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Abstract. In this paper we analyze movable singularities of the solutions of the equation for
self-similar profiles resulting from semilinear wave equation. We study local analytic solutions
around two fixed singularity points of this equation—ρ = 0 and ρ = 1. The movable singularities
of local analytic solutions at the origin will be connected with those of the Lane–Emden equation.
The function describing approximately their position on the complex plane will be derived. For
ρ > 1 some topological considerations will be presented that describe movable singularity of
local analytic solution at ρ = 1. Numerical illustrations of the results will also be provided.

1. Introduction. This paper is the continuation of our studies on self-similar profiles
of semilinear wave equations extended to higher space dimensions [14]. We studied the
equation

(1− ρ2)u′′ +
(n− 1

ρ
− 2(p+ 1)

p− 1
ρ
)
u′ − 2(p+ 1)

(p− 1)2
u+ up = 0, (1)

for self-similar profiles u(ρ). We described conditions that lead to global analytic profiles
on ρ ∈ [0; 1] for integer even p > 2 and integer n ≥ 3. This equation is connected with
the semilinear wave equation

Φtt −4Φ− Φp = 0, Φ = Φ(x, t), x ∈ Rn, (2)

when we look for the solutions in the self-similar form

Φ(t, r) = (T − t)−αu(ρ), ρ =
r

T − t
, α =

2
p− 1

, (3)

where r = |x|. These solutions play an important role in time evolution of (2) as it was
shown in many papers, see for example [3], [2] and the references therein. If the profile is
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regular then blowup develops when t → T . As examples of simple self-similar solutions
we present

Φ0(t) =
b0

(T − t)α
, b0 =

(2(p+ 1)
(p− 1)2

)1/(p−1)

, (4)

which is obtained when we assume that the solution of (2) does not depend on spatial
coordinates and solve the resulting ODE, and

Φ∞(r) = b∞r
−α, b∞ =

(2(p(n− 2)− n)
(p− 1)2

)1/(p−1)

, (5)

which is spherically symmetric static solution. Corresponding profiles are u0(ρ) = b0 and
u∞(ρ) = b∞ρ

−α, respectively. The first solution is the asymptotics of generic blowup
of (2) (see [2]) and the profile of the second solution is important in the proof of the
existence of other global analytic profiles, see [3] and [14].

In [14] we showed that the local analytic solutions of (1) at the singular point ρ = 0
may be expanded in the convergent power series u(ρ) =

∑∞
l=0 alρ

l with the coefficients
given by the following recurrence

a0 = c, a1 = 0, al+2 =

(
l(l − 1) + l(2α+ 2) + α(α+ 1)

)
al − cl

(l + 2)(l + n)
, (6)

where cl coefficients are given by the Cauchy product [9]( ∞∑
l=0

al(x− x0)l
)p

=
∞∑
l=0

cl(x− x0)l,

c0 = ap0, cm =
1

ma0

m∑
l=1

(lp−m+ l)alcm−l,

(7)

for m > 0, and a0 = c is a free parameter. The Cauchy product simplifies power type
nonlinearities and allows us to obtain a recurrence for the coefficients in compact form.

We also showed that at the other interesting singular point ρ = 1 there also exist
local analytic solutions expressible by the convergent power series u(y) =

∑∞
l=0 aly

l with
y = 1− ρ whose form is controlled by the parameter

k =
(n− 1)p− n− 3

2(p− 1)
. (8)

For noninteger k the recurrence relation for the power series coefficients is of the form

a0 = b, a1 =
2(p+ 1)a0 − (p− 1)2c0

2(1− k)(p− 1)2
,

al+1 =

(
3l(l − 1) + 2l 2(p+1)

p−1 + 2(p+1)
(p−1)2

)
al − cl

2(l + 1)(l − k + 1)

+
cl−1 −

(
(l − 1)(l − 2) + (l − 1) 2(p+1)

p−1 + 2(p+1)
(p−1)2

)
al−1

2(l + 1)(l − k + 1)
,

(9)

where b is a free parameter and cl are the Cauchy product coefficients. However, when k is
integer then the first k coefficients {a0, . . . , ak−1} have fixed numerical values taken from
the set of solutions of nonlinear polynomial system presented in [14], the free parameter b
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appears at yk

u(y) = a0 + . . .+ ak−1y
k−1 + byk + f1(b, a0, . . . , ak−1)yk+1 + . . . , (10)

and further coefficients result from the unique recurrence relation.
All these series above have nonzero radius of convergence, therefore, they are local

solutions around expansion points. Moreover, it was proven that the singularities of the
above solutions do not occur on the real axis for ρ ∈ (0; 1) when we do analytic con-
tinuation. Hence, we could match these asymptotics along the real axis which resulted
in quantization conditions of initial data c and b at both endpoints ρ = 0 and ρ = 1,
respectively—countable family of the initial data {cl, bl}∞l=0 describes global analytic so-
lutions on the interval [0; 1]; see [3], [14] for details.

In this paper we examine the value of the radius of convergence for power series de-
scribing local solutions at ρ = 0 and ρ = 1. This radius is the distance from expansion
point to the nearest singularity on the complex plane. The equation (1) has fixed singu-
larities1 connected with the singularities of the equation coefficients at ρ = 0, ρ = ±1
and ∞. Hence, the radius of convergence for the power series of local solutions at ρ = 0
and also at ρ = 1 should equal at most 1. However, it can be smaller because of additional
movable singularities which correspond to the specific value of initial data c and b and
move over the complex plane as initial conditions are varied. They are difficult to find
because their location cannot be deduced from the equation but only from the solution.
In practice, the solution is not known in closed form, but by a convergent Taylor series
only. In this case one can calculate the circle around expansion point on which singular-
ities are located, nonetheless, their exact location on this circle is usually a difficult task
and numerical methods must be used.

The paper is organized as follows. In the first step we connect the movable singu-
larities of local analytic solution at ρ = 0 with the corresponding singularities of the
Lane–Emden equation. In the next step we examine the movable singularity of the local
analytic solution at ρ = 1. Almost all results will be asymptotic ones, however, we check
numerically their region of validity.

2. Local solutions at ρ = 0. In the study of the movable singularities of local analytic
solutions at ρ = 0 we use vast theory of the Lane–Emden equation which can be found,
for example, in [11] and in the references therein. The Lane–Emden equation (LE) is of
the form

y′′ +
n− 1
x

y′ + yp = 0, y = y(x), (11)

with normalized initial conditions y(0) = 1, y′(0) = 0. This equation is used by astro-
physicists to model static star structure, however, we use it because of other reasons.
This equation is one of the simplest second order ODE with fixed singularities at 0, ∞
and power-type nonlinearity2. The equation (11) has the formal power series solution

1For the theory of ODEs in the complex domain see [12], [10] or [1]. Recent results on movable
singularities can be found, e.g., in [8] in general setup and in [6] and [5] for Painlevé equations
using Power Geometry.

2Moreover, first two terms in (11) are in fact the radial part of the Laplace operator 4 :=∑n
l=1 ∂

2
xl

which widely appears in the applications to physical systems.
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y(x) =
∑∞
l=0 alx

l with [15]

a0 = 1, a1 = 0, al+2 =
−cl

(l + 1)(l + n)
for l ≥ 2, (12)

where cl can be computed using the Cauchy product (7). The proof for nonzero radius of
convergence for the series can be conducted by the same line of argument as in [3], [14],
i.e., by writing (11) as the system{

y′ = v

xv′ = −(n− 1)v − xyp,
(13)

from Proposition 1 in [4] the statement results. The radius of convergence of the solution
given by (12) is usually finite [11], [15] and therefore there exist movable singularities
that restrict the value of the radius of convergence. It is also well known that there is
a pair of movable singularities located symmetrically around the origin on the imaginary
axis. The position of these singularities on the complex plane are tabulated for n = 3 and
different p in [11]. A solution outside the circle of convergence can be constructed using
analytic continuation [15].

Now we describe some applications of the theory of the LE equation to the semilinear
wave equation. We will show that the structure of movable singularities for local solutions
of (1) at ρ = 0 is similar to those of the LE equation. In addition we will show the
connection between the radius of convergence of the series solution of the Lane–Emden
equation RLE and the radius of convergence for power series solutions of semilinear wave
equation RW (c) for fixed n, p and the initial value c at ρ = 0. We develop some hints
and calculations presented in [14] and interpret the results in different way arriving at
the mentioned result. We start, as in [14], from the power series solution at ρ = 0 with
the coefficients (6). Using the rescaling of the form

ρ =
x

c(p−1)/2
, (14)

y = u/c, (15)

this power series solution at ρ = 0 transforms as

u(ρ) = cy
( x

c(p−1)/2

)
= c

[(
1− 1

2n
x2 +O(x4)

)
+ o
(1
c

)]
(16)

and the equation (1) as (′ = d
dx )

y′′ +
n− 1
x

y′ + yp =
1

cp−1

(
x2y′′ + (2α+ 2)xy′ + α(α+ 1)y

)
, (17)

where, as previously, α = 2/(p − 1). For large values of c the leading order asymptotics
of the power series (16) fulfils (17) with vanishing right hand side, i.e., the LE equation
(11). This suggests that for given n, p and large initial data c the singularities of the
local solutions of (1) at ρ = 0 correspond to the singularity of the LE equation. This
correspondence is easy to obtain—using again (14) we have

RLE ≈ RW c(p−1)/2 (18)

or R2
LE ≈ R2

W c
p−1 (19)

for the squares of the both radii of convergence. The last formula is more convenient to
use because the series have expansion in even powers of variable. In this relation for fixed
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n and p the value of RLE is also fixed, hence RW = RW (c), which gives an approximate
relation describing the change of the radius of convergence as the movable singularity
moves on the complex plane. This connection suggests that movable singularities of the
local solutions of semilinear wave equation are also located as for LE solutions. In fact,
as numerical scanning of the complex plane indicates, there are two such singularities
located on the imaginary axis symmetrically around the origin3 and move only along this
axis, see Figure 1. For small values of c movable singularities are outside the unit circle
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Fig. 1. Density plot of the modulus of the solution for n = 3, p = 7, c = 2. Singularities are
located approximately at ρ = ±0.17487i.

around the origin on the complex plane (Figure 2), therefore, power series expansion
at ρ = 0 has the radius of convergence equal to 1—the distance from the expansion
point to the nearest fixed singularities at ρ = ±1. However, for given n, p, when c→∞
the movable singularities tend to the fixed singularity at ρ = 0, therefore, for large c
these singularities enter the unit circle and this results in the decrease of the radius of
convergence of power series solution at ρ = 0. In that sense these movable singularities
may be called the confluent or coalescent ones. This result, although simple, is important
because even if we do not know the closed form of the function expressible by the power
series (6), we obtain the approximation to the location of its singular points.

To illustrate the accuracy of (19) we use the following simple method to estimate
the square of the radius of convergence. For given n and p, using (12), we can calculate
coefficients of the power series. Then the ratio R2

LE(l) = a2l/a2l+2 in the limit l → ∞
gives the estimation for R2

LE . This is a standard ratio test adopted to the series even in
the powers of x, hence square. However, this limit cannot be performed using numerical
methods, so next, we fit f(l) = R2

LE+a/lb forR2
LE(l) and large values of l. This determines

numerical estimation of the square of the radius of convergence R2
LE . The same procedure

3This is also suggested by the fact that the power series solutions for both equations are even
ones.
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Fig. 2. Singularities of local analytic solution around ρ = 0 on the complex plane of ρ. Fixed
singularities at ρ = 0 and ρ = ±1 are marked as well as the movable singularities of the power
series solution at ρ = 0 which are located symmetrically around the origin on the imaginary axis
and move along this axis. The unit circle is also drawn.

can be applied for the estimation of R2
W . We choose n = 3, p = 7 case as an example.

In the first step of the verification of (19) we estimate the radius of convergence of the
LE solution (Figure 3), with the result R2

LE = 1.92916. Using this estimation and (19)
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Fig. 3. n = 3, p = 7 ratio test for the Lane–Emden equation.
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we obtain Table 1, from which one can see that the approximate equality (19) valid for
large c is also fulfilled for small values of c. In Figure 4 we presented graphically the
values from the table, and the curve (19).

c R2
W R2

W -theory R2
W−R

2
W

R2
W

0.5 1.0 NA NA
1.0 1.0 NA NA
1.5 1.838680E−001 1.693638E−001 8.56391E−002
2.0 3.058030E−002 3.014313E−002 1.45033E−002
2.5 7.931650E−003 7.901839E−003 3.77262E−003
3.0 2.649650E−003 2.646310E−003 1.26213E−003
3.5 1.049970E−003 1.049446E−003 4.99574E−004
4.0 4.710920E−004 4.709863E−004 2.24363E−004
4.5 2.323490E−004 2.323235E−004 1.09705E−004
5.0 1.234740E−004 1.234662E−004 6.28512E−005

Table 1. n = 3, p = 7; R2
W—theoretical estimation of the radius of convergence based on (19).

The cells with the values NA indicate that movable singularities are outside the unit circle and
the ratio test cannot be applied to locate them. In this case the method must be generalized
by analytic continuation of local power series at ρ = 0 along the imaginary axis and then
determination of the border for this continuation—movable singularities. We do not do this here
because we only want to check the impact of movable singularities on the value of the radius of
convergence of local analytic solution at ρ = 0.
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Fig. 4. n = 3, p = 7, comparison of numerical estimation and (19) for squares of the radius of
convergence.

We are now in the position to derive the asymptotic of the solution close to movable
singularities. We use the simple test-power test [10] and check its output numerically.
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A similar method for the LE equation was applied in [11]. First, we use the fact that the
power series solution at ρ = 0 is even in ρ, therefore, we change the independent variable
ξ = ρ2 in (1) and we obtain

4ξ(1− ξ)d
2u

dξ2
+
(

2n− 2
(

1 +
2(p+ 1)
p− 1

)
ξ
) du
dξ
− 2(p+ 1)

(p− 1)2
u+ up = 0. (20)

Next, we employ the knowledge of the fact that singularity is located on the imaginary
axis and we again change variable ζ = −ξ to obtain the following approximate equation
near the singularity ρ0 = i

√
ζ0

−4ζ0(1 + ζ0)
d2u

dζ2
≈ up. (21)

Using the power type function u(ζ) = A(ζ0−ζ)β as a trial solution we obtain the following
singularity asymptotics

u(ρ) ≈ (4(1 + ζ0)ζ0)1/(p−1)b0
(ζ0 + ρ2)2/(p−1)

, (22)

where b0 is given by (4). This asymptotics perfectly fits numerical solution as it was
presented in Figure 5. This numerical verification, despite the fact it is approximate
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Fig. 5. Plot of the modulus of the solution for n = 3, p = 7, c = 3 along the imaginary axis
near the movable singularity. The data were fitted with ā/(b̄2 − x2)c̄. From the fit the values
ā = 0.409609, b̄ = 0.0514747 and c̄ = 0.333333 ≈ 1/3 were obtained in agreement with (22). The
parameter ā, according to (22), depends on b̄, which gives an additional method to verify the
applicability of the fit of that form.

check, is vital part of the procedure. It is because the test-power test, although simple, is
conclusive only when the power type ansatz fails. Otherwise, if the test gives an outcome
then this result should be carefully examined, see the discussion and the examples of this
ambiguity in [10], pages 90–91 or in [8].

Fit of the form (22) may be also used to determine a quite good approximation to
the position of movable singularities. The consistency of the fit can be checked because
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in the numerator and the denominator of (22) there is a parameter connected with the
position of singularity ζ0, and other coefficients are known—they are n, p dependent.

3. Local solutions at ρ = 1. In this section we determine the remaining singularity
structure connected with local analytic solution at ρ = 1 on the real axis for ρ > 1. To this
end we show that there exist topological areas of the values of solution that determine
existence of singularities. The results of this section can be visualized if we start from
ρ = 1 and integrate local analytic solution along the real axis in the positive direction.
We start with a few propositions.

Proposition 3.1. Assume that there exist ρ0—a regular point of equation (1) at which
u′(ρ0) = u′′(ρ0) = 0. Then the solution must be u(ρ) = 0 or u(ρ) = ±b0.

Proof. Using the assumptions of the proposition and the equation (1) at ρ0 we obtain
u(ρ0)(bp−1

0 − up−1(ρ0)) = 0 with the solutions u(ρ0) = 0, u(ρ0) = ±b0. As ρ0 is a
nonsingular point of (1), we may use uniqueness to conclude that the only solutions are
u(ρ) = 0 or u(ρ) = ±b0, depending on u(ρ0).

Proposition 3.2. There is no minimum in the area ρ > 1, b0 > u(ρ) > 0.

Proof. Let us assume that there is a minimum of u(ρ) at ρ0 > 1, which means that
u′(ρ0) = 0 and u′′(ρ0) > 0. Then from (1) we get (1−ρ2

0)u′′(ρ0) = u(ρ0)(bp−1
0 −up−1(ρ0)).

However, according to the assumptions, (1 − ρ2
0) < 0 and u(ρ0)(bp−1

0 − up−1(ρ0)) > 0,
hence u′′(ρ0) < 0, which leads to contradiction.

In the same way we can prove the following

Proposition 3.3. There is no maximum in the area ρ > 1, b0 < u(ρ).

Proposition 3.4. There is no maximum in the area ρ > 1, −b0 < u(ρ) < 0.

Proposition 3.5. There is no minimum in the area ρ > 1, −b0 > u(ρ).

The areas from the above propositions are presented in Figure 6. As a conclusion from

Fig. 6. “Topology” of solution for ρ > 1.
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the propositions (see also Proposition 3.1 in [13]) we have that if u(ρ) increase (u′(ρ) > 0)
in the area ρ > 1, b0 < u(ρ), then singularity at some ρ0 may appear when we continue
analytically power series solution at ρ = 1. This leads to the conjecture that singularity
may appear on the real axis for some values of initial data and may move when initial
data is varied. Symmetrically, the same description applies to the area ρ > 1, −b0 > u(ρ)
and decreasing solution.

Now we prove a few simple facts about the sign of u′(1). We start from

Proposition 3.6. At ρ = 1 for k < 1 and 0 < u(1) < b0 we have u′(1) < 0.

Proof. At ρ = 1 from (1) we obtain

2(k − 1)u′(1) = u(1)(bp−1
0 − up−1(1)). (23)

Assumptions imply 2(k−1) < 0 and u(1)(bp−1
0 −up−1(1)) > 0, therefore, we get u′(1) < 0

as claimed.

In the same manner, using (23), one can prove the following

Proposition 3.7. At ρ = 1 for k < 1 and b0 < u(1) we have u′(1) > 0.

Proposition 3.8. At ρ = 1 for k < 1 and −b0 < u(1) < 0 we have u′(1) > 0.

Proposition 3.9. At ρ = 1 for k < 1 and u(1) < −b0 we have u′(1) < 0.

For k > 1 the sign of u′(1) will reverse in the last four propositions according to (23).
We must only examine k = 1. In this case from (23) we get u(1) = 0 or u(1) = ±b0
but no answer about the sign of u′(1). However, as far as we consider local analytic
solutions at ρ = 1 we can use the power series (10) to get u′(y = 0) = −b, where we used
d
dρ = − d

dy . For b > 0 (but the solution has also reflection symmetry) we have u′(1) < 0
and we get that initially the solution aims into the area where there is no minimum,
therefore, there is a possibility that this solution may be continued to infinity for some
values of b, namely, when it does not go outside the interval −b0 ≤ u ≤ b0. Nonetheless,
if |u(1)| is big enough then numerical examples indicate that singularity appears on the
real axis and it arrives from infinity to ρ = 1 when |u(1)| is increased—this behavior will
be numerically illustrated below. In addition, when we consider only global (on [0; 1])
analytic solutions we have [14], [3] that u(1) for noninteger k accumulate around b∞ and
the relation between b∞ and b0 with respect to k is as follows

• b∞ < b0 for k < 1;
• b∞ = b0 for k = 1;
• b∞ > b0 for k > 1.

The above results and conjectures are supported by Figures 7 which present solutions
for ρ > 1 for a few initial values b and different values of k. They were obtained by
numerical integration of the equation (1) from the vicinity of ρ = 1 to infinity along the
real axis using as initial data the local power series solution at ρ = 1. The numerical
integration is (approximately) equivalent to analytic continuation of the series solution
[7], [16]. Numerical experiments suggest that global analytic solutions which result from
the matching of local analytic solutions at ρ = 0 and ρ = 1 have values of the parameter b
such that the movable singularity for ρ > 1 does not exist on the real axis, i.e., they are
finite for ρ > 1 and stay in the area 0 < u(ρ) < b0, i.e., they are positive.
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Fig. 7. Local solutions for ρ ≥ 1 for n = 3, p = 7, k = 2/3 (top); n = 4, p = 5, k = 1 (center);
n = 6, p = 3, k = 3/2 (bottom).

Now we focus on the asymptotics of solutions. First, we derive asymptotic for bounded
solutions as ρ→∞. Assuming asymptotic solution of the form u(ρ) ≈ 1/ρa , where a > 0,
from (1) we have the approximate equality

−ρ2u′′ −
(2(p+ 1)

p− 1
ρ
)
u′ − 2(p+ 1)

(p− 1)2
u ≈ 0, (24)
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which has two solutions of the assumed form

u(ρ) ≈ ρ−2/(p−1), (25)

and
u(ρ) ≈ ρ−(p+1)/(p−1). (26)

For large ρ both approximate solutions are in the area 0 < u(ρ) < b0 and monotonically
tend to zero. An appropriate numerical example that confirms that these asymptotics are
valid for bounded solutions is presented in Figure 8. This behavior is also common for
global analytic solutions as numerical data suggest.
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Fig. 8. Asymptotic for ρ→∞ for n = 3, p = 7, b = 0.5 when the solution is bounded. Fit with
f(ρ) = a + b/ρc and a = 10−30, b = 0.324967 and c = 0.333334 ≈ 1/3, which is in agreement
with (25).

Next, we derive the asymptotics near the movable singularity. From the previous
considerations we conclude that the singularity is on the real axis at ρ0 > 1 for appropriate
initial data. To determine solution behavior near this ρ0 we change independent variable
y = ρ− 1 in (1) to obtain

−y(2 + y)u′′ +
(n− 1

1 + y
− 2(p+ 1)

p− 1
(1 + y)

)
u′ − 2(p+ 1)

(p− 1)2
u+ up = 0. (27)

In the vicinity of the singularity at y0 = ρ0 − 1 we can write the approximate equation

y0(2 + y0)u′′ ≈ up. (28)

As previously, searching for the solutions of the power type u(y) ≈ A(y0 − y)a we have
the following asymptotics

u(ρ) ≈
(
(ρ0 − 1)(ρ0 + 1)

)1/(p−1)
b0

(ρ0 − ρ)2/(p−1)
, (29)

where again b0 is a constant from (4). Numerical verification of this formula is presented
in Figure 9.
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Fig. 9. Asymptotics for n = 3, p = 7, b = 0.9 near the singularity located on the real axis. Fit
with ā/(b̄− x)c̄ and ā = 1.49289, b̄ = 5.09002, c̄ = 0.333333 ≈ 1/3. This result agrees with (29).
Here, the consistency of the fit can be also checked employing the fact that the parameter ā
should depend on b̄ if the prediction (29) is valid.

This section ends our examination of movable singularities for the solutions of the
equation for the profiles of semilinear wave equation. We were unable to spot any further
movable singularities on the complex plane.

4. Conclusions. This paper shows that movable singularities of the Lane–Emden equa-
tion are closely connected with movable singularities of the local solutions of the equation
for the profiles of semilinear wave equation around the origin. These two ODEs describe
phenomena which result from PDEs that contain part of the Laplace operator in spherical
symmetry. This coincidence can be intuitively explained by the fact that the Lane–Emden
equation is the simplest second order ODE with power type nonlinearity and simple fixed
singularity structure. Moreover, it suggests the general way of treatment of such types
of ODEs which often appears in physical problems. For the profiles of semilinear wave
equation the two types of movable singularities connected with local power series solu-
tions at ρ = 0 and at ρ = 1 are in some sense decoupled, that we could do our analysis
independently for both local analytic solutions. However, if we take appropriate initial
data we can obtain global analytic solution on [0; 1], see [3], [14]. These global analytic
solutions do not possess singularities on the real axis for ρ > 1 as numerics indicates and
therefore they are important in applications as regular self-similar solutions of PDE [2].
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