ON SIMONS' VERSION OF HAHN-BANACH-LAGRANGE THEOREM

JERZY GRZYBOWSKI, HUBERT PRZYBYCIEŃ and RYSZARD URBAŃSKI
Faculty of Mathematics and Computer Science, Adam Mickiewicz University Umultowska 87, 61-614 Poznań, Poland
E-mail: jgrz@amu.edu.pl, hubert@amu.edu.pl, rich@amu.edu.pl

Abstract

In this paper we generalize in Theorem 12 some version of Hahn-Banach Theorem which was obtained by Simons. We also present short proofs of Mazur and Mazur-Orlicz Theorem (Theorems 2 and 3).

Simons, using the concept of p-convexity, proved a version of Hahn-Banach Theorem (Theorem 1.13 in [11), which is a generalization of Hahn-Banach-Lagrange Theorem (Theorem 1.11 in [11]). Simons' theorem enabled him to present short proofs of a number of important and difficult theorems in functional analysis and to find applications in convex analysis and theory of monotone multifunctions (see [8, 9, 10, 11]).

In this paper we present short proofs of Mazur and Mazur-Orlicz Theorems (Theorems 2 and 3). Then we apply them to generalize Simons' theorem (Theorem 13) in our Theorem 12

Throughout the paper by X we will denote a nontrivial vector space over the field of real numbers.

Lemma 1. Let $p: X \rightarrow \mathbb{R}$ be a convex function $y \in X$. For all $x \in X$, let

$$
p_{y}(x):=\inf _{\lambda>0} \frac{p(y+\lambda x)-p(y)}{\lambda}, \quad p^{\prime}(x):=\inf _{\lambda>0} \frac{p(\lambda x)}{\lambda} .
$$

Then:
(a) $p_{y}: X \rightarrow \mathbb{R}$ is sublinear and $p(y)-p(2 y) \leq p_{y}(y) \leq p(0)-p(y)$;
(b) if $p(0) \geq 0$ then p^{\prime} is the greatest sublinear functional on X less than or equal to p;
(c) if p is sublinear then $p_{y} \leq p$ and $p_{y}(-y)=-p(y)$.

2010 Mathematics Subject Classification: Primary 46A22; Secondary 46N10.
Key words and phrases: Hahn-Banach theorem.
The paper is in final form and no version of it will be published elsewhere.

Proof. For $x, y \in X$ and $\lambda>0$ we have

$$
(1+\lambda) p(y) \leq p(y+\lambda x)+\lambda p(y-x),
$$

which implies

$$
p(y)-p(y-x) \leq \frac{p(y+\lambda x)-p(y)}{\lambda}
$$

Taking the infimum over $\lambda>0$ we get $p_{y}(x)>-\infty$ and

$$
\begin{equation*}
p(y)-p(y-x) \leq p_{y}(x) \leq p(y+x)-p(y) . \tag{1}
\end{equation*}
$$

It is easy to observe that p_{y} is a positively homogeneous. Consider $x_{1}, x_{2} \in X$ and arbitrary $\lambda_{1}, \lambda_{2}>0$. Since

$$
\begin{equation*}
p\left(y+\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}\left(x_{1}+x_{2}\right)\right) \leq \frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} p\left(y+\lambda_{1} x_{1}\right)+\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} p\left(y+\lambda_{2} x_{2}\right) \tag{2}
\end{equation*}
$$

p_{y} is subadditive, and we obtain (a).
Now let $p(0) \geq 0$. For $x \in X$ and $\lambda>0$ from (1) we have

$$
p(0)-p(-x) \leq \frac{p(\lambda x)-p(0)}{\lambda} \leq \frac{p(\lambda x)}{\lambda}
$$

Hence $p^{\prime}(x)>-\infty$ and $p_{0} \leq p^{\prime} \leq p$. It is easy to observe that p^{\prime} is positively homogeneous. Now from (2), p^{\prime} is subadditive. Now let q be sublinear and $q \leq p$ on X. Then $\lambda q(x) \leq$ $p(\lambda x)$ for every $\lambda>0$. Hence $q \leq p^{\prime}$ on X, and we get (b).

In 11 a short proof of the classical Hahn-Banach Theorem is given. Similarly, applying Lemma 1. we give a short proof of a basic version of classical Mazur Theorem.

Theorem 2 (Mazur). Let $p: X \rightarrow \mathbb{R}$ be a convex functional, $p(0) \geq 0$. Then there exists a linear functional l on X such that $l \leq p$.
Proof. By $\mathcal{C}_{p}(X)$ denote the set of all convex functionals q on X such that $p \geq q$ and $q(0) \geq 0$. Since for every $q \in \mathcal{C}_{p}(X)$ and $x \in X, q(x) \geq-q(-x)+2 q(0) \geq-p(-x)$, by using Kuratowski-Zorn Lemma, there exists a minimal element l in $\mathcal{C}_{p}(X)$. Now, by Lemma 1] a functional l^{\prime} is sublinear and $l^{\prime} \leq l$. Hence $l^{\prime}=l$ and l is sublinear. Since $l_{y} \leq l, l_{y}=l$. Again, from Lemma 1. we have $l(-y)=l_{y}(-y)=-l_{y}(y)=-l(y)$ for $y \in X$. Thus l is linear.

In 1953 Mazur and Orlicz [5] proved some generalization of Hahn-Banach Theorem. We present a version of Mazur-Orlicz Theorem [1, 6] for convex functionals. Our short proof of Mazur-Orlicz Theorem is based on the idea of Pták [6] and Mazur Theorem (Theorem 2).

Theorem 3 (Mazur-Orlicz). Let $p: X \rightarrow \mathbb{R}$ be a convex functional. Moreover, let $g: A \rightarrow X$ and $f: A \rightarrow \mathbb{R}$ be functions defined on a nonempty subset A of X. Then the following statements are equivalent:
(a) there exists a linear functional l on X such that $l \leq p$ on X and $f \leq l \circ g$ on A;
(b) for every finite sequence $a_{1}, \ldots, a_{n} \in A$,

$$
\sum_{i=1}^{n} \lambda_{i} f\left(a_{i}\right) \leq p\left(\sum_{i=1}^{n} \lambda_{i} g\left(a_{i}\right)\right)
$$

for all non-negative real numbers $\lambda_{1}, \ldots, \lambda_{n}$.

Proof. Obviously, the condition (a) implies (b). Suppose that the condition (b) holds and consider a functional

$$
p_{1}(x):=\inf \left\{p\left(x+\sum_{i=1}^{n} \lambda_{i} g\left(a_{i}\right)\right)-\sum_{i=1}^{n} \lambda_{i} f\left(a_{i}\right) \mid a_{i} \in A, \lambda_{i} \geq 0\right\}
$$

for all $x \in X$. Then $p_{1}: X \rightarrow \mathbb{R}$ is convex, $p_{1}(0) \geq 0$ and $p_{1} \leq p$. By Mazur Theorem (Theorem 22 there exists a functional l on X such that $l \leq p_{1}$. Since $l(-n g(a)) \leq$ $p(0)-n f(a)$ for all $a \in A, n \in \mathbb{N}$, we obtain $f \leq l \circ g$ on A.

All three theorems: Simons' version of Mazur-Orlicz Theorem (Lemma 1.6 in [11]), classical Mazur-Orlicz Theorem [5] and Mazur Theorem [1, 4] which is a generalization of Hahn-Banach Theorem [2, 7] follow from Theorem 3

The following lemma will be applied in our proof of Theorem 12 The proof is based on Theorems 2 and 3

Lemma 4. Let $p: X \rightarrow \mathbb{R}$ be a convex functional. Moreover, let $g: A \rightarrow X$ and $f: A \rightarrow \mathbb{R}$ be functions defined on a nonempty subset A of X. Then the following statements are equivalent:
(a) there exists a linear functional l on X such that $l \leq p$ and

$$
\inf _{A}[f+l \circ g]=\inf _{A}[f+p \circ g]
$$

(b) for every finite sequence $a_{1}, \ldots, a_{n} \in A$ and for arbitrary non-negative real numbers $\lambda_{1}, \ldots, \lambda_{n}$ the following inequality holds

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i}\left(\alpha-f\left(a_{i}\right)\right) \leq p\left(\sum_{i=1}^{n} \lambda_{i} g\left(a_{i}\right)\right) \tag{3}
\end{equation*}
$$

where $\alpha=\inf _{A}[f+p \circ g]$.
Proof. Let $\alpha=-\infty$. Then obviously (a) implies (b). From the condition (b), by Mazur Theorem there exists a linear functional l on X such that $l \leq p-p(0)$. Thus (a) holds.

Now let $\alpha \in \mathbb{R}$ and $l \leq p$ on X then by (a) we get $l \circ g \geq \alpha-f$ on A and by Mazur-Orlicz Theorem we get (3). Conversely if (3) is satisfied then there exists a linear functional l on X such that $l \leq p$ and $f+l \circ g \geq \alpha$ on A.

In order to present the main result (Theorem 12) and Simons' theorem (Theorem 13) we need to give definitions of p-convex, p_{f}^{2}-convex and p_{f}-convex functions.
Definition 5. Let $p: X \rightarrow \mathbb{R}$ be a sublinear functional. A function $g: A \rightarrow X$ defined on a nonempty convex subset A of X is said to be p-convex if

$$
p\left(x+g\left(\lambda_{1} a_{1}+\lambda_{2} a_{2}\right)\right) \leq p\left(x+\lambda_{1} g\left(a_{1}\right)+\lambda_{2} g\left(a_{2}\right)\right)
$$

for all $x \in X, a_{1}, a_{2} \in A$ and $\lambda_{1}, \lambda_{2}>0$ such that $\lambda_{1}+\lambda_{2}=1$.
REMARK 6. Let us note that the function g is p-convex if and only if $p\left(g\left(\lambda_{1} a_{1}+\lambda_{2} a_{2}\right)-\right.$ $\left.\lambda_{1} g\left(a_{1}\right)-\lambda_{2} g\left(a_{2}\right)\right) \leq 0$ for all $a_{1}, a_{2} \in A$ and $\lambda_{1}, \lambda_{2}>0$ such that $\lambda_{1}+\lambda_{2}=1$. In fact, p-convexity depends only on the cone $\{x \in X \mid p(x) \leq 0\}$.

Definition 7. Let $f: A \rightarrow(-\infty, \infty]$. The set $\operatorname{dom} f:=\{x \in A \mid f(x) \in \mathbb{R}\}$ is called the effective domain of f. We say that f is proper if $\operatorname{dom} f \neq \emptyset$. By $\mathcal{P C}(A)$ we will denote the set of all proper convex functions from A into $(-\infty, \infty]$.

In [11] Simons generalized p-convexity as follows.
Definition 8 . Let $p: X \rightarrow \mathbb{R}$ be a sublinear functional, A be a nonempty subset of X and $f: A \rightarrow \mathbb{R}$. A function $g: A \rightarrow X$ is said to be p_{f}^{2}-convex if for all $a_{1}, a_{2} \in A$, there exists $a \in A$ such that

$$
p\left(g(a)-\left(\frac{1}{2} g\left(a_{1}\right)+\frac{1}{2} g\left(a_{2}\right)\right)\right) \leq 0 \quad \text { and } \quad f(a) \leq \frac{1}{2} f\left(a_{1}\right)+\frac{1}{2} f\left(a_{2}\right) .
$$

Now we introduce a broader class of p_{f}-convex functions.
Definition 9. Let $p: X \rightarrow \mathbb{R}, A$ be a nonempty subset of X and $f: A \rightarrow \mathbb{R}$. A function $g: A \rightarrow X$ is said to be p_{f}-convex if for every $b \in \operatorname{conv} g(A), b=\sum_{i=1}^{n} \lambda_{i} g\left(a_{i}\right), \epsilon>0$ there exists $a \in A$ such that for every $\lambda \geq 0$

$$
\lambda p \circ g(a) \leq p(\lambda b)+\epsilon \quad \text { and } \quad f(a) \leq \sum_{i=1}^{n} \lambda_{i} f\left(a_{i}\right)+\epsilon .
$$

The following lemma shows the connection between p_{f}^{2}-convexity and p_{f}-convexity.
Lemma 10. Let $p: X \rightarrow \mathbb{R}$ be a sublinear functional, A be a nonempty subset of X and $f: A \rightarrow \mathbb{R}$. If $g: A \rightarrow X$ is p_{f}^{2}-convex, then g is p_{f}-convex.
Proof. Let $x_{1}=g\left(b_{1}\right)-\left(\frac{1}{2} g\left(a_{1}\right)+\frac{1}{2} g\left(a_{2}\right)\right), x_{2}=g\left(b_{2}\right)-\left(\frac{1}{2} g\left(a_{3}\right)+\frac{1}{2} g\left(a_{4}\right)\right)$ and $x_{3}=$ $g(a)-\left(\frac{1}{2} g\left(b_{1}\right)+\frac{1}{2} g\left(b_{2}\right)\right)$ for some $a, b_{1}, b_{2}, a_{1}, a_{2}, a_{3}, a_{4} \in A$. Assume that $p\left(x_{1}\right) \leq 0$, $p\left(x_{2}\right) \leq 0$ and $p\left(x_{3}\right) \leq 0$. Since p is subadditive and positively homogenous, $p(g(a)-$ $\left.\left(\frac{1}{4} g\left(a_{1}\right)+\frac{1}{4} g\left(a_{2}\right)+\frac{1}{4} g\left(a_{3}\right)+\frac{1}{4} g\left(a_{4}\right)\right)\right)=p\left(x_{3}+\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right) \leq p\left(x_{3}\right)+\frac{1}{2} p\left(x_{1}\right)+\frac{1}{2} p\left(x_{2}\right) \leq 0$. Therefore, for every $b=\sum_{i=1}^{n} \lambda_{i} g\left(a_{i}\right)$, where λ_{i} are binary rational (i.e. of the form $\frac{m}{2^{k}}$ where $m, k \in \mathbb{Z}$) and $a_{i} \in A$ there exists $a \in A$ such that

$$
\begin{equation*}
p \circ g(a) \leq p(b) \quad \text { and } \quad f(a) \leq \sum_{i=1}^{n} \lambda_{i} f\left(a_{i}\right) \tag{4}
\end{equation*}
$$

Let us fix $b \in \operatorname{conv} g(A), b=\sum_{i=1}^{n} \lambda_{i} g\left(a_{i}\right), \lambda \geq 0, \epsilon>0$. Since p is sublinear, p is continuous on $\operatorname{conv}\left\{g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right\}$. Hence for some binary rational $\lambda_{i}^{\prime} \geq 0, i=1, \ldots, n$, which are sufficiently close to $\lambda_{i}, i=1, \ldots, n$, and such that $\sum_{i=1}^{n} \lambda_{i}^{\prime}=1$ we have $\lambda p\left(\sum_{i=1}^{n} \lambda_{i}^{\prime} g\left(a_{i}\right)\right) \leq \lambda p(b)+\varepsilon$ and $\sum_{i=1}^{n} \lambda_{i}^{\prime} f\left(a_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(a_{i}\right)+\varepsilon$. Now we can find $a \in A$ for $b^{\prime}=\sum_{i=1}^{n} \lambda_{i}^{\prime} g\left(a_{i}\right)$ and apply (4).

The class of p_{f}-convex functions is substantially broader than the class of p_{f}^{2}-convex functions. In order to show it we give the following example.

Example 11. Let $X=\mathbb{R}^{2}, a_{1}=(0,0), a_{2}=(0,1), A=\left\{a_{1}, a_{2}\right\}, f\left(a_{1}\right)=f\left(a_{2}\right)=0$, $g=\operatorname{Id}_{A}$ and $p(x)=p\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}}+x_{1}$. Since

$$
p\left(g\left(a_{1}\right)-g\left(a_{2}\right)\right)=p\left(g\left(a_{2}\right)-g\left(a_{1}\right)\right)=1>0
$$

the function g is not p_{f}^{2}-convex. On the other hand, if $b \in \operatorname{conv} g(A)=\{0\} \times[0,1]$ then $b=\alpha g\left(a_{1}\right)+\beta g\left(a_{2}\right)=\beta a_{2}$, where $\alpha, \beta \geq 0$ and $\alpha+\beta=1$. Let $a=a_{1}$ and $\lambda \geq 0$.

We have an obvious equality $f(a)=0=\alpha f\left(a_{1}\right)+\beta f\left(a_{2}\right)$. The function g is p_{f}-convex because of the inequality

$$
\lambda p(g(a))=0 \leq \lambda \beta=\lambda p(b)=p(\lambda b) .
$$

The example shows that the following theorem is an essential generalization of Simons' theorem (Theorem 13).
Theorem 12. Let $p: X \rightarrow \mathbb{R}$ be a convex functional and let A be a nonempty convex subset of X. If $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow X$ is p_{f}-convex, then there exists a linear functional l on X such that $l \leq p$ and

$$
\inf _{A}[f+l \circ g]=\inf _{A}[f+p \circ g] .
$$

Proof. Let $\alpha=\inf _{A}[f+p \circ g]$. Then $\alpha-f \leq p \circ g$ on A. For arbitrary non-negative real numbers $\lambda_{1}, \ldots, \lambda_{n}$, let us put $\lambda=\lambda_{1}+\ldots+\lambda_{n}$. Without loss of generality, we may assume that $\lambda>0$. Then, for any $a_{1}, \ldots, a_{n} \in A, \epsilon>0$ there exists $a \in A$ such that

$$
\sum_{i=1}^{n} \lambda_{i}\left(\alpha-f\left(a_{i}\right)\right) \leq \lambda(\alpha-f(a))+\epsilon \leq \lambda p \circ g(a)+\epsilon \leq p\left(\sum_{i=1}^{n} \lambda_{i} g\left(a_{i}\right)\right)+2 \epsilon
$$

Hence the condition (b) of Lemma 4 is satisfied, so there exists a linear functional l on X such that $l \leq p$ and $\alpha=\inf _{A}[f+l \circ g]$.

Theorem of Simons (Theorem 1.13 in [11]) is a simple corollary of Theorem 12 and Lemma 4

Theorem 13 (Simons). Let $p: X \rightarrow \mathbb{R}$ be a sublinear functional and let A be a nonempty convex subset of X. If $f \in \mathcal{P C}(A)$ and $g: A \rightarrow X$ is p_{f}^{2}-convex, then there exists a linear functional l on X such that $l \leq p$ and

$$
\inf _{A}[f+l \circ g]=\inf _{A}[f+p \circ g] .
$$

In [8, 9, 10] Simons proved for p-convex functions some version of Hahn-Banach Theorem which he calls Hahn-Banach-Lagrange Theorem (Theorem 1.11 in [11]). Theorem 13 is a generalization of Theorem 14
Theorem 14 (Hahn-Banach-Lagrange). Let $p: X \rightarrow \mathbb{R}$ be a sublinear functional and let A be a nonempty convex subset of X. If $f \in \mathcal{P C}(A)$ and $g: A \rightarrow X$ is p-convex, then there exists a linear functional l on X such that $l \leq p$ and

$$
\inf _{A}[f+l \circ g]=\inf _{A}[f+p \circ g] .
$$

REMARK 15. If p is a sublinear functional then, by Lemma 10 every p_{f}^{2}-convex function is p_{f}-convex. Hence Theorem 13 follows from Theorem 12
REMARK 16. If $p: X \rightarrow \mathbb{R}$ is convex we can reformulate the definition of p_{f}-convexity. The function g is p_{f}-convex if and only if $p(0) \geq 0$ and for every $b \in \operatorname{conv} g(A)$, $b=\sum_{i=1}^{n} \lambda_{i} g\left(a_{i}\right), \epsilon>0$ there exists $a \in A$ such that

$$
p \circ g(a) \leq p^{\prime}(b)+\epsilon \quad \text { and } \quad f(a) \leq \sum_{i=1}^{n} \lambda_{i} f\left(a_{i}\right)+\epsilon,
$$

where p^{\prime} is given in Lemma 1

References

[1] A. Alexiewicz, Functional Analysis, PWN, Warszawa 1969 (in Polish).
[2] S. Banach, Sur les fonctionnelles linéaires II, Studia Math. 1 (1929), 223-239.
[3] H. König, On certain applications of the Hahn-Banach and minimax theorems, Arch Math. (Basel) 21 (1970), 583-591.
[4] S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), 70-84.
[5] S. Mazur, W. Orlicz, Sur les espaces métriques linéaires II, Studia Math. 13 (1953), 137-179.
[6] V. Pták, On a theorem of Mazur and Orlicz, Studia Math. 15 (1956), 365-366.
[7] W. Rudin, Functional Analysis, McGraw-Hill Ser. in Higher Math., McGraw-Hill, New York 1973.
[8] S. Simons, A new version of the Hahn-Banach theorem, Arch. Math. (Basel) 80 (2003), 630-646.
[9] S. Simons, Hahn-Banach theorems and maximal monotonicity, in: Variational Analysis and Applications, Nonconvex Optim. Appl. 79, Springer, New York 2005, 1049-1083.
[10] S. Simons, The Hahn-Banach-Lagrange theorem, Optimization 56 (2007), 149-169.
[11] S. Simons, From Hahn-Banach to Monotonicity, Lecture Notes in Math. 1693, Springer, Berlin 2008.

