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Abstract. In this paper we generalize in Theorem 12 some version of Hahn–Banach Theorem
which was obtained by Simons. We also present short proofs of Mazur and Mazur–Orlicz Theorem
(Theorems 2 and 3).

Simons, using the concept of p-convexity, proved a version of Hahn–Banach Theorem
(Theorem 1.13 in [11]), which is a generalization of Hahn–Banach–Lagrange Theorem
(Theorem 1.11 in [11]). Simons’ theorem enabled him to present short proofs of a number
of important and difficult theorems in functional analysis and to find applications in
convex analysis and theory of monotone multifunctions (see [8, 9, 10, 11]).

In this paper we present short proofs of Mazur and Mazur–Orlicz Theorems (Theo-
rems 2 and 3). Then we apply them to generalize Simons’ theorem (Theorem 13) in our
Theorem 12.

Throughout the paper by X we will denote a nontrivial vector space over the field of
real numbers.

Lemma 1. Let p : X → R be a convex function y ∈ X. For all x ∈ X, let

py(x) := inf
λ>0

p(y + λx)− p(y)
λ

, p′(x) := inf
λ>0

p(λx)
λ

.

Then:

(a) py : X → R is sublinear and p(y)− p(2y) ≤ py(y) ≤ p(0)− p(y);
(b) if p(0) ≥ 0 then p′ is the greatest sublinear functional on X less than or equal to p;
(c) if p is sublinear then py ≤ p and py(−y) = −p(y).
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Proof. For x, y ∈ X and λ > 0 we have
(1 + λ)p(y) ≤ p(y + λx) + λp(y − x),

which implies

p(y)− p(y − x) ≤ p(y + λx)− p(y)
λ

.

Taking the infimum over λ > 0 we get py(x) > −∞ and
p(y)− p(y − x) ≤ py(x) ≤ p(y + x)− p(y). (1)

It is easy to observe that py is a positively homogeneous. Consider x1, x2 ∈ X and
arbitrary λ1, λ2 > 0. Since

p
(
y + λ1λ2

λ1 + λ2
(x1 + x2)

)
≤ λ2

λ1 + λ2
p(y + λ1x1) + λ1

λ1 + λ2
p(y + λ2x2), (2)

py is subadditive, and we obtain (a).
Now let p(0) ≥ 0. For x ∈ X and λ > 0 from (1) we have

p(0)− p(−x) ≤ p(λx)− p(0)
λ

≤ p(λx)
λ

.

Hence p′(x) > −∞ and p0 ≤ p′ ≤ p. It is easy to observe that p′ is positively homogeneous.
Now from (2), p′ is subadditive. Now let q be sublinear and q ≤ p on X. Then λq(x) ≤
p(λx) for every λ > 0. Hence q ≤ p′ on X, and we get (b).

In [11] a short proof of the classical Hahn–Banach Theorem is given. Similarly, ap-
plying Lemma 1, we give a short proof of a basic version of classical Mazur Theorem.
Theorem 2 (Mazur). Let p : X → R be a convex functional, p(0) ≥ 0. Then there exists
a linear functional l on X such that l ≤ p.
Proof. By Cp(X) denote the set of all convex functionals q on X such that p ≥ q and
q(0) ≥ 0. Since for every q ∈ Cp(X) and x ∈ X, q(x) ≥ −q(−x) + 2q(0) ≥ −p(−x),
by using Kuratowski–Zorn Lemma, there exists a minimal element l in Cp(X). Now, by
Lemma 1, a functional l′ is sublinear and l′ ≤ l. Hence l′ = l and l is sublinear. Since
ly ≤ l, ly = l. Again, from Lemma 1, we have l(−y) = ly(−y) = −ly(y) = −l(y) for
y ∈ X. Thus l is linear.

In 1953 Mazur and Orlicz [5] proved some generalization of Hahn–Banach Theorem.
We present a version of Mazur–Orlicz Theorem [1, 6] for convex functionals. Our short
proof of Mazur–Orlicz Theorem is based on the idea of Pták [6] and Mazur Theorem
(Theorem 2).
Theorem 3 (Mazur–Orlicz). Let p : X → R be a convex functional. Moreover, let
g : A→ X and f : A→ R be functions defined on a nonempty subset A of X. Then the
following statements are equivalent:
(a) there exists a linear functional l on X such that l ≤ p on X and f ≤ l ◦ g on A;
(b) for every finite sequence a1, . . . , an ∈ A,

n∑
i=1

λif(ai) ≤ p
( n∑
i=1

λig(ai)
)

for all non-negative real numbers λ1, . . . , λn.
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Proof. Obviously, the condition (a) implies (b). Suppose that the condition (b) holds and
consider a functional

p1(x) := inf
{
p
(
x+

n∑
i=1

λig(ai)
)
−

n∑
i=1

λif(ai)
∣∣∣ ai ∈ A, λi ≥ 0

}
for all x ∈ X. Then p1 : X → R is convex, p1(0) ≥ 0 and p1 ≤ p. By Mazur Theorem
(Theorem 2) there exists a functional l on X such that l ≤ p1. Since l(−ng(a)) ≤
p(0)− nf(a) for all a ∈ A, n ∈ N, we obtain f ≤ l ◦ g on A.

All three theorems: Simons’ version of Mazur–Orlicz Theorem (Lemma 1.6 in [11]),
classical Mazur–Orlicz Theorem [5] and Mazur Theorem [1, 4] which is a generalization
of Hahn–Banach Theorem [2, 7] follow from Theorem 3.

The following lemma will be applied in our proof of Theorem 12. The proof is based
on Theorems 2 and 3.

Lemma 4. Let p : X → R be a convex functional. Moreover, let g : A→ X and f : A→ R
be functions defined on a nonempty subset A of X. Then the following statements are
equivalent:

(a) there exists a linear functional l on X such that l ≤ p and

inf
A

[f + l ◦ g] = inf
A

[f + p ◦ g]

(b) for every finite sequence a1, . . . , an ∈ A and for arbitrary non-negative real numbers
λ1, . . . , λn the following inequality holds

n∑
i=1

λi(α− f(ai)) ≤ p
( n∑
i=1

λig(ai)
)
, (3)

where α = infA[f + p ◦ g].

Proof. Let α = −∞. Then obviously (a) implies (b). From the condition (b), by Mazur
Theorem there exists a linear functional l on X such that l ≤ p− p(0). Thus (a) holds.

Now let α ∈ R and l ≤ p on X then by (a) we get l ◦ g ≥ α − f on A and by
Mazur–Orlicz Theorem we get (3). Conversely if (3) is satisfied then there exists a linear
functional l on X such that l ≤ p and f + l ◦ g ≥ α on A.

In order to present the main result (Theorem 12) and Simons’ theorem (Theorem 13)
we need to give definitions of p-convex, p2

f -convex and pf -convex functions.

Definition 5. Let p : X → R be a sublinear functional. A function g : A → X defined
on a nonempty convex subset A of X is said to be p-convex if

p
(
x+ g(λ1a1 + λ2a2)

)
≤ p
(
x+ λ1g(a1) + λ2g(a2)

)
for all x ∈ X, a1, a2 ∈ A and λ1, λ2 > 0 such that λ1 + λ2 = 1.

Remark 6. Let us note that the function g is p-convex if and only if p
(
g(λ1a1 +λ2a2)−

λ1g(a1) − λ2g(a2)
)
≤ 0 for all a1, a2 ∈ A and λ1, λ2 > 0 such that λ1 + λ2 = 1. In fact,

p-convexity depends only on the cone {x ∈ X| p(x) ≤ 0}.
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Definition 7. Let f : A→ (−∞,∞]. The set dom f := {x ∈ A | f(x) ∈ R} is called the
effective domain of f . We say that f is proper if dom f 6= ∅. By PC(A) we will denote
the set of all proper convex functions from A into (−∞,∞].

In [11] Simons generalized p-convexity as follows.

Definition 8. Let p : X → R be a sublinear functional, A be a nonempty subset of X
and f : A→ R. A function g : A→ X is said to be p2

f -convex if for all a1, a2 ∈ A, there
exists a ∈ A such that

p
(
g(a)−

(1
2 g(a1) + 1

2 g(a2)
))
≤ 0 and f(a) ≤ 1

2 f(a1) + 1
2 f(a2).

Now we introduce a broader class of pf -convex functions.

Definition 9. Let p : X → R, A be a nonempty subset of X and f : A→ R. A function
g : A → X is said to be pf -convex if for every b ∈ conv g(A), b =

∑n
i=1 λig(ai), ε > 0

there exists a ∈ A such that for every λ ≥ 0

λp ◦ g(a) ≤ p(λb) + ε and f(a) ≤
n∑
i=1

λif(ai) + ε.

The following lemma shows the connection between p2
f -convexity and pf -convexity.

Lemma 10. Let p : X → R be a sublinear functional, A be a nonempty subset of X and
f : A→ R. If g : A→ X is p2

f -convex, then g is pf -convex.

Proof. Let x1 = g(b1) − ( 1
2g(a1) + 1

2g(a2)), x2 = g(b2) − ( 1
2g(a3) + 1

2g(a4)) and x3 =
g(a) − ( 1

2g(b1) + 1
2g(b2)) for some a, b1, b2, a1, a2, a3, a4 ∈ A. Assume that p(x1) ≤ 0,

p(x2) ≤ 0 and p(x3) ≤ 0. Since p is subadditive and positively homogenous, p
(
g(a) −

( 1
4g(a1)+ 1

4g(a2)+ 1
4g(a3)+ 1

4g(a4))
)

= p
(
x3 + 1

2x1 + 1
2x2
)
≤ p(x3)+ 1

2p(x1)+ 1
2p(x2) ≤ 0.

Therefore, for every b =
∑n
i=1 λig(ai), where λi are binary rational (i.e. of the form m

2k

where m, k ∈ Z) and ai ∈ A there exists a ∈ A such that

p ◦ g(a) ≤ p(b) and f(a) ≤
n∑
i=1

λif(ai). (4)

Let us fix b ∈ conv g(A), b =
∑n
i=1 λig(ai), λ ≥ 0, ε > 0. Since p is sublinear, p is

continuous on conv{g(a1), . . . , g(an)}. Hence for some binary rational λ′i ≥ 0, i = 1, . . . , n,
which are sufficiently close to λi, i = 1, . . . , n, and such that

∑n
i=1 λ

′
i = 1 we have

λp(
∑n
i=1 λ

′
ig(ai)) ≤ λp(b) + ε and

∑n
i=1 λ

′
if(ai) ≤

∑n
i=1 λif(ai) + ε. Now we can find

a ∈ A for b′ =
∑n
i=1 λ

′
ig(ai) and apply (4).

The class of pf -convex functions is substantially broader than the class of p2
f -convex

functions. In order to show it we give the following example.

Example 11. Let X = R2, a1 = (0, 0), a2 = (0, 1), A = {a1, a2}, f(a1) = f(a2) = 0,
g = IdA and p(x) = p(x1, x2) =

√
x2

1 + x2
2 + x1. Since

p(g(a1)− g(a2)) = p(g(a2)− g(a1)) = 1 > 0,

the function g is not p2
f -convex. On the other hand, if b ∈ conv g(A) = {0} × [0, 1] then

b = αg(a1) + βg(a2) = βa2, where α, β ≥ 0 and α + β = 1. Let a = a1 and λ ≥ 0.
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We have an obvious equality f(a) = 0 = αf(a1) + βf(a2). The function g is pf -convex
because of the inequality

λp(g(a)) = 0 ≤ λβ = λp(b) = p(λb).

The example shows that the following theorem is an essential generalization of Simons’
theorem (Theorem 13).

Theorem 12. Let p : X → R be a convex functional and let A be a nonempty convex
subset of X. If f : A → R and g : A → X is pf -convex, then there exists a linear
functional l on X such that l ≤ p and

inf
A

[f + l ◦ g] = inf
A

[f + p ◦ g].

Proof. Let α = infA[f + p ◦ g]. Then α− f ≤ p ◦ g on A. For arbitrary non-negative real
numbers λ1, . . . , λn, let us put λ = λ1 + . . . + λn. Without loss of generality, we may
assume that λ > 0. Then, for any a1, . . . , an ∈ A, ε > 0 there exists a ∈ A such that

n∑
i=1

λi(α− f(ai)) ≤ λ(α− f(a)) + ε ≤ λp ◦ g(a) + ε ≤ p
( n∑
i=1

λig(ai)
)

+ 2ε.

Hence the condition (b) of Lemma 4 is satisfied, so there exists a linear functional l
on X such that l ≤ p and α = infA[f + l ◦ g].

Theorem of Simons (Theorem 1.13 in [11]) is a simple corollary of Theorem 12 and
Lemma 4:

Theorem 13 (Simons). Let p : X → R be a sublinear functional and let A be a nonempty
convex subset of X. If f ∈ PC(A) and g : A→ X is p2

f -convex, then there exists a linear
functional l on X such that l ≤ p and

inf
A

[f + l ◦ g] = inf
A

[f + p ◦ g].

In [8, 9, 10] Simons proved for p-convex functions some version of Hahn–Banach Theo-
rem which he calls Hahn–Banach–Lagrange Theorem (Theorem 1.11 in [11]). Theorem 13
is a generalization of Theorem 14.

Theorem 14 (Hahn–Banach–Lagrange). Let p : X → R be a sublinear functional and
let A be a nonempty convex subset of X. If f ∈ PC(A) and g : A→ X is p-convex, then
there exists a linear functional l on X such that l ≤ p and

inf
A

[f + l ◦ g] = inf
A

[f + p ◦ g].

Remark 15. If p is a sublinear functional then, by Lemma 10, every p2
f -convex function

is pf -convex. Hence Theorem 13 follows from Theorem 12.

Remark 16. If p : X → R is convex we can reformulate the definition of pf -convexity.
The function g is pf -convex if and only if p(0) ≥ 0 and for every b ∈ conv g(A),
b =

∑n
i=1 λig(ai), ε > 0 there exists a ∈ A such that

p ◦ g(a) ≤ p′(b) + ε and f(a) ≤
n∑
i=1

λif(ai) + ε,

where p′ is given in Lemma 1.
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