hence we have the solution ψ = H + h of (11) on V . This solution coincides on
V ∩U with the solution ψ we started with on U and thus it is analytic on the interior of
U ∪ V . By varying t0 we obtain an analytic solution of (11) on ∆(0, r0 + r)∩ S̃. We may
repeat this procedure of analytic extension next with U replaced by ∆(0, r0 + lr)∩ S̃ for
l = 1, 2, . . . consecutively and thus we obtain an analytic solution ψ of (11) on S̃.

2.3. Proof of Lemma 2.2. It is sufficient to show that ψ ∈ t−1/2A≤1(I0) if I0 b Ĩ.
In the following we restrict s to S(I0) and let t = |s|. For t > 0 we define v(t) =
sups∈S(I0),|s|=t ‖ψ(s)‖, where ‖ · ‖ denotes the Euclidean norm. From (10), (9) and (11)
it follows that ‖D1(ψ)(s) + F (ψ)(s)‖ < KF+(v)(t) for some K > 2M , where

F+(v) =
∞∑
j=0

Fj+ ∗ v∗j , Fj+(t) = rj2

∞∑
m=0

r−m1

t(m−1)/2

Γ((m+ 1)/2)
.

Let R > 0 to be chosen later on. If t = |s| ≥ R then ‖D0(s)‖ ≤ K0 for some constant
K0 > 0. Hence v(t) < K(F+(v))(t) if t ≥ R by increasing K suitably. Since ψ = Bρ2(f1),
where f1 ∼ f̂ , so f1(x) ∼ c1x, it follows that ψ(s) ∼ c1/

√
πs , v(t) ∼ |c1|/

√
πt . Also

F+(t) ≥ 1/
√
πt . Hence we may choose R and K > |c1| such that v(t) < K(F+(v))(t)

also for all t < R and therefore for all t > 0.
We use the majorant method and first consider v0 = KF+(v0). If w = Lv0,

then w(x) = K(LF+(v0))(x) = K
∑∞
j=0(r2w(x))j

∑∞
m=0 r

−m
1 x(m+1)/2. So w(x) =

K
√
x [(1− r2w(x))(1−

√
x/r1)]−1 and this equation has a solution w analytic in

√
x

in a neighborhood of 0, real-valued for x > 0, whereas w(x) ∼ K
√
x as x → 0. Now

v0 = Bw ∈ t−1/2A≤1 by Theorem 1.1 and v0(t) ∼ K/
√
πt as t→ 0. Since v(t) ∼ |c1|/

√
πt ,

|c1| < K we have v(t) < v0(t) for t sufficiently small. Suppose v(t) < v0(t) for all
t ∈ (0, t0). Then v(t0) < K(F+v)(t0) < K(F+v0)(t0) = v(t0). Hence v < v0 on R+ and
consequently v(t) = O(ept) as t → ∞ for some p > 0. The definition of v then implies
ψ ∈ t−1/2A≤1(I0).

3. ODE’s with more levels. Theorem 2.1 may be extended as follows: Consider

diag
{
xm1I(1), . . . , xmrI(r)

}
x
dy

dx
= Λy + xg(x, y), (15)

where r ∈ N, mj ∈ N for j = 1, . . . , r, 0 < m1 < . . . < mr, I(j) denotes the identity
matrix of dimension nj ∈ N and n = n1 + . . . + nr, y ∈ Cn, Λ = diag{λ1, . . . , λn}, Λ is
invertible and g is analytic at (0, 0) in C× Cn. Let ŷ =

∑∞
h=1 chx

h be a formal solution
of (15). Then (cf. [Bra92, Bal94, RS94])

Theorem 3.1. The formal solution ŷ of (15) is (m1, . . . ,mr)-summable on (I1, . . . , Ir),
where Ij = (αj , βj) with βj − αj > π/mj and λh 6∈ S(αj + π/(2mj), βj − π/(2mj)) for
all h ∈ [n1 + . . .+ nj−1 + 1, n1 + . . .+ nj ], and Ij ⊂ Ij−1, j = 1, . . . , r, where I0 = R.
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The conditions on the intervals involving the eigenvalues of Λ may be reformulated
in terms of Stokes rays as in the previous theorem. Theorem 3.1 may be proven with the
methods used in the proof of Theorem 2.1. Now one considers recursively the equations
for ρmjy, apply the Borel transform, show that it results in functions in some suitable
A≤κ and utilize accelerations Amj+1,mj to go to the level mj+1.
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