REGULAR COORDINATES AND REDUCTION OF DEFORMATION EQUATIONS FOR FUCHSIAN SYSTEMS

YOSHISHIGE HARAOKA
Department of Mathematics, Kumamoto University
Kumamoto, 860-8555 Japan
E-mail: haraoka@kumamoto-u.ac.jp

Abstract

For a Fuchsian system

$$
\begin{equation*}
\frac{d Y}{d x}=\left(\sum_{j=1}^{p} \frac{A_{j}}{x-t_{j}}\right) Y \tag{F}
\end{equation*}
$$

$t_{1}, t_{2}, \ldots, t_{p}$ being distinct points in \mathbb{C} and $A_{1}, A_{2}, \ldots, A_{p} \in \mathrm{M}(n \times n ; \mathbb{C})$, the number α of accessory parameters is determined by the spectral types $s\left(A_{0}\right), s\left(A_{1}\right), \ldots, s\left(A_{p}\right)$, where $A_{0}=$ $-\sum_{j=1}^{p} A_{j}$. We call the set $z=\left(z_{1}, z_{2}, \ldots, z_{\alpha}\right)$ of α parameters a regular coordinate if all entries of the A_{j} are rational functions in z. It is not yet known that, for any irreducibly realizable set of spectral types, a regular coordinate does exist. In this paper we study a process of obtaining a new regular coordinate from a given one by a coalescence of eigenvalues of the matrices A_{j}. Since a regular coordinate is a set of unknowns of the deformation equation for (F), this process gives a reduction of deformation equations. As an example, a reduction of the Garnier system to Painlevé VI is described in this framework.

1. Regular coordinates. We fix integers n and p. Let $\mathcal{O}_{j}(0 \leq j \leq p)$ be a conjugacy class of $\mathrm{M}(n \times n ; \mathbb{C})$. We assume that, for each \mathcal{O}_{j}, there is no integral difference between distinct eigenvalues. Moreover we assume

$$
\begin{equation*}
\sum_{j=0}^{p} \operatorname{tr} \mathcal{O}_{j}=0 \tag{1}
\end{equation*}
$$

We set
$\mathcal{M}=\mathcal{M}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)=\left\{\left(A_{0}, A_{1}, \ldots, A_{p}\right) \in \mathcal{O}_{0} \times \mathcal{O}_{1} \times \ldots \times \mathcal{O}_{p} ; \sum_{j=0}^{p} A_{j}=O\right\} / \sim$,
2010 Mathematics Subject Classification: Primary 34M56; Secondary 33E17. Key words and phrases: deformation equation, Painlevé VI, Garnier system. The paper is in final form and no version of it will be published elsewhere.
where $\left(A_{0}, A_{1}, \ldots, A_{p}\right) \sim\left(B_{0}, B_{1}, \ldots, B_{p}\right)$ if there is $P \in \mathrm{GL}(n ; \mathbb{C})$ such that $A_{j}=$ $P B_{j} P^{-1}(0 \leq j \leq p)$. We denote $\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$ by $\overrightarrow{\mathcal{O}}$. We say that $\overrightarrow{\mathcal{O}}$ is realizable if $\mathcal{M}(\overrightarrow{\mathcal{O}}) \neq \emptyset$, and that $\overrightarrow{\mathcal{O}}$ is irreducibly realizable if there exists $\left[\left(A_{0}, A_{1}, \ldots, A_{p}\right)\right] \in \mathcal{M}(\overrightarrow{\mathcal{O}})$ such that the common invariant subspaces of $A_{0}, A_{1}, \ldots, A_{p}$ are trivial. To characterize the (irreducibly) realizable tuples $\overrightarrow{\mathcal{O}}$ is a fundamental problem, which is called DeligneSimpson Problem (DSP) by Kostov. DSP is solved by Kostov [9, Crawley-Boevey [2] and Oshima [13].

The set \mathcal{M} can be regarded as a moduli space of Fuchsian systems of differential equations. Let $t_{1}, t_{2}, \ldots, t_{p}$ be distinct points in \mathbb{C}, and $A_{1}, A_{2}, \ldots, A_{p}$ be matrices in $\mathrm{M}(n \times n ; \mathbb{C})$. Consider the Fuchsian system

$$
\begin{equation*}
\frac{d Y}{d x}=\left(\sum_{j=1}^{p} \frac{A_{j}}{x-t_{j}}\right) Y \tag{2}
\end{equation*}
$$

and set

$$
A_{0}=-\sum_{j=1}^{p} A_{j}
$$

The accessory parameters of the system 22 can be understood as a coordinate system of $\mathcal{M}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$, where \mathcal{O}_{j} is the conjugacy class of A_{j}. The deformation of the system (2) is described by the system of partial differential equations

$$
\left\{\begin{array}{l}
\frac{\partial A_{i}}{\partial t_{i}}=-\sum_{k \neq i} \frac{\left[A_{i}, A_{k}\right]}{t_{i}-t_{k}} \\
\frac{\partial A_{j}}{\partial t_{i}}=\frac{\left[A_{i}, A_{j}\right]}{t_{i}-t_{j}}
\end{array} \quad(j \neq i)\right.
$$

for $\left(A_{1}, A_{2}, \ldots, A_{p}\right)$, where $\left[\left(A_{0}, A_{1}, \ldots, A_{p}\right)\right] \in \mathcal{M}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$ with A_{0} normalized to the Jordan canonical form. Thus the deformation is a system of partial differential equations for the accessory parameters. Then, in order to describe the deformation equation explicitly, we have to find a coordinate system of \mathcal{M}, which is the theme of this article.

We want to find a good coordinate system. For the case $n=2$ and $p=3$, Okamoto [11] and Inaba-Iwasaki-Saito [6] constructed beautiful coordinate systems for the moduli space \mathcal{M}, which are fairly useful for the analysis of the Painlevé VI equation. Such constructions, however, are very hard even for this particular case, and then similar constructions for general \mathcal{M} seem to be beyond our scope. We look for another kind of good coordinate systems.
Definition 1.1. Let α be the dimension of the moduli space $\mathcal{M}=\mathcal{M}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$. A coordinate system $\left(z_{1}, z_{2}, \ldots, z_{\alpha}\right)$ of \mathcal{M} is called a regular coordinate if, for a representative $\left(A_{0}, A_{1}, \ldots, A_{p}\right)$ of a generic point of \mathcal{M}, all entries of the matrices $A_{0}, A_{1}, \ldots, A_{p}$ are rational functions of $\left(z_{1}, z_{2}, \ldots, z_{\alpha}\right)$.

Jimbo-Miwa-Môri-Sato [7] gave a set of variables for a tuple $\left(A_{1}, A_{2}, \ldots, A_{p}\right)$ of matrices such that all entries of the matrices are rational in the variables, and that the variables are canonical with respect to the Hamiltonian structure of the deformation equation. Thus these variables are good ones, but do not give a regular coordinate
since the number of the variables exceeds the number α of the accessory parameters. Fuji-Suzuki [4] and Tsuda [15] obtained a same deformation equation in different ways. Their deformation equation is written in a coordinate obtained from JMMS variables by reducing the number of the variables. In the work [14] of classifying deformation equation of dimension 4, Sakai got 4 types of deformation equations which are also written in coordinates from JMMS variables. These coordinates are canonical coordinates with respect to the Hamiltonian structure, and we find that they are regular coordinates. Alday-Gaiotto-Tachikawa [1] conjectured the coincidence of the partition function of the four-dimensional gauge theory and the correlation function of the conformal field theory. In studying AGT conjecture Yamada [16] obtained deformation equations from Fuji-Suzuki-Tsuda equation by changing the spectral types of the matrices A_{i}.

Looking at these works, I noticed it important to study the regular coordinates in general extent. In this paper we consider two kinds of transformations of the tuple $\left(A_{0}, A_{1}, \ldots, A_{p}\right)$, one is Katz's operations and the other is coalescences of eigenvalues, and study the behavior of regular coordinates under these transformations. The former transformation keeps the deformation equations invariant ([5]), while the latter one gives a reduction of deformation equations. Explicit regular coordinates are also given for several particular cases.
2. Formulation of the problem. In the following we assume that the conjugacy classes $\mathcal{O}_{j}(0 \leq j \leq p)$ are semi-simple. For a semi-simple conjugacy class \mathcal{O} of $\mathrm{M}(n \times n ; \mathbb{C})$, the partition of n which represents the multiplicities of the eigenvalues is called the spectral type of \mathcal{O}, and is denoted by $s(\mathcal{O})$. For a semi-simple conjugacy class \mathcal{O} with $s(\mathcal{O})=\left(m_{1}, m_{2}, \ldots, m_{l}\right)$, we set

$$
\begin{equation*}
z(\mathcal{O})=\sum_{i=1}^{l} m_{i}^{2} \tag{3}
\end{equation*}
$$

which is the dimension of the centralizer of any representative of \mathcal{O}. For $A \in \mathcal{O}$, we also use the notation $s(A)$ and $z(A)$ in place of $s(\mathcal{O})$ and $z(\mathcal{O})$, respectively, and call $s(A)$ the spectral type of A. For a tuple $\overrightarrow{\mathcal{O}}=\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$, the tuple $\left(s\left(\mathcal{O}_{0}\right), s\left(\mathcal{O}_{1}\right), \ldots, s\left(\mathcal{O}_{p}\right)\right)$ of the spectral types is called the spectral type of $\overrightarrow{\mathcal{O}}$, and is denoted by $s(\overrightarrow{\mathcal{O}})$. If $\overrightarrow{\mathcal{O}}=\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$ is irreducibly realizable, the dimension α of $\mathcal{M}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$ is given by

$$
\begin{equation*}
\alpha=(p-1) n^{2}-\sum_{j=0}^{p} z\left(\mathcal{O}_{j}\right)+2 . \tag{4}
\end{equation*}
$$

This is shown essentially in [8], where the index of rigidity is given by $2-\alpha$. It is also known that α is an even integer.

We are interested in finding a regular coordinate for a given irreducibly realizable $\overrightarrow{\mathcal{O}}$. The following lemmas give basic techniques.

LEmma 2.1. For any generic pair A, B of $n \times n$-matrices, there exists a similar transformation which sends A to an upper triangular matrix and B to a lower triangular matrix simultaneously.

Proof. First we assume that A, B are diagonalizable, and take eigenvectors $u_{1}, u_{2}, \ldots, u_{n}$ (resp. $v_{1}, v_{2}, \ldots, v_{n}$) of A (resp. B) such that $u_{1}, \ldots, u_{n-1}, v_{n}$ are linearly independent. We set

$$
A u_{i}=a_{i} u_{i}, \quad B v_{i}=b_{i} v_{i} \quad(1 \leq i \leq n)
$$

We show that, for $i=2,3, \ldots, n-1$, there is a vector u_{i}^{\prime} such that

$$
\begin{aligned}
u_{i}^{\prime} & \in\left\langle u_{1}, \ldots, u_{i}\right\rangle \\
B u_{i}^{\prime} & \in b_{i} u_{i}^{\prime}+\left\langle u_{i+1}^{\prime}, \ldots, u_{n-1}^{\prime}, v_{n}\right\rangle
\end{aligned}
$$

Suppose that the assertion holds for $i+1, \ldots, n-1$, and assume that $u_{1}, \ldots, u_{i}, u_{i+1}^{\prime}$, $\ldots, u_{n-1}^{\prime}, v_{n}$ are linearly independent. Then v_{i} can be written in these vectors

$$
v_{i}=c_{1} u_{1}+\ldots+c_{i} u_{i}+c_{i+1} u_{i+1}^{\prime}+\ldots+c_{n-1} u_{n-1}^{\prime}+c_{n} v_{n}
$$

with scalars $c_{1}, c_{2}, \ldots, c_{n}$. We set

$$
u_{i}^{\prime}=c_{1} u_{1}+\ldots+c_{i} u_{i}
$$

Then clearly $u_{i}^{\prime} \in\left\langle u_{1}, \ldots, u_{i}\right\rangle$, and we have

$$
\begin{aligned}
B u_{i}^{\prime} & =B\left(v_{i}-c_{i+1} u_{i+1}^{\prime}-\ldots-c_{n-1} u_{n-1}^{\prime}-c_{n} v_{n}\right) \\
& \in b_{i} v_{i}+\left\langle u_{i+1}^{\prime}, \ldots, u_{n-1}^{\prime}, v_{n}\right\rangle \\
& =b_{i}\left(u_{i}^{\prime}+\left\langle u_{i+1}^{\prime}, \ldots, u_{n-1}^{\prime}, v_{n}\right\rangle\right)+\left\langle u_{i+1}^{\prime}, \ldots, u_{n-1}^{\prime}, v_{n}\right\rangle \\
& =b_{i} u_{i}^{\prime}+\left\langle u_{i+1}^{\prime}, \ldots, u_{n-1}^{\prime}, v_{n}\right\rangle
\end{aligned}
$$

which shows the assertion for i. Thus, the similar transformation by the matrix

$$
P=\left(u_{1}, u_{2}^{\prime}, \ldots, u_{n-1}^{\prime}, v_{n}\right)
$$

sends A and B to upper and lower triangular matrices, respectively.
In the above we assumed that $u_{1}, \ldots, u_{i}, u_{i+1}^{\prime}, \ldots, u_{n-1}^{\prime}, v_{n}$ are linearly independent in each step. We understand that the pair A, B is generic if these conditions are satisfied for some sets of eigenvectors u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n}.

The above proof can be modified to the case that A or B is not diagonalizable.
Lemma 2.2. Let C be a diagonalizable $n \times n$-matrix with spectral type $\left(m_{1}, m_{2}, \ldots, m_{l}\right)$.
(i) C can be parametrized by

$$
n^{2}-\sum_{i=1}^{l} m_{i}^{2}=n^{2}-z(C)
$$

parameters besides the eigenvalues.
(ii) Denote the eigenvalue of multiplicity m_{i} by c_{i}. We set

$$
m_{i}^{\prime}=n-m_{1}-m_{2}-\ldots-m_{i}
$$

for $i=1,2, \ldots, l$.

Then C can be generically parametrized as follows:

$$
\begin{aligned}
& C=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{m_{1}^{\prime}} & P_{1}
\end{array}\right), \\
& C_{1}+P_{1} U_{1}=c_{2}-c_{1}+\binom{C_{2}}{U_{2}}\left(\begin{array}{ll}
I_{m_{2}^{\prime}} & P_{2}
\end{array}\right), \\
& C_{2}+P_{2} U_{2}=c_{3}-c_{2}+\binom{C_{3}}{U_{3}}\left(\begin{array}{ll}
I_{m_{3}^{\prime}} & P_{3}
\end{array}\right), \\
& \vdots \\
& C_{l-1}+P_{l-1} U_{l-1}=c_{l}-c_{l-1},
\end{aligned}
$$

where C_{i}, U_{i}, P_{i} are $m_{i}^{\prime} \times m_{i}^{\prime}, m_{i} \times m_{i}^{\prime}$ and $m_{i}^{\prime} \times m_{i}-m a t r i c e s$, respectively, and the scalars in the right hand sides are scalar matrices of appropriate sizes. The entries of P_{i} and $U_{i}(1 \leq i \leq l-1)$ are the parameters.
Proof. First we note that

$$
\operatorname{rank}\left(C-c_{1}\right)=n-m_{1}=m_{1}^{\prime}
$$

Then, if the first m_{1}^{\prime} columns of $C-c_{1}$ are linearly independent, we get the decomposition

$$
C-c_{1}=\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{m_{1}^{\prime}} & P_{1} \tag{5}
\end{array}\right) .
$$

Using (5), we get

$$
\left(C-c_{1}\right)\left(C-c_{2}\right)=\left(\begin{array}{ll}
C_{1}\left(C_{1}+P_{1} U_{1}-d_{2}\right) & C_{1}\left(C_{1}+P_{1} U_{1}-d_{2}\right) P_{1} \\
U_{1}\left(C_{1}+P_{1} U_{1}-d_{2}\right) & U_{1}\left(C_{1}+P_{1} U_{1}-d_{2}\right) P_{1}
\end{array}\right)
$$

where $d_{2}=c_{2}-c_{1}$. Since

$$
\operatorname{rank}\left(\left(C-c_{1}\right)\left(C-c_{2}\right)\right)=m_{2}^{\prime} \quad \text { and } \quad \operatorname{rank}\binom{C_{1}}{U_{1}}=m_{1}^{\prime}
$$

we have

$$
\operatorname{rank}\left(C_{1}+P_{1} U_{1}-d_{2}\right)=m_{2}^{\prime}
$$

Then we get the decomposition

$$
C_{1}+P_{1} U_{1}-d_{2}=\binom{C_{2}}{U_{2}}\left(\begin{array}{ll}
I_{m_{2}^{\prime}} & P_{2}
\end{array}\right)
$$

if the first m_{2}^{\prime} columns of $C_{1}+P_{1} U_{1}-d_{2}$ are linearly independent. Continuing similar arguments, we get the parametrization in the assertion (ii). The parameters are given by the entries of P_{i} and $U_{i}(1 \leq i \leq l-1)$, and hence the number of the parameters is

$$
\sum_{i=1}^{l-1} m_{i}^{\prime} \cdot m_{i}+\sum_{i=1}^{l-1} m_{i} \cdot m_{i}^{\prime}=2 \sum_{i \neq j} m_{i} m_{j}=\left(m_{1}+\ldots+m_{l}\right)^{2}-\sum_{i=1}^{l} m_{i}^{2}
$$

which implies the assertion (i).
We shall use the above lemmas to construct a regular coordinate for a given $\overrightarrow{\mathcal{O}}=$ $\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$. First assume that there are two \mathcal{O}_{j} with spectral type $\left(1^{n}\right)$. We may
take

$$
s\left(\mathcal{O}_{0}\right)=s\left(\mathcal{O}_{p}\right)=\left(1^{n}\right)
$$

By Lemma 2.1, we can take a representative $\left(A_{0}, A_{1}, \ldots, A_{p}\right)$ of a generic point of $\mathcal{M}(\overrightarrow{\mathcal{O}})$ such that

$$
A_{0}=\left(\begin{array}{ccc}
a_{01} & & O \tag{6}\\
& \ddots & \\
* & & a_{0 n}
\end{array}\right), \quad A_{p}=\left(\begin{array}{ccc}
a_{p 1} & & * \\
& \ddots & \\
O & & a_{p n}
\end{array}\right)
$$

where $a_{0 i} \neq a_{0 j}(i \neq j)$ and $a_{p i} \neq a_{p j}(i \neq j)$. We parametrize A_{1}, \ldots, A_{p-1} according to Lemma 2.2 (ii). By Lemma 2.2 (i), we see the number of the parameters we use is

$$
\begin{equation*}
\sum_{j=1}^{p-1}\left(n^{2}-z\left(A_{j}\right)\right)=(p-1) n^{2}-\sum_{j=1}^{p-1} z\left(\mathcal{O}_{j}\right) \tag{7}
\end{equation*}
$$

The maximal subgroup of $\operatorname{GL}(n ; \mathbb{C})$ which leaves the form (6) invariant is

$$
\mathrm{GL}(1)^{n}=\mathrm{GL}(1 ; \mathbb{C}) \times \mathrm{GL}(1 ; \mathbb{C}) \times \ldots \times \mathrm{GL}(1 ; \mathbb{C})
$$

Since the center \mathbb{C}^{\times}acts trivially, the effective action is given by GL $(1)^{n} / \mathbb{C}^{\times} \cong \mathrm{GL}(1)^{n-1}$. Then we can normalize $n-1$ off-diagonal entries of A_{1}, \ldots, A_{p-1} to arbitrary values. This normalization is a system of algebraic equations for the parameters, which we call the system (N).

Next we look at the relation

$$
\begin{equation*}
\sum_{j=0}^{p} A_{j}=O \tag{8}
\end{equation*}
$$

The diagonal entries of (8) give n relations

$$
\begin{equation*}
\sum_{j=1}^{p-1}\left((i, i) \text {-entry of } A_{j}\right)=-a_{0 i}-a_{p i} \quad(1 \leq i \leq n) \tag{9}
\end{equation*}
$$

If we take a sum of these n relations, we get

$$
\sum_{j=0}^{p} \operatorname{tr} A_{j}=0
$$

which is a relation for the eigenvalues and is already assumed in (1). Then we have $n-1$ independent relations among (9), which we call the system (D).

Thus we have $2(n-1)$ relations (N) and (D) for the parameters of A_{1}, \ldots, A_{p-1}. If these relations are independent and solvable, the number of the parameters is reduced from (7) to

$$
(p-1) n^{2}-\sum_{j=1}^{p-1} z\left(\mathcal{O}_{j}\right)-2(n-1)=(p-1) n^{2}-\sum_{j=1}^{p-1} z\left(\mathcal{O}_{j}\right)-z\left(\mathcal{O}_{0}\right)-z\left(\mathcal{O}_{p}\right)+2=\alpha
$$

Note that the off-diagonal entries of A_{0} and A_{p} are written linearly in terms of the entries of A_{1}, \ldots, A_{p-1} by the relation (8). Hence, if the system (N) and (D) is independent and solvable, and if the solution of the system can be written rationally in α parameters, the parameters make a regular coordinate for $\mathcal{M}(\overrightarrow{\mathcal{O}})$.

This method can be directly applied to the following particular case.

Proposition 2.3. In the case

$$
s\left(\mathcal{O}_{0}\right)=s\left(\mathcal{O}_{1}\right)=\ldots=s\left(\mathcal{O}_{p}\right)=\left(1^{n}\right)
$$

we have a regular coordinate for $\mathcal{M}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$.
Proof. In this case we have

$$
\alpha=(p-1) n^{2}-(p+1) n+2
$$

We may assume that A_{0} and A_{p} are of the form (6). We denote the eigenvalues of A_{j} by $a_{j 1}, a_{j 2}, \ldots, a_{j n}$ for $0 \leq j \leq p$. According to Lemma 2.2 (ii), we can parametrize A_{1}, \ldots, A_{p-1} as

$$
\begin{align*}
A_{j} & =a_{j 1}+\binom{C_{1}^{j}}{U_{1}^{j}}\left(\begin{array}{ll}
I_{n-1} & P_{1}^{j}
\end{array}\right) \\
C_{1}^{j}+P_{1}^{j} U_{1}^{j} & =a_{j 2}-a_{j 1}+\binom{C_{2}^{j}}{U_{2}^{j}}\left(\begin{array}{ll}
I_{n-2} & P_{2}^{j}
\end{array}\right) \tag{10}\\
\vdots & \\
C_{n-1}^{j}+P_{n-1}^{j} U_{n-1}^{j} & =a_{j n}-a_{j, n-1}
\end{align*}
$$

for $1 \leq j \leq p-1$. Here, for $1 \leq k \leq n-1, U_{k}^{j}$ and P_{k}^{j} are $1 \times(n-k)$ and $(n-k) \times 1$-matrices, respectively, and so we set

$$
U_{k}^{j}=\left(\begin{array}{lll}
\left(u_{k}^{j}\right)_{1} & \ldots & \left(u_{k}^{j}\right)_{n-k}
\end{array}\right), \quad P_{k}^{j}=\left(\begin{array}{c}
\left(p_{k}^{j}\right)_{1} \\
\vdots \\
\left(p_{k}^{j}\right)_{n-k}
\end{array}\right)
$$

By the action of GL(1) $)^{n-1}$, we can normalize U_{1}^{1} to

$$
U_{1}^{1}=\left(\begin{array}{llll}
1 & 1 & \ldots & 1 \tag{11}
\end{array}\right) .
$$

Namely we have $\left(u_{1}^{1}\right)_{1}=\ldots=\left(u_{1}^{1}\right)_{n-1}=1$. By 10 , the i-th diagonal entry of A_{j} is given by

$$
a_{j, n-i+1}-\sum_{k=1}^{n-i}\left(p_{k}^{j}\right)_{i}\left(u_{k}^{j}\right)_{i}+U_{n-i+1}^{j} P_{n-i+1}^{j}
$$

for $1 \leq i \leq n$. We put this into the relation (9) for $1 \leq i \leq n-1$ to obtain

$$
\sum_{j=1}^{p-1} \sum_{k=1}^{n-i}\left(p_{k}^{j}\right)_{i}\left(u_{k}^{j}\right)_{i}-\sum_{j=1}^{p-1} U_{n-i+1}^{j} P_{n-i+1}^{j}=a_{0 i}+\sum_{j=1}^{p-1} a_{j, n-i+1}+a_{p i}
$$

Since we have normalized U_{1}^{1} as 11), this relation can be written as

$$
\begin{equation*}
\left(p_{1}^{1}\right)_{i}+\sum_{\substack{1 \leq j \leq p-1,1 \leq k \leq n-i \\(j, k) \neq(1,1)}}\left(p_{k}^{j}\right)_{i}\left(u_{k}^{j}\right)_{i}-\sum_{j=1}^{p-1} U_{n-i+1}^{j} P_{n-i+1}^{j}=a_{0 i}+\sum_{j=1}^{p-1} a_{j, n-i+1}+a_{p i} \tag{12}
\end{equation*}
$$

Hence every entry of P_{1}^{1} is a polynomial of the entries of U_{k}^{j} and P_{k}^{j} with $(j, k) \neq(1,1)$. The number of these entries is α, and hence they make a regular coordinate.

Now we relax the condition $s\left(\mathcal{O}_{0}\right)=s\left(\mathcal{O}_{p}\right)=\left(1^{n}\right)$. Let us consider the case

$$
s\left(\mathcal{O}_{0}\right)=\left(m, 1^{n-m}\right), \quad s\left(\mathcal{O}_{p}\right)=\left(1^{n}\right)
$$

with $1<m<n$. If we take a representative $\left(A_{0}, A_{1}, \ldots, A_{p}\right)$ with A_{0}, A_{p} of the form (6), and if we assume $a_{01}=\ldots=a_{0 m}$, we should have

$$
A_{0}=\left(\begin{array}{ccc|ccc}
a_{01} & & O & & & \\
& \ddots & & & O & \\
O & & a_{01} & & & \\
\hline & & & a_{0, m+1} & & O \\
& * & & & \ddots & \\
& & & * & & a_{0 n}
\end{array}\right)
$$

because A_{0} is diagonalizable. This form of A_{0} is left invariant by the action of GL $(m) \times$ $\mathrm{GL}(1)^{n-m}$. Then, by using this action, we can normalize the principal $m \times m$ part of A_{p} to a diagonal matrix. Thus we have

$$
A_{p}=\left(\begin{array}{ccc|ccc}
a_{p 1} & & O & & & \\
& \ddots & & & * & \\
O & & a_{p m} & & & \\
\hline & & & a_{p, m+1} & & * \\
& O & & & \ddots & \\
& & & O & & a_{p n}
\end{array}\right) .
$$

Then the principal $m \times m$ part of the relation (8) becomes a system of algebraic equations for the parameters of A_{1}, \ldots, A_{p-1}. In this way, we can increase the number of the equations of the system (D) by $m^{2}-m$, which is just the difference of $z\left(\mathcal{O}_{0}\right)$ for $s\left(\mathcal{O}_{0}\right)=$ $\left(1^{n}\right)$ and for $s\left(\mathcal{O}_{0}\right)=\left(m, 1^{n-m}\right)$, and hence the difference of α.

For the case

$$
s\left(\mathcal{O}_{0}\right)=\left(m, 1^{n-m}\right), \quad s\left(\mathcal{O}_{p}\right)=\left(m^{\prime}, 1^{n-m^{\prime}}\right)
$$

with $1<m^{\prime} \leq m<n$, the above argument holds without any modification. In this case, if we take $a_{p 1}=\ldots=a_{p m^{\prime}}$, the action of $\mathrm{GL}\left(m^{\prime}\right) \times \mathrm{GL}(1)^{n-m^{\prime}}$ leaves the normalized forms of A_{0} and A_{p} invariant. Then we can normalize $m^{\prime 2}$ entries of A_{1}, \ldots, A_{p-1} by this action, which increases the number of the equations of the system (N) by $m^{\prime 2}-m^{\prime}$. Just as above, the last number coincides with the difference of $z\left(\mathcal{O}_{p}\right)$ and hence of α.

To consider more complicated cases, we use the following lemma.
Lemma 2.4. Let A and B be a generic pair of diagonalizable $n \times n$-matrices of spectral types $\left(m_{1}, m_{2}\right)$ and $\left(n_{1}, n_{2}\right)$, respectively, with $m_{1}>n_{1}$. Then there exists $P \in \operatorname{GL}(n ; \mathbb{C})$ such that

$$
P^{-1} A P=\left(\begin{array}{ccc}
a_{1} I_{n_{1}} & O & O \\
O & a_{1} I_{m_{1}-n_{1}} & O \\
* & O & a_{2} I_{m_{2}}
\end{array}\right), \quad P^{-1} B P=\left(\begin{array}{ccc}
b_{1} I_{n_{1}} & O & * \\
O & b_{2} I_{m_{1}-n_{1}} & O \\
O & O & b_{2} I_{m_{2}}
\end{array}\right)
$$

where $a_{i}\left(\right.$ resp. $\left.b_{i}\right)$ is the eigenvalue of $A\left(\right.$ resp. B) of multiplicity $m_{i}\left(\right.$ resp. $\left.n_{i}\right)$ for $i=1,2$.

Proof. We set $n_{1}=k, m_{1}-n_{1}=l$ and $m_{2}=m$. We may assume that A and B are of lower and upper triangular form, respectively. Since A and B are diagonalizable, we have

$$
A=\left(\begin{array}{ccc}
a_{1} I_{k} & O & O \\
O & a_{1} I_{l} & O \\
A_{31} & A_{32} & a_{2} I_{m}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
b_{1} I_{k} & B_{12} & B_{13} \\
O & b_{2} I_{l} & O \\
O & O & b_{2} I_{m}
\end{array}\right),
$$

where A_{31}, A_{32}, B_{12} and B_{13} are $m \times k, m \times l, k \times l$ and $k \times m$-matrices, respectively. We transform A and B by a matrix P of the form

$$
P=\left(\begin{array}{ccc}
I_{k} & P_{12} & O \\
O & I_{l} & O \\
O & P_{32} & I_{m}
\end{array}\right)
$$

Then we have

$$
P^{-1} A P=\left(\begin{array}{ccc}
a_{1} I_{k} & O & O \\
O & a_{1} I_{l} & O \\
A_{31} & X_{32} & a_{2} I_{m}
\end{array}\right), \quad P^{-1} B P=\left(\begin{array}{ccc}
b_{1} I_{k} & X_{12} & B_{13} \\
O & b_{2} I_{l} & O \\
O & O & b_{2} I_{m}
\end{array}\right)
$$

with

$$
\begin{aligned}
& X_{12}=B_{12}+\left(b_{1}-b_{2}\right) P_{12}+B_{13} P_{32} \\
& X_{32}=A_{32}+A_{31} P_{12}+\left(a_{2}-a_{1}\right) P_{32}
\end{aligned}
$$

From the relations $X_{12}=O$ and $X_{32}=O$, we obtain the linear equation

$$
\left(\begin{array}{cc}
A_{31} & \left(a_{2}-a_{1}\right) I_{m} \\
\left(b_{1}-b_{2}\right) I_{k} & B_{13}
\end{array}\right)\binom{P_{12}}{P_{32}}=-\binom{A_{32}}{B_{12}}
$$

for P_{12} and P_{32}. The determinant of the matrix in the left hand side does not vanish for a generic pair (A, B), and hence we find a matrix P in the assertion of the lemma.

By using Lemma 2.4 repeatedly, we obtain the following assertion.
Proposition 2.5. Let A and B be a generic pair of diagonalizable $n \times n$-matrices of spectral types

$$
s(A)=\left(m_{1}, m_{2}, \ldots, m_{p}\right), \quad s(B)=\left(n_{1}, n_{2}, \ldots, n_{q}\right)
$$

We set

$$
M_{k}=\sum_{i=1}^{k} m_{i}, \quad N_{l}=\sum_{j=1}^{l} n_{j}
$$

for $1 \leq k<p$ and $1 \leq l<q$, and set $M_{0}=N_{0}=0$. Then there exists $P \in \operatorname{GL}(n ; \mathbb{C})$ such that

$$
P^{-1} A P=\left(\begin{array}{cccc}
a_{1} I_{m_{1}} & O & \ldots & O \\
* & a_{2} I_{m_{2}} & \ldots & O \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \ldots & a_{p} I_{m_{p}}
\end{array}\right), \quad P^{-1} B P=\left(\begin{array}{cccc}
b_{1} I_{n_{1}} & * & \ldots & * \\
O & b_{2} I_{n_{2}} & \ldots & * \\
\vdots & \vdots & \ddots & \vdots \\
O & O & \ldots & b_{2} I_{n_{q}}
\end{array}\right)
$$

where, among the lower off-diagonal entries of $P^{-1} A P$, the (i, j)-entry is 0 if $N_{l-1}+1 \leq$ $j<i \leq N_{l}$ for some l, and among the upper off-diagonal entries of $P^{-1} B P$, the (i, j) entry is 0 if $M_{k-1}+1 \leq i<j \leq M_{k}$ for some k. The maximal subgroup G of $\mathrm{GL}(n ; \mathbb{C})$ which leaves these forms of $P^{-1} A P$ and $P^{-1} B P$ invariant is

$$
G=\operatorname{GL}\left(l_{1}\right) \times \operatorname{GL}\left(l_{2}-l_{1}\right) \times \ldots \times \operatorname{GL}\left(l_{r}-l_{r-1}\right) \times \operatorname{GL}\left(n-l_{r}\right),
$$

where $\left(l_{1}, l_{2}, \ldots, l_{r}\right)$ is the increasing sequence of integers determined by

$$
\left\{M_{1}, M_{2}, \ldots, M_{p-1}, N_{1}, N_{2}, \ldots, N_{q-1}\right\}=\left\{l_{1}, l_{2}, \ldots, l_{r}\right\} .
$$

Example 2.6. Let A, B be a generic pair of diagonalizable 10×10-matrices of spectral types

$$
s(A)=(3,3,3,1), \quad s(B)=(2,2,2,2,2)
$$

Then, by Proposition 2.5, we can send A, B by some $P \in \mathrm{GL}(10 ; \mathbb{C})$ to

$$
\begin{gathered}
P^{-1} A P=\left(\begin{array}{ccc|ccc|ccc|c}
a_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline a_{41} & a_{42} & 0 & a_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{51} & a_{52} & a_{53} & 0 & a_{2} & 0 & 0 & 0 & 0 & 0 \\
a_{61} & a_{62} & a_{63} & 0 & 0 & a_{2} & 0 & 0 & 0 & 0 \\
\hline a_{71} & a_{72} & a_{73} & a_{74} & a_{75} & a_{76} & a_{3} & 0 & 0 & 0 \\
a_{81} & a_{82} & a_{83} & a_{84} & a_{85} & a_{86} & 0 & a_{3} & 0 & 0 \\
a_{91} & a_{92} & a_{93} & a_{94} & a_{95} & a_{96} & 0 & 0 & a_{3} & 0 \\
\hline a_{10,1} & a_{10,2} & a_{10,3} & a_{10,4} & a_{10,5} & a_{10,6} & a_{10,7} & a_{10,8} & 0 & a_{4}
\end{array}\right), \\
P^{-1} B P=\left(\begin{array}{cc|cc|cc|cc|cc|}
b_{1} & 0 & 0 & b_{14} & b_{15} & b_{16} & b_{17} & b_{18} & b_{19} & b_{1,10} \\
0 & b_{1} & 0 & b_{24} & b_{25} & b_{26} & b_{27} & b_{28} & b_{29} & b_{2,10} \\
\hline 0 & 0 & b_{2} & 0 & b_{35} & b_{36} & b_{37} & b_{38} & b_{39} & b_{3,10} \\
0 & 0 & 0 & b_{2} & 0 & 0 & b_{47} & b_{48} & b_{49} & b_{4,10} \\
\hline 0 & 0 & 0 & 0 & b_{3} & 0 & b_{57} & b_{58} & b_{59} & b_{5,10} \\
0 & 0 & 0 & 0 & 0 & b_{3} & b_{67} & b_{68} & b_{69} & b_{6,10}
\end{array}\right.
\end{gathered}
$$

The maximal subgroup of $\operatorname{GL}(10 ; \mathbb{C})$ which leaves the forms of these matrices invariant is

$$
\mathrm{GL}(2) \times \mathrm{GL}(1) \times \mathrm{GL}(1) \times \mathrm{GL}(2) \times \mathrm{GL}(2) \times \mathrm{GL}(1) \times \mathrm{GL}(1) .
$$

Now we can formulate our problem in general. Let an irreducibly realizable tuple $\overrightarrow{\mathcal{O}}=\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$ be given. We can take a representative $\left(A_{0}, A_{1}, \ldots, A_{p}\right)$ of a generic point of $\mathcal{M}(\overrightarrow{\mathcal{O}})$ such that a pair of two matrices, say A_{0}, A_{p}, is normalized as in Proposition 2.5. We read $A_{0}=A$ and $A_{p}=B$, and use the same notation as in the proposition. We parametrize the other matrices A_{1}, \ldots, A_{p-1} according to Lemma 2.2(ii). Note that the number of the parameters is given by 77 . Let G be the maximal subgroup of $\mathrm{GL}(n ; \mathbb{C})$ which leaves the normalized forms of A_{0} and A_{p} invariant. By the action of G, we can normalize $\operatorname{dim} G-1$ entries of A_{1}, \ldots, A_{p-1}, which gives a system (N) of algebraic equations for the parameters of A_{1}, \ldots, A_{p-1}. On the other hand, by the normalization, the diagonal entries of A_{0} and A_{p} are the eigenvalues, and both of the off-diagonal (i, j)-entries of A_{0} and A_{p} are 0 if $M_{k-1}<i, j \leq M_{k}$ for some k or $N_{l-1}<i, j \leq N_{l}$ for some l. Then, for
these (i, j), the (i, j)-entries of the relation (8) give a system (D) of algebraic equations for the parameters of A_{1}, \ldots, A_{p-1}.

Our problem is to parametrize the solutions of (N) and (D). If the solutions are expressed rationally in α parameters, the parameters make a regular coordinate for $\mathcal{M}(\overrightarrow{\mathcal{O}})$.

The problem can be regarded as a uniformization of a system of algebraic equations. Also it can be regarded as a construction problem of representations of quivers.

3. Katz operations

Definition 3.1 ([8, [3). Let $\left(A_{1}, A_{2}, \ldots, A_{p}\right)$ be a tuple of $n \times n$-matrices.
(i) Let $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ be a point in \mathbb{C}^{p}. The operation

$$
\left(A_{1}, A_{2}, \ldots, A_{p}\right) \mapsto\left(A_{1}+a_{1}, A_{2}+a_{2}, \ldots, A_{p}+a_{p}\right)
$$

is called the addition with parameters $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$.
(ii) Let λ be a point in \mathbb{C}. Define $p n \times p n$-matrices $G_{1}, G_{2}, \ldots, G_{p}$ by

$$
G_{i}=\sum_{j=1}^{p} E_{i j} \otimes\left(A_{j}+\delta_{i j} \lambda\right) \quad(1 \leq i \leq p)
$$

where $E_{i j}$ is the $p \times p$-matrix with the only nonzero entry 1 at (i, j)-th position $(1 \leq i, j \leq p)$. Let \mathcal{K} and \mathcal{L} be the subspaces of $\mathbb{C}^{p n}$ defined by

$$
\mathcal{K}=\left\{\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{p}
\end{array}\right): v_{i} \in \operatorname{Ker} A_{i}(1 \leq i \leq p)\right\}, \quad \mathcal{L}=\operatorname{Ker}\left(G_{1}+G_{2}+\ldots+G_{p}\right)
$$

It is easy to see that \mathcal{K} and \mathcal{L} are invariant subspaces for $\left(G_{1}, G_{2}, \ldots, G_{p}\right)$. Then $\left(G_{1}, G_{2}, \ldots, G_{p}\right)$ induces the action $\left(\bar{G}_{1}, \bar{G}_{2}, \ldots, \bar{G}_{p}\right)$ on the quotient space $\mathbb{C}^{p n} /(\mathcal{K}+\mathcal{L})$. The operation

$$
\left(A_{1}, A_{2}, \ldots, A_{p}\right) \mapsto\left(\bar{G}_{1}, \bar{G}_{2}, \ldots, \bar{G}_{p}\right)
$$

is called the middle convolution with parameter λ.
The addition and the middle convolution are called the Katz operations. The Katz operations can be uniquely extended to operations for tuples $\left(A_{0}, A_{1}, \ldots, A_{p}\right)$ with sum zero. Moreover it is easy to see that the Katz operations induce maps from the moduli space $\mathcal{M}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$ to other moduli spaces by sending $\left[\left(A_{0}, A_{1}, \ldots, A_{p}\right)\right]$ to $\left[\left(A_{0}+a_{0}, A_{1}+a_{1}, \ldots, A_{p}+a_{p}\right)\right]$ and to $\left[\left(\bar{G}_{0}, \bar{G}_{1}, \ldots, \bar{G}_{p}\right)\right]$. It is shown that the Katz operations do not change the number of accessory parameters and the irreducibility.

In general, for any matrix A, we have a basis $\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ of $\operatorname{Ker} A$ such that every entry of $v_{i}(1 \leq i \leq l)$ is a rational function of the entries of A. Noting this fact, we obtain the following result.

Theorem 3.2. If a moduli space $\mathcal{M}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$ has a regular coordinate, the images of the Katz operations also have regular coordinates.

The moduli spaces $\mathcal{M}(\overrightarrow{\mathcal{O}})$ for the irreducibly realizable tuples $\overrightarrow{\mathcal{O}}$ are classified by the Katz operations, which induces the classification of the spectral type $s(\overrightarrow{\mathcal{O}})$. A spectral type $s(\overrightarrow{\mathcal{O}})$ is called basic if the rank is minimum among the class it belongs.

Thanks to Theorem 3.2, for finding regular coordinates, we have only to consider the moduli spaces corresponding to basic spectral types. It is shown by Oshima [13] that, for every value of α, there are only finitely many basic spectral types. The basic spectral types with $\alpha=2$ are classified by Kostov [10], and those with $\alpha=4$ are classified by Oshima [12. Here we give the list of those spectral types.

The case $\alpha=2$:

$$
(11,11,11,11),\left(1^{3}, 1^{3}, 1^{3}\right),\left(22,1^{4}, 1^{4}\right),\left(33,222,1^{6}\right)
$$

The case $\alpha=4$:

$$
\begin{aligned}
& (11,11,11,11,11),\left(21,21,1^{3}, 1^{3}\right),\left(31,22,22,1^{4}\right),(22,22,22,211), \\
& \left(211,1^{4}, 1^{4}\right),\left(221,221,1^{5}\right),\left(32,1^{5}, 1^{5}\right),\left(2^{3}, 2^{3}, 2211\right),\left(33,2211,1^{6}\right), \\
& \left(44,2^{4}, 22211\right),\left(44,332,1^{8}\right),\left(55,3331,2^{5}\right),\left(66,444,2^{5} 11\right)
\end{aligned}
$$

Among these spectral types, owing to Proposition 2.3, we already know that regular coordinates exist for the cases $(11,11,11,11),(11,11,11,11,11)$ and $\left(1^{3}, 1^{3}, 1^{3}\right)$. For the other cases, we find regular coordinates except the cases $\left(44,332,1^{8}\right),\left(55,3331,2^{5}\right)$ and $\left(66,444,2^{5} 11\right)$. We note the results.
$\underline{\left(22,1^{4}, 1^{4}\right)}$

$$
\begin{gathered}
A_{1}=\left(\begin{array}{cccc}
a_{1} & & & O \\
& a_{2} & & \\
& & a_{3} & \\
& & a_{4}
\end{array}\right), \quad A_{2}=\left(\begin{array}{cccc}
b_{1} & & & \\
& b_{2} & & \\
& & b_{3} & \\
O & & b_{4}
\end{array}\right), \\
A_{0}=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{2} & \left.P_{1}\right), \quad C_{1}+P_{1} U_{1}=c_{2}-c_{1}
\end{array},\right.
\end{gathered}
$$

where

$$
U_{1}=\left(\begin{array}{cc}
1 & u_{12} \\
1 & 1
\end{array}\right), \quad P_{1}=\left(\begin{array}{cc}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right)
$$

Then $\left(u_{12}, p_{21}\right)$ is a regular coordinate.
$\left(33,222,1^{6}\right)$
$A_{1}=\left(\begin{array}{cc|c|c}a_{1} & & 0 & O \\ & a_{1} & O & O \\ \hline * & a_{2} & & O \\ \hline * & * & a_{3} & \\ \hline & & a_{2}\end{array}\right), \quad A_{2}=\left(\begin{array}{cc|c|c}b_{1} & & * & * \\ & b_{2} & * & * \\ \hline O & b_{3} & & * \\ \hline O & O & b_{5} & \\ \hline & & & b_{4}\end{array}\right)$,
$A_{0}=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}I_{3} & P_{1}\end{array}\right), \quad C_{1}+P_{1} U_{1}=c_{2}-c_{1}$,
where

$$
U_{1}=\left(\begin{array}{ccc}
1 & u_{12} & u_{13} \\
1 & u_{22} & u_{23} \\
1 & 1 & 1
\end{array}\right), \quad P_{1}=\left(\begin{array}{ccc}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{array}\right)
$$

Then $\left(p_{11}, p_{21}\right)$ is a regular coordinate.
$\underline{\left(21,21,1^{3}, 1^{3}\right)}$

$$
\begin{gathered}
A_{2}=\left(\begin{array}{lll}
a_{1} & & O \\
& a_{2} & \\
* & & a_{3}
\end{array}\right), \quad A_{3}=\left(\begin{array}{lll}
b_{1} & & * \\
& b_{2} & \\
O & & b_{3}
\end{array}\right), \\
A_{0}=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{2} & P_{1}
\end{array}\right), \quad C_{1}+P_{1} U_{1}=c_{2}-c_{1}, \\
A_{1}=d_{1}+\binom{D_{1}}{V_{1}}\left(\begin{array}{ll}
I_{2} & Q_{1}
\end{array}\right), \quad D_{1}+Q_{1} V_{1}=d_{2}-d_{1},
\end{gathered}
$$

where

$$
U_{1}=\left(\begin{array}{ll}
1 & 1
\end{array}\right), \quad P_{1}=\binom{p_{1}}{p_{2}}, \quad V_{1}=\left(\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right), \quad Q_{1}=\binom{q_{1}}{q_{2}}
$$

Then $\left(p_{1}, p_{2}, v_{1}, v_{2}\right)$ is a regular coordinate.
$\left(31,22,22,1^{4}\right)$

$$
\begin{gathered}
A_{2}=\left(\right), \quad A_{3}=\left(\begin{array}{ll|l}
b_{1} & & * \\
& b_{2} & * \\
\hline O & b_{3} & \\
\hline & & \\
& b_{4}
\end{array}\right), \\
A_{0}=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{3} & P_{1}
\end{array}\right), \quad C_{1}+P_{1} U_{1}=c_{2}-c_{1} \\
A_{1}=d_{1}+\binom{D_{1}}{V_{1}}\left(\begin{array}{ll}
I_{2} & Q_{1}
\end{array}\right), \quad D_{1}+Q_{1} V_{1}=d_{2}-d_{1}
\end{gathered}
$$

where

$$
U_{1}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right), \quad P_{1}=\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right), \quad V_{1}=\left(\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right), \quad Q_{1}=\left(\begin{array}{ll}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right)
$$

Then $\left(v_{21}, v_{22}, q_{21}, q_{22}\right)$ is a regular coordinate.
$(\underline{(22,22,22,211)}$

$$
\begin{aligned}
& A_{2}=\left(\right), \quad A_{3}=\left(\begin{array}{cc|cc}
b_{1} & & & \\
& & & \\
& b_{1} & & \\
\hline O & b_{2} & \\
\hline & & & b_{3}
\end{array}\right), \\
& A_{0}=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{2} & P_{1}
\end{array}\right), \quad C_{1}+P_{1} U_{1}=c_{2}-c_{1}, \\
& A_{1}=d_{1}+\binom{D_{1}}{V_{1}}\left(\begin{array}{ll}
I_{2} & Q_{1}
\end{array}\right), \quad D_{1}+Q_{1} V_{1}=d_{2}-d_{1},
\end{aligned}
$$

where

$$
U_{1}=I_{2}, \quad P_{1}=\left(\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right), \quad V_{1}=\left(\begin{array}{cc}
v_{11} & v_{12} \\
1 & v_{22}
\end{array}\right), \quad Q_{1}=\left(\begin{array}{ll}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right) .
$$

Then $\left(q_{12}, q_{21}, q_{22}, v_{22}\right)$ is a regular coordinate.
$\underline{\left(211,1^{4}, 1^{4}\right)}$

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{cccc}
a_{1} & & & \\
& a_{2} & & \\
& & a_{3} & \\
& & & a_{4}
\end{array}\right), \quad A_{2}=\left(\begin{array}{cccc}
b_{1} & & & \\
& b_{2} & & * \\
& & b_{3} & \\
O & & b_{4}
\end{array}\right) \text {, } \\
& A_{0}=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{2} & P_{1}
\end{array}\right), \\
& C_{1}+P_{1} U_{1}=c_{2}-c_{1}+\binom{C_{2}}{U_{2}}\left(\begin{array}{ll}
1 & P_{2}
\end{array}\right), \quad C_{2}+P_{2} U_{2}=c_{3}-c_{2},
\end{aligned}
$$

where

$$
U_{1}=\left(\begin{array}{cc}
1 & u_{12} \\
1 & 1
\end{array}\right), \quad P_{1}=\left(\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right), \quad U_{2}=(v), \quad P_{2}=(q) .
$$

Then $\left(u_{12}, p_{12}, v, q\right)$ is a regular coordinate.
$\left(221,221,1^{5}\right)$

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{cc|c|c}
a_{1} & & O & O \\
& a_{1} & O & O \\
\hline * & a_{2} & & O \\
\hline * & * & a_{3}
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc|c|c}
b_{1} & & * & * \\
& b_{2} & & \\
\hline O & b_{3} & & * \\
\hline O & & b_{4} & \\
\hline O & O & b_{5}
\end{array}\right), \\
& A_{0}=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{3} & P_{1}
\end{array}\right) \\
& C_{1}+P_{1} U_{1}=c_{2}-c_{1}+\binom{C_{2}}{U_{2}}\left(\begin{array}{ll}
1 & P_{2}
\end{array}\right), \quad C_{2}+P_{2} U_{2}=c_{3}-c_{2}
\end{aligned}
$$

where

$$
U_{1}=\left(\begin{array}{ccc}
1 & u_{12} & u_{13} \\
1 & 1 & 1
\end{array}\right), \quad P_{1}=\left(\begin{array}{cc}
p_{11} & p_{12} \\
p_{21} & p_{22} \\
p_{31} & p_{32}
\end{array}\right), \quad U_{2}=\binom{v_{1}}{v_{2}}, \quad P_{2}=\left(\begin{array}{ll}
q_{1} & q_{2}
\end{array}\right) .
$$

Then $\left(u_{12}, p_{21}, v_{2}, q_{2}\right)$ is a regular coordinate.
$\left(32,1^{5}, 1^{5}\right)$

$$
\begin{gathered}
A_{1}=\left(\begin{array}{ccc}
a_{1} & & O \\
& \ddots & \\
* & & a_{5}
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
b_{1} & & * \\
& \ddots & \\
O & & b_{5}
\end{array}\right), \\
A_{0}=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{2} & P_{1}
\end{array}\right), \quad C_{1}+P_{1} U_{1}=c_{2}-c_{1},
\end{gathered}
$$

where

$$
U_{1}=\left(\begin{array}{cc}
1 & u_{12} \\
1 & u_{22} \\
1 & 1
\end{array}\right), \quad P_{1}=\left(\begin{array}{ccc}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23}
\end{array}\right) .
$$

Then $\left(u_{12}, u_{22}, p_{21}, p_{22}\right)$ is a regular coordinate.
$\underline{\left(2^{3}, 2^{3}, 2211\right)}$

$$
\begin{aligned}
A_{1}= & \left(\begin{array}{cc|c|c}
a_{1} & & O & O \\
& a_{1} & O & O \\
\hline * & a_{2} & & O \\
& * & * & a_{3} \\
\hline & \\
\hline & & a_{3}
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc|c|c}
b_{1} & & * & * \\
& b_{1} & * & * \\
\hline O & b_{2} & & * \\
\hline O & O & b_{3} & \\
\hline & & & \\
\hline & & b_{2} & * \\
& A_{0}=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{2} & P_{1}
\end{array}\right) \\
& C_{1}+P_{1} U_{1}=c_{2}-c_{1}+\binom{C_{2}}{U_{2}}\left(\begin{array}{ll}
I_{2} & P_{2}
\end{array}\right), \quad C_{2}+P_{2} U_{2}=c_{3}-c_{2}
\end{array}\right.
\end{aligned}
$$

where

$$
\begin{gathered}
U_{1}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right), \quad P_{1}=\left(\begin{array}{cc}
1 & p_{12} \\
p_{21} & p_{22} \\
p_{31} & p_{32} \\
p_{41} & p_{42}
\end{array}\right), \\
U_{2}=\left(\begin{array}{ll}
v_{11} & v_{12} \\
v_{21} & v_{22}
\end{array}\right), \quad P_{2}=\left(\begin{array}{cc}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right) .
\end{gathered}
$$

Then $\left(v_{11}, v_{12}, v_{21}, q_{22}\right)$ is a regular coordinate.
$\left(33,2211,1^{6}\right)$

$$
\begin{gathered}
A_{1}=\left(\begin{array}{cc|c|c}
a_{1} & & O & O \\
& a_{1} & O & O \\
\hline * & a_{2} & & O \\
\hline * & * & a_{3} & \\
\hline & * & a_{4}
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc|c|c}
b_{1} & & * & * \\
& b_{2} & * & * \\
\hline O & b_{3} & & * \\
\hline O & O & b_{5} & * \\
\hline & & b_{6}
\end{array}\right), \\
A_{0}=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{3} & P_{1}
\end{array}\right), \quad C_{1}+P_{1} U_{1}=c_{2}-c_{1}
\end{gathered}
$$

where

$$
U_{1}=\left(\begin{array}{ccc}
1 & u_{12} & u_{13} \\
1 & u_{22} & u_{23} \\
1 & 1 & 1
\end{array}\right), \quad P_{1}=\left(\begin{array}{ccc}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{array}\right)
$$

Then $\left(u_{22}, u_{23}, p_{22}, p_{23}\right)$ is a regular coordinate.
$\left(44,2^{4}, 22211\right)$

$$
A_{1}=\left(\begin{array}{cc|c|c|c}
a_{1} & & O & O & O \\
\hline a_{1} & O & & 0 \\
\hline * & a_{2} & a_{2} & O & O \\
\hline * & * & a_{3} & & O \\
\hline * & * & * & a_{4} & \\
\hline *
\end{array}\right)
$$

$A_{2}=\left(\begin{array}{cr|c|c|c}b_{1} & & * & * & * \\ & b_{1} & * & * & * \\ \hline O & b_{2} & & * & * \\ \hline O & O & b_{3} & & * \\ \hline O & O & O & b_{4} & \\ \hline O & & b_{2} & * & * \\ \hline\end{array}\right)$,
$A_{0}=c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}I_{4} & P_{1}\end{array}\right), \quad C_{1}+P_{1} U_{1}=c_{2}-c_{1}$,
where

$$
U_{1}=\left(\begin{array}{cccc}
1 & 0 & u_{13} & u_{14} \\
0 & 1 & 1 & u_{24} \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right), \quad P_{1}=\left(\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
p_{41} & p_{42} & p_{43} & p_{44}
\end{array}\right) .
$$

Then $\left(u_{13}, u_{14}, p_{41}, p_{42}\right)$ is a regular coordinate.
It is not yet known whether regular coordinates exist for the remaining cases $\left(44,332,1^{8}\right),\left(55,3331,2^{5}\right)$ and $\left(66,444,2^{5} 11\right)$.
4. Coalescence of eigenvalues. The spectral type of a diagonalizable matrix changes when two eigenvalues coalesce. Then any spectral type is obtained from (1^{n}) by an iteration of coalescences of the eigenvalues.

Since we have a regular coordinate for $\mathcal{M}(\overrightarrow{\mathcal{O}})$ with spectral type $\left(1^{n}, 1^{n}, \ldots, 1^{n}\right)$ by Proposition 2.3, we may have regular coordinates for other spectral types by coalescences of eigenvalues. In some particular cases, we can actually have regular coordinates in this way.

Proposition 4.1. We have a regular coordinate for $\mathcal{M}\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$ with spectral type

$$
\left(21^{n-2}, 1^{n}, \ldots, 1^{n}\right)
$$

Proof. We regard $\overrightarrow{\mathcal{O}}=\left(\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p}\right)$ as a result of a coalescence of a tuple $\overrightarrow{\mathcal{C}}=$ $\left(\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{p}\right)$ of spectral type $\left(1^{n}, 1^{n}, \ldots, 1^{n}\right)$. Let $\left(A_{0}, A_{1}, \ldots, A_{p}\right)$ be a representative
of a generic point of $\mathcal{M}(\overrightarrow{\mathcal{C}})$. We parametrize $\left(A_{0}, A_{1}, \ldots, A_{p}\right)$ by using the regular coordinate as in the proof of Proposition 2.3. We consider the coalescence $a_{02} \rightarrow a_{01}$. As explained in Section 2, this induces two relations

$$
\begin{equation*}
\sum_{j=1}^{p-1}\left((1,2) \text {-entry of } A_{j}\right)=0, \quad \sum_{j=1}^{p-1}\left((2,1) \text {-entry of } A_{j}\right)=0 \tag{13}
\end{equation*}
$$

If $n \geq 4$ and $p \geq 3$, 13 becomes a system of linear equations in $\left(u_{2}^{1}\right)_{1},\left(u_{2}^{2}\right)_{2}$, and the coefficient matrix is

$$
\left(\begin{array}{cc}
\left(p_{2}^{1}\right)_{1} & -\left(p_{2}^{2}\right)_{1} \\
-\left(p_{2}^{1}\right)_{2} & \left(p_{2}^{2}\right)_{2}
\end{array}\right)
$$

which is generically non-singular. Thus we obtain a regular coordinate from one for $\mathcal{M}(\overrightarrow{\mathcal{C}})$ by eliminating $\left(u_{2}^{1}\right)_{1}$ and $\left(u_{2}^{2}\right)_{2}$.

If $n=3$ and $p \geq 3$, 13) becomes a system of linear equation in $\left(u_{2}^{1}\right)_{1},\left(u_{2}^{2}\right)_{1}$ with non-singular coefficient matrix, and hence we obtain a regular coordinate by eliminating them. Similarly, if $n \geq 4$ and $p=2$, we can eliminate $\left(p_{2}^{1}\right)_{1},\left(p_{2}^{1}\right)_{2}$. In the case $n=3$ and $p=2$, the result of the coalescence is rigid, and hence $\mathcal{M}(\overrightarrow{\mathcal{O}})$ becomes a point.

When $n=2$ and $p \geq 3$, we use another normalization. We set

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{ll}
a_{1} & \\
& a_{2}
\end{array}\right), \quad A_{p}=\left(\begin{array}{ll}
b_{1} & \\
& b_{2}
\end{array}\right) \\
& A_{j}=c_{j 1}+\binom{d_{j}}{v_{j}}\left(\begin{array}{ll}
1 & q_{j}
\end{array}\right), \quad d_{j}+q_{j} v_{j}=c_{j 2}-c_{j 1} \quad(1 \leq j \leq p-1)
\end{aligned}
$$

and normalize $q_{1}=1$ by the action of GL(1). Then v_{1} is determined by the trace condition, and hence the system (13) becomes

$$
\left\{\begin{array}{l}
\sum_{j=2}^{p-1}\left(q_{j}-1\right) v_{j}=a_{1}+b_{1}+\sum_{j=1}^{p-1} c_{j 2} \tag{14}\\
\sum_{j=2}^{p-1} q_{j}\left(q_{j}-1\right) v_{j}=\sum_{j=2}^{p-1}\left(c_{j 2}-c_{j 1}\right) q_{j}-a_{1}-b_{1}-c_{11}-\sum_{j=2}^{p-1} c_{j 2}
\end{array}\right.
$$

which is a system of linear equations in v_{2}, \ldots, v_{p-1}. If $p \geq 4$, we can solve this system in v_{2}, v_{3}, and hence get a regular coordinate after the coalescence. If $p=3$, the result of the coalescence is rigid. Finally the case $n=2$ and $p=2$ is rigid.
Definition 4.2. Suppose that $\mathcal{M}(\overrightarrow{\mathcal{C}})$ has a regular coordinate, and that we obtain $\mathcal{M}(\overrightarrow{\mathcal{O}})$ from $\mathcal{M}(\overrightarrow{\mathcal{C}})$ by a coalescence of eigenvalues. If $\mathcal{M}(\overrightarrow{\mathcal{O}})$ has a regular coordinate and if the regular coordinate is rational in the regular coordinate for $\mathcal{M}(\overrightarrow{\mathcal{C}})$, we say that the coalescence induces a good reduction from $\mathcal{M}(\overrightarrow{\mathcal{C}})$ to $\mathcal{M}(\overrightarrow{\mathcal{O}})$.

Since a regular coordinate becomes the unknowns of the deformation equation, a good reduction gives a reduction formula of deformation equations for $\mathcal{M}(\overrightarrow{\mathcal{C}})$ to the deformation equation for $\mathcal{M}(\overrightarrow{\mathcal{O}})$.
Example 4.3. We consider the sequence of coalescences

$$
\left(1^{6}, 1^{6}, 1^{6}\right) \rightarrow\left(31^{3}, 1^{6}, 1^{6}\right) \rightarrow\left(33,1^{6}, 1^{6}\right)
$$

We take a regular coordinate for $\left(1^{6}, 1^{6}, 1^{6}\right)$ according to Proposition 2.3 .

$$
\begin{aligned}
A_{0} & =\left(\begin{array}{ccc}
a_{1} & & O \\
& \ddots & \\
* & & a_{6}
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
b_{1} & & * \\
& \ddots & \\
O & & b_{6}
\end{array}\right) \\
A_{1} & =c_{1}+\binom{C_{1}}{U_{1}}\left(\begin{array}{ll}
I_{5} & P_{1}
\end{array}\right), \\
C_{1}+P_{1} U_{1} & =c_{2}-c_{1}+\binom{C_{2}}{U_{2}}\left(\begin{array}{ll}
I_{4} & P_{2}
\end{array}\right), \\
C_{2}+P_{2} U_{2} & =c_{3}-c_{2}+\binom{C_{3}}{U_{3}}\left(\begin{array}{ll}
I_{3} & P_{3}
\end{array}\right), \\
C_{3}+P_{3} U_{3} & =c_{4}-c_{3}+\binom{C_{4}}{U_{4}}\left(\begin{array}{ll}
I_{2} & P_{4}
\end{array}\right), \\
C_{4}+P_{4} U_{4} & =c_{5}-c_{4}+\binom{C_{5}}{U_{5}}\left(\begin{array}{ll}
1 & P_{5}
\end{array}\right), \\
C_{5}+P_{5} U_{5} & =c_{6}-c_{5} .
\end{aligned}
$$

We normalize $U_{1}=\left(\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right)$, and determine P_{1} by 12 . Then the entries of $U_{2}, P_{2}, U_{3}, P_{3}, U_{4}, P_{4}, U_{5}$ and P_{5} make a regular coordinate.

We consider the first coalescence $\left(1^{6}, 1^{6}, 1^{6}\right) \rightarrow\left(31^{3}, 1^{6}, 1^{6}\right)$ by taking $c_{5}, c_{6} \rightarrow c_{4}$. Then

$$
U_{4}=O, \quad P_{4}=O, \quad U_{5}=O, \quad P_{5}=O
$$

and the entries of U_{2}, P_{2}, U_{3} and P_{3} make a regular coordinate after the first coalescence. Thus the first coalescence induces a good reduction.

Next we consider the second coalescence $\left(31^{3}, 1^{6}, 1^{6}\right) \rightarrow\left(33,1^{6}, 1^{6}\right)$ by taking $c_{2}, c_{3} \rightarrow c_{1}$. After the second coalescence, we obtain the parametrization

$$
A_{1}=c_{1}+\binom{D_{1}}{V_{1}}\left(\begin{array}{ll}
I_{3} & Q_{1}
\end{array}\right), \quad D_{1}+Q_{1} V_{1}=c_{4}-c_{1}
$$

where

$$
\begin{gathered}
V_{1}=\left(\begin{array}{ccc}
v_{11}-\left(a_{4}+b_{4}+c_{1}\right) & v_{12}-\left(a_{4}+b_{4}+c_{1}\right) & v_{13}-\left(a_{4}+b_{4}+c_{1}\right) \\
v_{21}-\left(a_{5}+b_{5}+c_{1}\right) & v_{22}-\left(a_{5}+b_{5}+c_{1}\right) & v_{23}-\left(a_{5}+b_{5}+c_{1}\right) \\
1 & 1 & 1
\end{array}\right), \\
Q_{1}=\left(\begin{array}{ccc}
q_{11} & q_{12} & q_{13} \\
q_{21} & q_{22} & q_{23} \\
q_{31} & q_{32} & q_{33}
\end{array}\right)
\end{gathered}
$$

with the relation

$$
\left(\begin{array}{ccc}
v_{11} & v_{12} & v_{13} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
q_{11} \\
q_{21} \\
q_{31}
\end{array}\right)=\binom{0}{1}, \quad\left(\begin{array}{ccc}
v_{21} & v_{22} & v_{23} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
q_{12} \\
q_{22} \\
q_{32}
\end{array}\right)=\binom{0}{1}
$$

$$
\begin{aligned}
& q_{13}=a_{1}+b_{1}+c_{4}+\left(a_{4}+b_{4}+c_{1}\right) q_{11}+\left(a_{5}+b_{5}+c_{1}\right) q_{12}-q_{11} v_{11}-q_{12} v_{21}, \\
& q_{23}=a_{2}+b_{2}+c_{4}+\left(a_{4}+b_{4}+c_{1}\right) q_{21}+\left(a_{5}+b_{5}+c_{1}\right) q_{22}-q_{21} v_{12}-q_{22} v_{22}, \\
& q_{33}=a_{3}+b_{3}+c_{4}+\left(a_{4}+b_{4}+c_{1}\right) q_{31}+\left(a_{5}+b_{5}+c_{1}\right) q_{32}-q_{31} v_{13}-q_{32} v_{23} .
\end{aligned}
$$

Thus $\left(v_{11}, v_{12}, v_{21}, v_{22}, q_{11}, q_{21}, q_{12}, q_{22}\right)$ makes a regular coordinate after the second coalescence. This regular coordinate can be written in terms of the regular coordinate before the second coalescence as follows. We set

$$
\begin{gathered}
U_{2}=\left(\begin{array}{lll}
u_{21} & u_{22} & u_{23} \\
u_{24}
\end{array}\right), \quad U_{3}=\left(\begin{array}{lll}
u_{31} & u_{32} & u_{33}
\end{array}\right), \\
P_{2}=\left(\begin{array}{l}
p_{21} \\
p_{22} \\
p_{23} \\
p_{24}
\end{array}\right), \quad P_{3}=\left(\begin{array}{c}
p_{31} \\
p_{32} \\
p_{33}
\end{array}\right) .
\end{gathered}
$$

Then we have

$$
\begin{aligned}
& v_{11}=\left(1-p_{31}\right)\left(u_{31}-u_{33}\right)-p_{32}\left(u_{32}-u_{33}\right)-p_{24}\left(u_{21}-u_{24}\right), \\
& v_{12}=-p_{31}\left(u_{31}-u_{33}\right)+\left(1-p_{32}\right)\left(u_{32}-u_{33}\right)-p_{24}\left(u_{22}-u_{24}\right), \\
& v_{13}=-p_{31}\left(u_{31}-u_{33}\right)-p_{32}\left(u_{32}-u_{33}\right)-p_{24}\left(u_{23}-u_{24}\right), \\
& v_{21}=\left(1-p_{21}\right)\left(u_{21}-u_{24}\right)-p_{22}\left(u_{22}-u_{24}\right)-p_{23}\left(u_{23}-u_{24}\right), \\
& v_{22}=-p_{21}\left(u_{21}-u_{24}\right)+\left(1-p_{22}\right)\left(u_{22}-u_{24}\right)-p_{23}\left(u_{23}-u_{24}\right), \\
& v_{23}=-p_{21}\left(u_{21}-u_{24}\right)-p_{22}\left(u_{22}-u_{24}\right)+\left(1-p_{23}\right)\left(u_{23}-u_{24}\right), \\
& q_{11}=p_{31}, \\
& q_{21}=p_{32}, \\
& q_{31}=p_{33}, \\
& q_{12}=p_{21}+p_{31} p_{24}, \\
& q_{22}=p_{22}+p_{32} p_{24}, \\
& q_{32}=p_{23}+p_{33} p_{24} .
\end{aligned}
$$

Thus the second coalescence also induces a good reduction.
Example 4.4. In the proof of Proposition 4.1 we see that the coalescence $(11,11, \ldots, 11)$ $\rightarrow(2,11, \ldots, 11)$ induces a good reduction. We shall show that, when $p=4$, this good reduction gives a reduction formula of the Garnier system in two variables to the sixth Painlevé equation.

Take $p=4$ and retain the notation in the proof of Proposition 4.1, so that $s(\overrightarrow{\mathcal{C}})=$ $(11,11,11,11,11), s(\overrightarrow{\mathcal{O}})=(2,11,11,11,11)$. We have a regular coordinate $\left(v_{2}, v_{3}, q_{2}, q_{3}\right)$ for $\mathcal{M}(\overrightarrow{\mathcal{C}})$. By a coalescence $a_{2} \rightarrow a_{1}$, we get $\overrightarrow{\mathcal{O}}$, and have a regular coordinate (q_{2}, q_{3}) for $\mathcal{M}(\overrightarrow{\mathcal{O}})$. By solving 14 in v_{2} and v_{3}, we have

$$
\begin{align*}
& v_{2}=\frac{a_{1}+b_{1}+c_{11}+c_{22}+c_{32}+\left(c_{21}-c_{22}\right) q_{2}+\left(a_{1}+b_{1}+c_{12}+c_{22}+c_{31}\right) q_{3}}{\left(q_{2}-1\right)\left(q_{3}-q_{2}\right)}, \tag{15}\\
& v_{3}=\frac{a_{1}+b_{1}+c_{11}+c_{22}+c_{32}+\left(a_{1}+b_{1}+c_{12}+c_{21}+c_{32}\right) q_{2}+\left(c_{31}-c_{32}\right) q_{3}}{\left(q_{3}-1\right)\left(q_{2}-q_{3}\right)} .
\end{align*}
$$

The deformation equation for $\mathcal{M}(\overrightarrow{\mathcal{C}})$ is the Garnier system in two variables, and that for $\mathcal{M}(\overrightarrow{\mathcal{O}})$ is the sixth Painlevé equation. Then we can regard $\left(v_{2}, v_{3}, q_{2}, q_{3}\right)$ as the unknowns of the Garnier system, and $\left(q_{2}, q_{3}\right)$ as the unknowns of the sixth Painlevé equation. Hence, if we put (15) into the Garnier system and set $a_{2}=a_{1}$, we obtain the sixth Painlevé equation. In this way, we get the reduction formula.

Acknowledgments. The research was supported by the JSPS grant-in-aid for scientific research B, No. 21340038.

References

[1] L. F. Alday, D. Gaiotto, Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010), 167-197.
[2] W. Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J. 118 (2003), 339-352.
[3] M. Dettweiler, S. Reiter, An algorithm of Katz and its application to the inverse Galois problem, J. Symbolic Comput. 30 (2000), 761-798.
[4] K. Fuji, T. Suzuki, Drinfeld-Sokolov hierarchies of type A and fourth order Painlevé systems, Funkcial. Ekvac. 53 (2010), 143-167.
[5] Y. Haraoka, G. Filipuk, Middle convolution and deformation for Fuchsian systems, J. Lond. Math. Soc. (2) 76 (2007), 438-450.
[6] M. Inaba, K. Iwasaki, M. Saito, Dynamics of the sixth Painlevé equation, in: Théories asymptotiques et équations de Painlevé, Sémin. Congr. 14, Soc. Math. France, Paris, 2006, 103-167.
[7] M. Jimbo, T. Miwa, Y. Môri, M. Sato, Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica D 1 (1980), 80-158.
[8] N. M. Katz, Rigid Local Systems, Ann. of Math. Stud. 139, Princeton Univ. Press, Princeton, NJ, 1996.
[9] V. P. Kostov, On the Deligne-Simpson problem, Trudy Mat. Inst. Steklov. 238 (2002), 158-195; English transl.: Proc. Steklov Inst. Math. 238 (2002), 148-185.
[10] V. P. Kostov, The Deligne-Simpson problem for zero index of rigidity, in: Perspectives of Complex Analysis, Differential Geometry and Mathematical Physics (St. Konstantin, 2000), World Scientific, River Edge, NJ, 2001, 1-35.
[11] K. Okamoto, Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Japan. J. Math. (N.S.) 5 (1979), 1-79.
[12] T. Oshima, Classification of Fuchsian systems and their connection problem, RIMS Kôkyûroku Bessatsu, to appear; arXiv:0811.2916.
[13] T. Oshima, Fractional calculus of Weyl algebra and Fuchsian differential equations, http://akagi.ms.u-tokyo.ac.jp/~oshima/index-j.html
[14] H. Sakai, Isomonodromic deformations and Painlevé equations of dimension 4, talk at Autumn Meeting of Mathematical Society of Japan, at Nagoya Univ., 2010.
[15] T. Tsuda, UC hierarchy and monodromy preserving deformation, arXiv:1007.3450
[16] Y. Yamada, A quantum isomonodromy equation and its application to $\mathcal{N}=2 S U(N)$ gauge theories, J. Phys. A 44 (2011), 055403, 9 pp.. See also arXiv:1011.0292.

