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Abstract. This is an expository article, based on the talk with the same title, given at the 2011
FASDE II Conference in Będlewo, Poland. In the introduction we define Multiple Zeta Values
and certain historical remarks are given. Then we present several results on Multiple Zeta Values
and, in particular, we introduce certain meromorphic differential equations associated to their
generating function. Finally, we make some conclusive remarks on generalisations of Multiple
Zeta Values as well as the meromorphic differential equations.

1. Introduction

1.1. Riemann zeta function. Recall that Riemann zeta function ζ is defined as

ζ(s) :=
∑
n>0

n−s, (1)

for Re s > 1. It can be continued analytically to C \ {1} and (1 − s)ζ(s) is an entire function.
A lot of attention has been brought to evaluation of ζ(n) for positive integers n > 2. In 1735
Euler found his famous formula

ζ(2n) = − (2πi)2nB2n

2(2n)!
, (2)

where Bm are Bernoulli numbers defined by the generating function

x

1− e−x =
∑
m≥0

Bm
xm

m!
. (3)
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In particular, ζ(2n) = q×π2n, where n ∈ N and q ∈ Q. However, such a formula for ζ(2n+ 1) is
not known and we know a lot less about these numbers. Euler’s method was based on the fact
that

1

Γ (1 + x)
= eγx

∏
n>0

(
1 +

x

n

)
e−x/n, (4)

and

1

Γ (1 + x)Γ (1− x)
=
∏
n>0

(
1− x2

n2

)
= 1−

∑
n>0

x2

n2
+O(x4) = 1− ζ(2)x2 +O(x4). (5)

On the other hand we have

1

Γ (1 + x)Γ (1− x)
=

sinπx

πx
= 1− π2

6
x2 +O(x4), (6)

which gives the result.

Formulas for ζ(2n) for n > 1 can be obtained essentially in the same way.1

Unfortunately, a similar explicit formula for Γ (1 + x)Γ (1 + µx)Γ (1 + µx), where
µ = 2−1(1 +

√
−3), which would allow for immediate evaluation of ζ(3), is not known. The

same problem appears in all other positive odd numbers. In fact, we have the following

Conjecture 1.1. The numbers ζ(2), ζ(3), ζ(5), ζ(7), ζ(11), . . . , are algebraically independent
over Q.

1.2. Multiple zeta function. Multiple zeta values (in short MZV) are defined as

ζ(s1, s2, . . . , sp) :=
∑

n1>n2>...>np

n−s11 n−s22 · · ·n−sp
p , (7)

for (s1, s2, . . . , sp) ∈ Np and whenever the series (7) converges. They appeared for the first time
in Euler’s [5]. He found the following formula relating multiple zeta values to ‘single’ ones:∑

n>0

Hn
(n+ 1)2

= ζ(2, 1) = ζ(3) =
∑
n>0

1

n3
, (8)

where Hm is the m-th harmonic number. The formula (8) is a particular example of the remark-
able identity (here p is fixed integer and s1 + s2 + . . .+ sp = s)∑

s1>1,s2>0,...,sp>0

ζ(s1, s2, . . . , sp) = ζ(s), (9)

which follows from Ohno’s relations (see [9]).
MZV’s are values at integral points of a more general multiple zeta functions, where param-

eters s1, s2, . . . , sp in (7) are complex. In [15], Zhao Jianqiang found the analytic continuation
of (7) to Cp \ S and proved that ζ(s1, s2, . . . , sp) has a simple pole along S. Here S is a certain
linear subset of Cp.

In the standard terminology, the number p is called the depth and the number |s| := s1 +

. . .+ sp is called the weight of multiple zeta value/function (7).

1The easiest way of calculating ζ(2n) is, perhaps, with use of the function
1− πx cotπx

2
=
∑
n>0

ζ(2n)x2n.

This formula can be obtained from (6).
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MZV’s satisfy a lot of relations. Some of them are quite simple, as

ζ(r)ζ(s) = ζ(r, s) + ζ(s, r) + ζ(r + s), (10)

coming from ∑
n>0

m−r
∑
n>0

n−s =
(∑
m>n

+
∑
n>m

+
∑
m=n

)
m−rn−s (11)

and some of them are not so obvious. Because of these relations, we have the following (see [11])

Conjecture 1.2 (Drinfeld, Kontsevich, Zagier). Denote by Zk the Q-vector space spanned by
MZV’s of a given weight k. Then Z =

⊕
Zk. If dk := dimZk, then for k > 2 the formula

dk = dk−2 + dk−3 (12)

holds. Equivalently, ∑
k≥0

dkx
k =

1

1− t2 − t3 . (13)

So far only the estimates dimQ Zk ≤ dk have been shown by Deligne, Goncharov and, inde-
pendently, by Terasoma (see [4] and [10]).

2. Multiple polylogarithms, generating functions and differential equations. Con-
sider the (so called, Drinfeld–Kontsevich) integral

Li(s1, s2, . . . , sp, t)

:=

∫ t

0

ω0(t1)

∫ t1

0

ω0(t2) · · ·
∫ ts1−1

0

ω1(ts1)

∫ ts1

0

ω0(ts1+1) · · ·
∫ t|s|−1

0

ω1(t|s|), (14)

where ω0 = dt/t, ω1 = dt/(1− t). We have

Li(s1, s2, . . . , sp, 1) = ζ(s1, s2, . . . , sp). (15)

Note that if we define

P := t∂t, Q := (1− t)∂t, and T := QP s1−1QP s2−1 · · ·QP sp−1, (16)

then
T Li(s1, s2, . . . , sp, t) = 1 (17)

and, more generally,
Tn Li({s1, s2, . . . , sp}n, t) = 1, (18)

where we employ the obvious analogue of MZV notation.2 The operator T may be seen as a left
inverse of the integral operator associated to (14). Thus, we put

F (s1, s2, . . . , sp, λ, t) := 1− λ|s| · Li(s1, s2, . . . , sp, t) + λ2|s| · Li({s1, s2, . . . , sp}2, t)− . . .

=
(
I − λ|s|T−1 + λ2|s|T−2 − . . .

)
.1. (19)

From the formula for geometric series, from (19) one gets

F (s1, s2, . . . , sp, λ, t) = (I + λ|s|T−1)−1.1 = (T + λ|s|)−1T.1 (20)

2By definition, we have

Li({s1, s2, . . . , sp}n, t) = Li(s1, s2, . . . , sp, s1, s2, . . . , sp, . . . , s1, s2, . . . , sp, t),

where the sequence s1, s2, . . . , sp is repeated n times.
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and applying to both sides T + λ|s|, we obtain

(T + λ|s|)F (s1, s2, . . . , sp;λ, t) = 0. (21)

On the other hand, from (15), we have

F (s1, s2, . . . , sp; 1, λ) =
∑
n≥0

λ|s|nζ({s1, s2, . . . , sp}n), (22)

i.e., we constructed generating function of the sequence ζ({s1, s2, . . . , sp}n).
The formulas

ζ(2) =

∫
0<t1<t2<1

dt1
1− t1

dt2
t2

, and Li2(t) =

∫
0<t1<t2<t

dt1
1− t1

dt2
t2

, (23)

for the classical dilogarithm were already known to Leibniz, who introduced it in his letter to
Johann Bernoulli. Leibniz also introduced general classical polylogarithms

Lis(t) :=
∑
n>0

tn

ns
, (24)

where |t| < 1.

3. Asymptotic analysis of meromorphic differential equations associated to gener-
ating functions of MZV’s. In papers [12], [13] and [14], together with Henryk Żołądek, we
studied asymptotics of certain linear meromorphic ODE associated to generating functions of
multiple zeta values. In papers [12] and [14] we studied particular examples of equations associ-
ated to ζ(2) and ζ(3) obtaining two new proofs of the identity ζ(2) = π2/6. Paper [13] contains
new general results on asymptotics of meromorphic ODE’s in complex domain. In particular, we
proved the generalisation of the WKB method to (almost) arbitrary equations.

In mathematical physics, the WKB approximation or WKB method3 is a method for finding
approximate solutions to linear partial differential equations with spatially varying coefficients. It
is typically used for a semiclassical calculation in quantum mechanics in which the wavefunction
is recast as an exponential function, semiclassically expanded, and then either the amplitude or
the phase is taken to be slowly changing.

Take, for example, the equation

(T + λ2)x = 0, where T := (1− t)∂t(t∂t), (25)

It is a particular case of MZV equation, associated to the sequence ζ({2}n). One of regular

3This method is named after physicists Wentzel, Kramers, and Brillouin, who all developed
it in 1926. In 1923, mathematician Harold Jeffreys had developed a general method of approx-
imating solutions to linear, second-order differential equations, which includes the Schrödinger
equation. But even though the Schrödinger equation was developed two years later, Wentzel,
Kramers, and Brillouin were apparently unaware of this earlier work, so Jeffreys is often ne-
glected credit. Early texts in quantum mechanics contain any number of combinations of their
initials, including WBK, BWK, WKBJ, JWKB and BWKJ. Earlier references to the method are:
Carlini in 1817, Liouville in 1837, Green in 1837, Rayleigh in 1912 and Gans in 1915. Liouville
and Green may be called the founders of the method, in 1837, and it is also commonly referred
to as the Liouville–Green or LG method. For more details one can check the WKB page on
Wikipedia.
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solutions of (25) is given by the hypergeometric series

2F1

(
λ,−λ

1

∣∣∣∣∣ t
)

:=

∞∑
n=0

(λ)n(−λ)n
n!

· t
n

n!
,

Another independent solution is given by

G(t) + log t · 2F1

(
λ,−λ

1

∣∣∣∣∣ t
)
, (26)

where G is holomorphic in zero.
Recall that the classical Euler–Gauss hypergeometric series is defined by

2F1

(
u, v

w

∣∣∣∣∣ t
)

:=

∞∑
n=0

(u)n(v)n
(w)n

tn

n!
, (27)

where (x)n := x(x+1) · · · (x+n−1) is the Pochhammer symbol. The generalised hypergeometric
series is defined analogously:

pFq

(
u1, . . . , up
w1, . . . , wq

∣∣∣∣∣ t
)

:=

∞∑
n=0

(u1)n · · · (up)n
(w1)n · · · (wq)n

tn

n!
, (28)

whenever p ≤ q + 1.
Thus, by the Gauss formula4, we get

f(λ) =2 F1

(
λ,−λ

1

∣∣∣∣∣ 1

)
:=

1

Γ (1 + λ)Γ (1 + λ)
=

sinπλ

πλ
. (29)

From this we can calculate ζ(2).

There is another way of obtaining this result, with use of the WKB approximation. If the
parameter λ in (25) is large (i.e. λ ∼ ∞), then we make the assumption that the solutions have
the form

eλS(t)λα
∑
n<0

φn(t)λn. (30)

Substituting the above series into the equation (25) and comparing the coefficients with powers
of λ, we obtain differential equation for ‘action’ S, where p is the depth of the associated multiple
zeta value:

t|s|−p(1− t)p(S′)|s| + 1 = 0. (31)

It is, so called, ‘Hamilton-Jacobi’ equation. By solving (31), we have

dS =
dt

t1−p/|s|(1− t)p/|s|
. (32)

After determining S we can also successively find coefficients φn which satisfy series of ‘transport
equations’.

In this place we find the following difficulty: WKB approximation does not tell us how to
determine the exponent α. Moreover, t = 1 is singular for the corresponding transport equation,

4The Gauss formula for t = 1,

2F1

(
u, v
w

∣∣∣∣ 1

)
=

Γ (w)Γ (w − u− v)

Γ (w − u)Γ (w − v)
,

is proved with use of integral representation of Euler’s integral representation for 2F1.
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so the asymptotic expansion does not represent the required function5 in its neighbourhood. To
obtain the correct answer one has to examine asymptotics of solutions of (25) for s = 1 − t. In
this coordinate chart, operator (25) takes the form

T (s) = s∂s (1− s)∂s + λ2. (33)

Solutions of T (s)φ = 0 are of the form

ξ1(λ, s) = λ2s+ a2s
2 + . . .

ξ2(λ, s) = ξ1(λ, s) log(λ2s) + η(s),

where η is holomorphic in zero and η(0) 6= 0. Function φ2(λ, t) can be represented in the
neighbourhood of zero as

φ2(λ, t) = c1(λ)ξ1(λ, 1− t) + c2(λ)ξ2(λ, 1− t). (34)

Thus φ2(λ, 1) = c2(λ)η(0), so calculation of c2 allows us to obtain the required result.
Calculating the exponent α, in the series for η and coefficient c2, requires use of stationary

phase approximation.

3.1. Stationary phase approximation. To calculate coefficients in asymptotic expansion, we
will use stationary phase approximation, i.e. analysis of asymptotics of the oscillating integral

I(λ) :=

∫
a(x)eiλφ(x) dµ(x). (35)

If φ, so called phase, has finite number of isolated and nondegenerate critical points (for simplicity
we assume that there is only one such point x), then for λ ∼ ∞, we have (k denotes the dimension
of a given manifold)

I(λ) =
(2π

λ

)n/2 ∑
x∈critφ

eiλφ(x)a(x)
eiπ sgnφ′′(x)/4

|detφ′′(x)|1/2
+O(λ−n/2−1), (36)

where critφ is the set of critical points of φ, φ′′ is the Hessian of the second derivative of the phase
and sgnφ′′(x) is the signature of the quadratic form associated to φ′′(x). Analysis of solutions
of the equation (25) requires appropriate integral formulas for solutions. For λ ∼ ∞, for φ such
that (1− t)∂t t∂tφ = −λ2φ, we have

φ(λ, t) = 1− λ2

1!

t

1!
+
λ2(λ2 − 1)2

2!

t2

2!
+ . . .

∼ 1− λ2t

1!

t

1!
+
λ4

2!

t2

2!
+ . . . = 0F1(1;λ2t) = J0(2λ

√
t), (37)

where

Jα(x) =

∞∑
k=0

(−1)k

k!

1

Γ (α+ k + 1)

(x
2

)2k+α

, (38)

is the Bessel function of the first kind, i.e. solution of the Bessel equation

t2φ̈+ tφ̇+ (t2 − α2)φ = 0. (39)

5Unfortunately there are additional problems with determination of coefficients φn. In inter-
esting point t = 1 they are singular or zero, thus it is impossible to simply calculate φn and take
t = 1. This difficulty has been so far overcome in case of f2. More details can be found in [12].
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From the well known formulas for the oscillating integral representations of Bessel functions, one
gets

J(0; 2x
√
t) =

1

2π

∫ π

−π
e2ix

√
t sin v dv

=
1

2
√
πx t1/4

(
e−iπ/4e2ix

√
t + eiπ/4e−2ix

√
t)+O(x−3/2t−3/4). (40)

The last equality is obtained by the study of the integral

1

2π

∫ π

−π
e2ix

√
t sin v dv, (41)

in the neighbourhood of the critical points of sin v in (−π, π). We have v1 = −π/2 and v2 = π/2.
Analogously we get asymptotic expansions of ξ1 and ξ2:

ξ1(x, s) ∼ x
√
s J1(2x

√
s) (42)

ξ2(x, s) ∼ −x
√
s lim
α→0

1

α

(
J1−α(2x

√
s) + Jα−1(2x

√
s)
)

=: Ξ2(z), (43)

where z = x2s. Now one can get the formula for η around zero and, in particular, we get
η(0) = −1. So φ2(x, 1) = −c2(x).

For more details see [12].

3.2. Back to the WKB series. For the Bessel function, and thus, also for F (λ, t), the WKB
series is of the form

exp
{
λB
(
t,

1

2
,

1

2

)}
λ−1/2ψ(t). (44)

Putting it to (25), we get the equation

2(tB)ψ̇ + ˙(tB)ψ = 0. (45)

The solution to (45) is given by c(tḂ)1/2 = c(1 − t)1/4t−1/4. The constant c can be calculated
from the asymptotic form

c =
e−iπ/4

2
√
π
. (46)

Around 0 ∼ s = 1− t, we have

B
(

1− s, 1

2
,

1

2

)
= B

(1

2
,

1

2

)
−
∫ s

0

du√
u(1− u)

= π −
∫ s

0

u−1/2(1 + . . .) du ∼ π − 2
√
s , (47)

and thus

F (λ, t) = F̃ (λ, 1− s) ∼ s1/4

2
√
πλ

cos(πλ− 2λ
√
s− π/4)

= − s1/4

2
√
πλ

sin(πλ− 2λ
√
s+ π/4)

=
s1/4

2
√
πλ

sin(πλ) cos(2λ
√
s− π/4)− s1/4

2
√
πλ

cos(πλ) sin(2λ
√
s− π/4)

∼ cosλ

πλ
ξ1(s)− sinλ

πλ
ξ2(s). (48)

In this way we obtained the result ζ(2) = π2/6 using a new method. For more details see [12]
and [13].
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4. General iterated integrals. A good motivation for considering iterated integrals comes
from Picard’s method for solving a system of linear ODE’s. Such integrals play a crucial role in
quantum field theory (see e.g. [2] or [3]).

4.1. Picard’s method. Consider the system

ẋ(t) = A(t)x(t), (49)

where x : R ⊃ U → Cn, A ∈ end(Cn) ⊗O, with initial condition x(t0) = x0. The problem (49)
is equivalent to the integral equation

x(t) = x0 +

∫ t

t0

A(t)x(t) dt, (50)

The Picard method of solving (49)—and hence also (50)—depends on successive approximation.
Let x0(t) ≡ x0 and then define

xn+1(t) := x0 +

∫ t

t0

A(tn+1)xn(tn+1) dtn+1, (51)

for n ≥ 0. We have, for example,

x1(t) = x0 +

∫ t

t0

A(t1)x0 dt1 (52)

x2(t) = x0 +

∫ t

t0

A(t2)x1(t2) dt2 = x0 +

∫ t

t0

A(t2)x0 dt2

+

∫
t0<t1<t2<t

A(t2)A(t1)x0 dt1 dt2. (53)

Now, we can, at least formally, write xn(t)→ x(t) when n→∞. We have x(t) = B(t)x0, where

B(t) := I +
∑
n≥0

∫
t0<t1<...<tn<t

A(tn)A(tn−1) · · ·A(t1) dt1 · · · dtn (54)

is the sum of iterated integrals. The sum (54) converges on compact sets C, because∣∣∣∫
t0<t1<...<tn<t

A(tn)A(tn−1) · · ·A(t1) dt1 · · · dtn
∣∣∣ ≤ sup

u∈C
‖A(u)‖n t− t0

n!
. (55)

Thus x(t) = B(t)x0 is the solution to (49).
If A(t) and A(t′) commute for all t, t′, then one can rearrange terms in (54) to get

x(t) = exp
{∫ t

t0

A(u) du
}
x0. (56)

This formula is known in physics by the name of Dyson series, where it establishes connection
between iterated integrals and quantum field theory.

A more general situation is when a product A(t1) · · ·A(tk) vanishes for all k large enough,
e.g. when A is nilpotent. Then the sum expressing x(t) is finite. Thus, one should expect simpler
(‘algebraic’) behaviour of differential systems with unipotent monodromy, as e.g. in the case of
multiple polylogarithms.

4.2. Iterated integrals. Let M be a smooth manifold, γ : (0, 1) −→ M—a piecewise smooth
path and ω1, . . . , ωn ∈ Ω1(M). For the pullback map γ∗ : Ω1(M)→ Ω1([0, 1]), write

γ∗(ωi) =: fi(t) dt. (57)
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Since ωi is a geometric object, the integral∫
γ

ωi =

∫ 1

0

fi(t) dt (58)

does not depend on parametrisation.

Definition 4.1. The iterated integral is defined by

I(ω1, . . . , ωn; γ) :=

∫
γ

ω1 · · ·ωn =

∫
t0<t1<...<t

f1(t1) dt1 . . . fn(tn) dtn. (59)

We also admit linear combinations of expressions as (59). Furthermore, if the collection of forms
is empty, then assume that the integral is equal to one.

Proposition 4.1. Integral (59) has the following properties:
• I(ω1, . . . , ωn; γ) does not depend on the choice of parametrisation of the path γ.
• If γ−1(t) := γ(1− t), then I(ω1, . . . , ωn; γ−1) = (−1)nI(ωn, . . . , ω1; γ).
• If α, β are two paths such that α(1) = β(0), then

I(ω1, . . . , ωn;α ◦ β) =

n∑
i=1

I(ω1, . . . , ωi;α)I(ωi+1, . . . , ωn;β), (60)

where α ◦ β is the usual composition of paths.
• There is a shuffle product formula:

I(ω1, . . . , ωr; γ)İ(ω1, . . . , ωr; γ) =
∑

σ∈S(r,s)

I(ωσ(1), . . . , ωσ(r+s); γ), (61)

where S(r, s) := {σ ∈ Sn : σ(1) < . . . < σ(r) ∧ σ(r + 1) < . . . < σ(r + s)} is the set of
(r, s)-shuffles.

A proof of Proposition 4.1 can be found in [2]. The ‘time reversal’ property (i.e., the second
property in Proposition 4.1) implies for example the Drinfeld duality for multiple zeta values
(see [11]). The shuffle product (last property) plays an important role in the theory of MZV’s,
but we will not exploit it in this paper. Instead, we refer the reader to [1].

As we have observed above, the iterated integrals have a lot of algebraic structure and
properties noted while studying multiple zeta values.

5. Generalisations of multiple zeta functions. One motivation for introducing MZV is that
they appear naturally in further terms of expansions of the generating functions of ‘ordinary’
single zeta values. For example

sinπx

πx
=
∏
n>0

(
1− x

2

n2

)
= 1−x2

∑
n>0

1

n2
+x4

∑
n>m>0

1

n2m2
+. . . = 1−x2ζ(2)+x4ζ(2, 2)−. . . . (62)

But the zeta function is only a particular member of a whole family of the, so called, L-functions.
The most basic, nontrivial L-functions are Dirichlet L-series defined as

L(χ; s) :=
∑
n>0

χ(n)n−s, (63)
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where χ : Z∗N → C is a Dirichlet character6 and as before, we have7 Re s > 1.
If we now take∏

n>0

(
1− χ(n)3x3

n3

)
= 1− x3

∑
n>0

χ(n3)

n3
+ x6

∑
n>m>0

χ(n3m3)

n3m3
+ . . .

= −x3L4(χ1; 3) +O(x6) =: f(x), (64)

we can use similar methods, like those used to obtain (6), to get the formula8

f(λ) =
{

cos
(πλ

4

)
+ sin

(πλ
4

)}
·
{

cosh
(√3πλ

4

)
− sin

(πλ
4

)}
. (65)

One then gets

β(3) =
π3

32
. (66)

In a similar way as in the case of MZV’s, one can associate with multiple Dirichlet L-function
a meromorphic differential equation. To do it, one has to observe that the Drinfeld–Kontsevich
integral (14) contains the ‘shift forms’

ω1 =
dt

1− t =
dt

t

t

1− t =
dt

t

∑
n>0

tn, (67)

which should be replaced by

ω1(χ) =
dt

t

∑
n>0

χtn =:
dt

t
F (t), (68)

where F ∈ Q̇(t).

In this way we get e.g. the equation associated to β(p):{
(1 + t2)∂t t∂t · · · t∂t + λp

}
f = 0. (69)

There are two ways to study WKB asymptotics of the equation (69): one is straightforward
and the other depends on plugging in the WKB series after appropriate change of variables
CP 1 \ {0, i,−i,∞} → CP 1 \ {0, 1,∞}.

Another generalisation of Riemann’s ζ has been introduced by Hurwitz:

ζ(s, α) :=
∑
n>0

(n+ α)−s, (70)

6A Dirichlet character is a (group) homomorphism from multiplicative group Z∗N of the ring
ZN to complex numbers of unital modulus, continued (via pullback) to Z. We set χ(n) = 0,
whenever (n,N) > 1. One can define χ axiomatically as follows. The function χ : Z→ C satisfies
the following properties: χ(N + n) = χ(n); if (N,n) > 1, then χ(n) = 0; χ(nm) = χ(m)χ(n) for
every m,n.

7Actually, since partial sums of χ are bounded, by Dirichlet test (which was by the way dis-
covered by Dirichlet in connection of studying L-functions), L(χ; s) is holomorphic for Re s > 0.

8The function L4 is the simplest nontrivial Dirichlet L-series modulo 4, also known as Dirichlet
Beta function. We have

L(χ1, s) = β(s) =
∑
n≥0

(−1)n(2n+ 1)−s,

for Re s > 0. The function L(χ1, s) is entire on C.
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for Re s > 1. Since χ is a periodic sequence with period q, Dirichlet L-function can be represented
with use of Hurwitz’s zeta with α = m/q ∈ Q:

L(χ; s) =

q∑
m=1

χ(m)
∑
n≥0

(qn+m)−s = q−s
q∑

m=1

χ(m)ζ(s,m/q). (71)

Thus, the Dirichlet L-function can be expressed as a linear combination of Hurwitz zeta functions.

Definition 5.1. Multiple Hurwitz zeta functions are defined by the multiple series

ζ

(
s1, s2, . . . , sp
a1, a2, . . . , ap

)
:=

∑
n1>n2>...>np

(n1 + a1)−s1(n2 + a2)−s2 · · · (np + ap)
−sp . (72)

For multiple Hurwitz zeta values, the Lerch9 transcendent plays the same role as polyloga-
rithm for Riemann’s zeta.

In a similar way, we can introduce integral representations of multiple zeta values, one can
also deal with multiple Hurwitz zeta values. For example, for Φ, we have

Φ(t, s, α) =

∫ t

0

ω0(t1)

∫ t1

0

ω0(t2) · · ·
∫ tp

0

ω1,α(tp), (73)

where ω1,α(t) := tα−1dt/(1− t) and the integral is s-fold. More generally, we have

Φ

(
t

∣∣∣∣∣ s1, s2, . . . , spα1, α2, . . . , αp

)
=

∫ t

0

ωε1(t1)

∫ t1

0

ωε2(t2) · · ·
∫ tp

0

ωεp(tp), (74)

where this time εi ∈ {0, (1, βi)} and αi = β1 + . . .+ βi.
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