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Abstract. We investigate weak type estimates for maximal functions, fractional and singu-
lar integrals in grand Lebesgue spaces. In particular, we show that for the one–weight weak
type inequality it is necessary and sufficient that a weight function belongs to the appropriate
Muckenhoupt class. The same problem is discussed for strong maximal functions, potentials and
singular integrals with product kernels.

1. Introduction. In 1992 T. Iwaniec and C. Sbordone [11], in their studies regarding
the integrability properties of the Jacobian in a bounded open set, introduced a new type
of function spaces Lp)(Ω), called grand Lebesgue spaces. A generalized version of these
spaces, Lp),θ(Ω) appeared in the paper by L. Greco, T. Iwaniec and C. Sbordone [9],
where the authors investigated the existence and uniqueness of the non-homogeneous
n-harmonic equation of the form divA(x,∇u) = µ.

Harmonic analysis related to these spaces and their associate spaces (called small
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Lebesgue spaces), was intensively studied during the last decade due to various applica-
tions (see e.g. the papers [4], [1], [2], [5], [6], [7], [15], [14], [18], [16] etc).

A version of weighted grand Lebesgue spaces adjusted for sets Ω ⊆ Rn of infinite
measure was introduced in [21], where the integrability of |f(x)|p−ε at infinity was con-
trolled by means of a weight and where grand Lebesgue spaces were also considered along
with the study of classical operators of harmonic analysis in such spaces.

Recently a necessary and sufficient condition guaranteeing the one-weight inequality
for the Hardy–Littlewood maximal operator

Mf(x) = sup
I⊂[0,1], I3x

1
|I|

∫
I

|f(t)| dt, x ∈ [0, 1],

in weighted grand Lebesgue spaces Lp)
w ([0, 1]) was established by A. Fiorenza, B. Gupta

and P. Jain [5], while the same problem for the Hilbert transform

Hf(x) = p.v.

1∫
0

f(t)
x− t

dt, x ∈ [0, 1],

was studied by the authors of this paper in [15]. In particular, it turned out that the
Hardy–Littlewood maximal operator (resp. the Hilbert transform) is bounded in L

p)
w (I)

if and only if the weight w belongs to the Muckenhoupt class Ap(I). The one-weight
theory for product kernel singular integrals and corresponding strong maximal functions
was developed in [13].

Further, it was shown in [18] that

(a) the potential operator

Iαf(x) =
1∫

0

f(t)
|x− t|1−α

dt, x ∈ [0, 1],

with the parameter α, 0 < α < 1, is not bounded from Lp),θ1([0, 1]) to Lq),θ2([0, 1]),
where 1 < p <∞, q = p

1−αp , θ2 <
qθ1
p ;

(b) the one-weight inequality

‖Iα(fwα)‖
L
q), θq/p
w ([0,1]) ≤ c‖f‖Lp),θ

w ([0,1])

holds if and only if w belongs to the Muckenhoupt class A1+q/p′([0, 1]).

The same problems for fractional integrals with product kernels were investigated
in [16].

Our aim is to establish weak type inequalities for these operators in grand Lebesgue
spaces. In particular, we show that the weak type inequality for these operators holds if
and only if the weight belongs to the Muckenhoupt class. Hence, in the frame of one-weight
theory, weak type estimates are equivalent to strong type inequalities. In the classical
Lebesgue spaces such theorems were proved in the well-known papers by B. Mucken-
houpt [19], R. A. Hunt, B. Muckenhoupt and R. L. Wheeden [10], B. Muckenhoupt and
R. L. Wheeden [20].
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It should be also emphasized that regarding potential operators it turned out that
the weak type estimate fails for the same values of the second parameter as in the strong
type case.

This paper can be considered as a natural continuation of investigations carried out
by the authors in [13], [14], [15], [16], [18].

In the sequel the symbol |E| will denote the Lebesgue measure of a measurable set E;
p′ := p

p−1 , where 1 < p < ∞; a ≈ b means that there are positive constants c1 and c2
such that c1b ≤ a ≤ c2b; the fact that a space X is continuously embedded in Y will be
denoted by X ↪→ Y ; for a weight function ρ we define ρF :=

∫
F
ρ(x) dx; constants (often

different constants in the same series of inequalities) will generally be denoted by c.
The paper is organized as follows: in Section 2 we recall some well-known facts re-

garding grand Lebesgue spaces and introduce weak grand Lebesgue space and discuss
some properties of these spaces. In Section 3 we study the one-weight weak type problem
for the Hardy–Littlewood maximal operator and the Hilbert transform defined on [0, 1],
while Section 4 is devoted to the same problem for potentials. In Section 5 we derive
one-weight criteria for integral operators with product kernels under the Muckenhoupt
condition defined with respect to parallelepipeds.

2. Preliminaries. Let E be a bounded set in Rn with positive measure and let w be an
almost everywhere positive integrable function (weight) on E. Suppose that
1 < p < ∞ and ϕ is a continuous positive function on (0, p − 1] satisfying the condi-
tion limx→0+ ϕ(x) = 0.

The generalized weighted grand Lebesgue spaces L
p),ϕ(·)
w (E) is the class of those

f : E → R for which the norm

‖f‖
L
p),ϕ(·)
w (E) = sup

0<ε≤p−1

(ϕ(ε)
|E|

∫
X

|f(x)|p−εw(x) dx
)1/(p−ε)

is finite.
If ϕ(x) = xθ, where θ is a positive number, then we denote Lp),ϕ(·)

w (E) by L
p),θ
w (E).

If w ≡ const, then we use the symbol Lp),θ(E) for Lp),θ
w (E). In the case θ = 1 the space

L
p),θ
w (E) is usually denoted by L

p)
w (E). For more properties of grand Lebesgue spaces,

see, e.g., [4], [14].
Together with Lp),θ(E) spaces we are interested in weak grand Lebesgue spaces

WL
p),θ
w (E) which we define by the quasinorm

‖f‖
WL

p),θ
w (E) = sup

λ>0
λ sup

0<ε≤p−1

(
εθw({x ∈ E : |f(x)| > λ})

)1/(p−ε)
.

It is easy to see that Lp),θ
w ↪→ WL

p),θ
w . It can be also checked that, for example,

the function f(t) = t−1/p belongs to the class WLp),θ([0, 1]) but does not belong to
Lp),θ([0, 1]) for 0 < θ < 1.

The following lemma was proved in [5] for θ = 1 (see also [14] and [18] for θ > 0).
Lemma 2.1. Let 1 < p < ∞, θ > 0 and let w be a weight function on [0, 1]. Then there
is a positive constant c such that for arbitrary f ∈ Lp),θ

w ([0, 1]) and all intervals I ⊂ [0, 1]
‖fχI‖Lp),θ

w
≤ c(wI)−1/p‖fχI‖Lpw · ‖χI‖Lp),θ

w
.
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Definition 2.2. Let 1 < p < ∞. Suppose that w is a weight function on [0, 1]. We say
that w ∈ Ap([0, 1]) if

sup
J⊂[0,1]

1
|J |

∫
J

w(x) dx
( 1
|J |

∫
J

w1−p′(x) dx
)p−1

<∞,

where by J a subinterval of [0, 1] is denoted.

We refer, e.g., to [8] for essential properties of Ap classes.

3. Hardy–Littlewood maximal operator and Hilbert transform. Let M and H

denote the Hardy–Littlewood maximal operator and the Hilbert transform, respectively,
defined on [0, 1] (see Section 1 for definitions of M and H).

The first result of this section reads as follows:

Theorem 3.1. Let 1 < p <∞, θ > 0. Then the following conditions are equivalent:

(i) the operator M is bounded in L
p),θ
w ([0, 1]);

(ii) M is bounded from L
p),θ
w ([0, 1]) to WL

p),θ
w ([0, 1]);

(iii) w ∈ Ap([0, 1]).

Proof. The equivalence of (i) and (iii) was proved in [5] (see also [14] for θ > 0). Now we
show that (ii) ⇒ (iii).

Note that from (ii) it follows that∫
I

w1−p′(x) dx <∞ (1)

for arbitrary I ⊂ [0, 1]. Indeed, if for some I ⊂ [0, 1],∫
I

w1−p′(x) dx =∞ (2)

i.e. w−1/p /∈ Lp′(I), then there exists a non-negative function h ∈ Lp(I) supported on I

such that ∫
I

w−1/p(x)h(x) dx =∞. (3)

Let f = w−1/ph. Then f ∈ Lpw(I) and, consequently, f ∈ Lp),θ
w (I) for arbitrary θ > 0.

Then for x ∈ I,

Mf(x) ≥ 1
|I|

∫
I

w−1/p(y)h(y) dy =∞.

Therefore (ii) yields
(wI)1/(p−ε0) ≤ c

λ
‖f‖

L
p),θ
w

for arbitrary λ > 0 and arbitrary fixed ε0, 0 < ε0 ≤ p−1. Hence, wI = 0. This contradicts
the definition of a weight function.

Thus, (1) is true for an arbitrary interval I ⊆ [0, 1].
Further, observe that if I ⊂ [0, 1] and f ≥ 0, then

Mf(x) ≥ 1
|I|

∫
I

f(y) dy, x ∈ I.
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Putting the function f(x) = w−1/(p−1)χI(x) and the number λ = 1
|I|
∫
I
w−1/(p−1)(y) dy

in the weak type inequality we find

|I|−1
(∫

I

w−1/(p−1) dy
)
‖χI‖Lp),θ

w
≤ c‖w−1/(p−1)χI‖Lp),θ

w
.

Applying Lemma 2.1 we obtain

|I|−1
(∫

I

w−1/(p−1) dy
)
‖χI‖Lp),θ

w
≤ c‖w−1/(p−1)χI‖Lpw‖χI‖Lp),θ

w
· (wI)−1/p.

Hence,
1
|I|

∫
I

w(y) dy
( 1
|I|

∫
I

w−1/(p−1)(y) dy
)p−1

≤ c,

where the constant c is independent of I. Since (i) ⇒ (ii), the theorem is proved.

Theorem 3.2. Let 1 < p < ∞ and let θ > 0. Then the following conditions are equiva-
lent:

(i) the operator H is bounded in L
p),θ
w ;

(ii) H is bounded from L
p),θ
w ([0, 1]) to WL

p),θ
w ([0, 1]);

(iii) w ∈ Ap([0, 1]).

Proof. The equivalence of (i) and (iii) is proved in [15]. We claim that (ii)⇒ (iii). First of
all let us show that (ii) yields (1) for an arbitrary interval I ⊂ [0, 1] with length less than
or equal to 1/4. Indeed, if (2) holds for such an interval I, then there is a non-negative
function h ∈ Lp(I) vanishing outside I such that (3) is true. Let f = w−1/ph. Then
f ∈ Lpw. Consequently, f ∈ Lp),θ

w .
For an interval I, let J ⊂ [0, 1] be one of two intervals satisfying the condition |J | = |I|

and having exactly one end point common with I. Then

|Hf(x)| ≥ 2
|I|

∫
I

w−1/p(y)h(y) dy =∞

for x ∈ J . Therefore due to (ii) we find(
εθw{x : |Hf(x)| > λ}

)1/(p−ε) ≤ c

λ
‖f‖Lp),θ

for arbitrary λ > 0 and ε, 0 < ε ≤ p− 1. Consequently,

(wJ)1/(p−ε0) ≤ c

λ
‖f‖

L
p),θ
w

for some ε0, 0 < ε0 ≤ p− 1 and arbitrary λ > 0.
Therefore wJ = 0; this contradicts the fact that w is positive almost everywhere.
Let, as above, I and J be two intervals in [0, 1] having equal lengths and only one

common point.
Suppose that f := w−1/(p−1)χI . Then for arbitrary x ∈ J ,

|Hf(x)| ≥ 1
π

∣∣∣∫
I

f(y)
x− y

dy
∣∣∣ ≥ 2
|I|

∫
I

w−1/(p−1)(y) dy.

Let
λ = 2

|I|

∫
I

w−1/(p−1)(y) dy.
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Then due to (ii) we obtain

|I|−1
(∫

I

w−1/(p−1)(y) dy
)
‖χJ‖Lp),θ

w
≤ c‖w−1/(p−1)χI‖Lp),θ

w
.

Applying now Lemma 2.1 to the right-hand side of this inequality we get

|I|−1
(∫

I

w−1/(p−1)(y) dy
)
‖χJ‖Lp),θ

w
≤ c
(∫

I

w−1/(p−1)(y) dy
)1/p

· (wI)−1/p‖χI‖Lp),θ
w

.

Hence,

(wI)1/p
(∫

I

w−1/(p−1)(y) dy
)1/p′

‖χJ‖Lp),θ
w
≤ c‖χI‖Lp),θ

w
· |I|. (4)

Analogously, it follows that

(wJ)1/p
(∫

J

w−1/(p−1)(y) dy
)1/p′

‖χI‖Lp),θ
w
≤ c‖χJ‖Lp),θ

w
· |I|. (5)

Multiplying inequalities (4) and (5) we obtain

(wI)1/p
(∫

I

w−1/(p−1)(y) dy
)1/p′

‖χJ‖Lp),θ
w

× (wJ)1/p
(∫

J

w−1/(p−1)(y) dy
)1/p′

‖χI‖Lp),θ
w
≤ c1‖χJ‖Lp),θ

w
· ‖χI‖Lp),θ

w
· |I|2. (6)

On the other hand, due to Hölder’s inequality we see that

|I| ≤ (wJ)1/p ·
(∫

J

w−1/(p−1)(y) dy
)1/p′

.

Thus, (6) together with (4) and (5) yields that w ∈ Ap([0, 1]).

4. Fractional integrals. Let 0 < α < 1. Suppose that Iα is the fractional integral
operator defined on [0, 1] (see Section 1 for the definition of Iα). The corresponding
fractional maximal operator is given by

Mαf(x) = sup
J3x

1
|J |1−α

∫
J

|f(y)| dy, x ∈ [0, 1],

where J denotes a subinterval of [0, 1].
Obviously,

Iαf ≥Mαf, f ≥ 0. (7)

First we determine the range of the second parameter of the grand Lebesgue space
for which the weak type inequality for Mα (consequently, for Iα) fails; namely the next
statement is valid:

Proposition 4.1. Let 0 < α < 1/p, where 1 < p < ∞. We set q = p
1−αp . Suppose that

θ1 and θ2 are positive numbers such that θ2 < θ1q/p. Then Mα (consequently, Iα) is not
bounded from Lp),θ1([0, 1]) to WLq),θ2([0, 1]).

Proof. Observe that if J is any subinterval of [0, 1], then for f = χJ and x ∈ J ,

Mαf(x) ≥
∫
J

dy

|x− y|1−α
≥ |J |α.
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If the inequality

sup
0<ε≤p−1

λ
(
εθ2w{x ∈ [0, 1] : Mα(x) > λ}

)1/(q−ε) ≤ c‖f‖
L
p),θ1
w

(8)

holds, with a positive constant c independent of f and λ, then taking λ = |J |α and
f = χJ in (8), we obtain

|J |α sup
0<ε≤p−1

(
εθ2 |J |

)1/(q−ε) ≤ c‖χJ‖Lp),θ1 ([0,1]).

Hence,
|J |α‖χJ‖Lq),θ2 ([0,1]) ≤ c‖χJ‖Lp),θ1 ([0,1]) , (9)

where the positive constant c does not depend on J . Now we argue as in the proof of
Theorem 2.1 in [18] (see also [16]). Let us define the number εJ which belongs to (0, p−1]
and satisfies the condition

sup
0<ε≤p−1

(
εθ1 |J |

)1/(p−ε) =
(
εθ1
J |J |

)1/(p−εJ )
. (10)

Then (see the proof of Theorem 2.1 in [18]) lim|J|→0 εJ = 0.
For J ⊂ [0, 1] with sufficiently small length, let us choose ηJ so that

α = 1
p− εJ

− 1
q − ηJ

. (11)

Due to (10) we find

|J |αηθ2/(q−ηJ )
J |J |1/(q−ηJ ) ≤ cεθ1/(p−εJ )

J |J |1/(p−εJ ). (12)

Hence,
η
θ2/(q−ηJ )
J ε

−θ1/(p−εJ )
J ≤ c. (13)

Further, (11) and (13) imply(
q − p−εJ

1−α(p−εJ )

εJ

)θ2/(p−εJ )−αθ2

ε
−θ1/(p−εJ )+θ2/(p−εJ )−αθ2
J ≤ c. (14)

Passing now to the limit as |J | → 0 we see that the left-hand side of (14) tends to +∞
because the limit of the first factor is

[
(1− αp)−2]θ2/p−αθ2 , and

lim
|J|→0

ε
(θ2−θ1)/(p−εJ )−αθ2
J = lim

|J|→0
ε

(θ2−θ1)/p−αθ2
J =∞.

The result for Iα follows from (7).

Theorem 4.2. Let 0 < α < 1/p, where 1 < p <∞. We set q = p
1−αp . Then the following

conditions are equivalent:

(i) ‖Iα(fwα)‖
L
q),θq/p
w ([0,1]) ≤ c‖f‖Lp),θ

w ([0,1]) (one-weight strong type inequality);
(ii) ‖Iα(fwα)‖

WL
q),θq/p
w ([0,1]) ≤ c‖f‖Lp),θ

w ([0,1]) (weak type inequality);
(iii) ‖Mα(fwα)‖

L
q),θq/p
w ([0,1]) ≤ c‖f‖Lp),θ

w ([0,1]);
(iv) ‖Mα(fwα)‖

WL
q),θq/p
w ([0,1]) ≤ c‖f‖Lp),θ

w ([0,1]);
(v) w ∈ A1+q/p′([0, 1]).
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Proof. The fact that (i) ⇔ (v) was proved in [18] (see also [16]). The implications (i) ⇒
(ii) ⇒ (iv) and (i) ⇒ (iii) ⇒ (iv) are obvious. The theorem will be proved if we show
that (iv) ⇒ (v).

Further, we show that (iv) implies

A :=
∫ 1

0
w−p

′/q(x) dx = ‖wα−1‖
Lp
′
w
<∞.

Indeed, if we assume that A = ∞, then there is a non-negative function g ∈ Lpw([0, 1])
such that

∫ 1
0 g(x)wα(x) dx =∞. On the other hand, it is easy to check that

Mα(gwα)(x) ≥
∫ 1

0
g(t)wα(t) dt =∞, x ∈ [0, 1].

This together with Lemma 2.1 yields

(wI)1/(q−ε0) ≤ c

λ
‖g‖

L
p),θ
w ([0,1]) ≤

c

λ
‖g‖Lpw([0,1]) <∞

for all λ > 0 and fixed ε0, 0 < ε0 ≤ q − 1. Hence wI = 0 a.e. on [0, 1]. This contradicts
the definition of a weight function.

Further, let us observe that (iv) is equivalent to

(iv′) Mα is bounded from L
p),θ
w ([0, 1]) to WL

q),ψ(·)
w ([0, 1]),

where
ψ(x) = ϕ(xθ), ϕ(x) =

[ x− q
1− α(x− q) + p

]1−(x−q)α
. (15)

This follows from the fact that ϕ(x) ≈ xq/p near 0.
Let J be a subinterval of [0, 1] and let f := χJw

−α−p′/q. Then for x ∈ J ,

Mα(wαf)(x) ≥ |J |α−1
∫
J

w−p
′/q(x) dx.

Hence, for λ = |J |α−1 ∫
J
w−p

′/q(x) dx, by Lemma 2.1 we obtain

|J |α−1
(∫

J

w−p
′/q
)
‖χJ‖Lq),ψ(x)

w ([0,1]) ≤ c‖f‖Lp),θ([0,1])

≤ c(w(J))−1/p
(∫

J

|f(t)|pw(t) dt
)1/p
‖χJ‖Lp),θ

w ([0,1])

= cw(J)−1/p
(∫

J

w−p
′/q
)1/p
‖χJ‖Lp),θ

w ([0,1]).

It is easy to see that there is a number ηJ depending on J such that 0 < ηJ ≤ p− 1 and

|J |α−1w(J)1/p
(∫

J

w−p
′/q
)1/p′

‖χJ‖Lq),ψ(x)
w ([0,1]) ≤ c

(
ηJw(J)

)1/(p−ηJ )
.

For such an ηJ we choose εJ so that
1

p− ηJ
− 1
q − εJ

= α. (16)

Then 0 < εJ ≤ q − 1 and

|J |α−1w(J)1/p−1/(p−ηJ )η
−θ/(p−ηJ )
J ψ(εJ)1/(q−εJ )w(J)1/(q−εJ )

(∫
J

w−p
′/q
)1/p′

≤ c.
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Observe now that by (16) and the definition of the function ψ we have

η
−θ/(p−ηJ )
J ψ(εJ)1/(q−εJ ) = η

−θ/(p−ηJ )
J ϕ(εθJ)1/(q−εJ ) ≈ η−θ/(p−ηJ )

J ε
θ(1+αq)/(q−εJ )
J

=
(
η
−1/(p−ηJ )
J ε

(1+αq)/(q−εJ )
J

)θ ≈ (η−1/(p−ηJ )
J ϕ(εJ)1/(q−εJ ))θ = 1

and also,
1
p
− 1
p− ηJ

+ 1
q − εJ

= 1
p
− α = 1

q
.

Finally, we conclude that

|J |α−1w(J)1/q
(∫

J

w−p
′/q
)1/p′

≤ c

for all intervals J ⊆ [0, 1].

5. Integral operators with product kernels. Let R := I0 × . . . × In, where Ik are
fixed bounded intervals in R. Suppose also that 0 < α < 1. Suppose also that n ≥ 2.
This section is devoted to the weak type estimates for the operators:

H(n)f(x, y) =
∫
R

f(t1, . . . , tn)∏n
i=1(xi − ti)

dt1 · · · dtn,

M(n)
α f(x) = sup

J1×...×Jn3(x1,...,xn)

1(∏n
i=1 |Ji|

)1−α

∫
J1×...×Jn

|f(y1, . . . , yn)| dy1 · · · dyn,

I(n)
α f(x) =

∫
R

f(t1, . . . , tn)∏n
i=1 |xi − ti|1−α

dt1 · · · dtn,

where x = (x1, . . . , xn) ∈ R. In the definition of M(n)
α the supremum is taken over all

parallelepipeds J1 × . . .× Jn ⊆ R with sides parallel to the coordinate axes.
If α = 0, then M(n)

α is the strong Hardy–Littlewood maximal operator denoted
by M(n).

It is easy to verify that

I(n)
α f ≥M(n)

α f, f ≥ 0. (17)

The one-weight problem for these operators in the classical Lebesgue spaces was stud-
ied by the first author in the papers [12]. For the weight theory regarding integral opera-
tors with product kernels in classical Lebesgue spaces we refer also to the monograph [17].

Definition 5.1. Let 1 < r <∞. We say that a weight function w belongs to the Mucken-
houpt class Ar(R) (w ∈ Ar(R)) if

Ar(R) := sup
R⊂R

1
|R|

∫
R

w
( 1
|R|

∫
R

w1−r′
)r−1

<∞,

where the supremum is taken over all n-dimensional subintervals R ⊂ R with sides
parallel to the coordinate axes.

Our aim is to establish criteria for the weak type inequality for these operators under
the Ap condition.

The following lemma will be useful for us (see [13], [16]):
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Lemma 5.2. Let 1 < p <∞ and let w be a weight on R. Then there is a positive constant
c such that for all f ∈ Lpw(R) and all parallelepipeds P ⊂ R

‖fχP ‖Lp),θ
w (R) ≤ cw(P )−1/p‖fχP ‖Lpw(R)‖χP ‖Lp)

w (R).

Theorem 5.3. Let 1 < p <∞ and θ > 0. Then the following conditions are equivalent:

(i) the operator M(n) is bounded in L
p),θ
w (R);

(ii) M(n) is bounded from L
p),θ
w (R) to WL

p),θ
w (R);

(iii) the operator H(n) is bounded in L
p),θ
w (R);

(iv) H(n) is bounded from L
p),θ
w (R) to WL

p),θ
w (R);

(v) w ∈ Ap(R).

Proof. The implications (i) ⇔ (v), (iii) ⇔ (v) are known (see [13]). The implication (ii)
⇒ (v) follows just in the same manner as in the case of Theorem 3.1; we need only to
substitute one-dimensional intervals by n-dimensional ones. Now we show some details
of the implication (iv) ⇒ (v).

For simplicity let us consider the case n = 2. Following the proof of Theorem 1.2
in [13] let R = [c1, d1; c2, d2]. Suppose that J = [a1, b1; a2, b2] is an arbitrary rectangle
belonging to R with the conditions bi−ai < di−ci

4 , i = 1, 2. Then there exists a rectangle
J ′ = [a′1, b′1; a′2, b′2] ⊂ R such that b′i − a′i = bi − ai, i = 1, 2, having only one vertex
coinciding with at least one vertex of J .

Let us now take the test function f = w1−p′χJ . Then for (x1, x2) ∈ J ′, we have

|H(n)f(x)| ≥ b

|J |

∫
J

w1−p′(t1, t2) dt1 dt2

for some positive constant b. Hence, assuming that λ = b
|J|
∫
J
w1−p′(t1, t2) dt1 dt2 in the

weak type inequality and taking Lemma 5.2 into account we find that

1
|J |

w1−p′(J)‖χJ′‖Lp),θ
w (R) ≤ c‖H

(n)f‖
L
p),θ
w (R) ≤ c‖f‖Lp),θ

w (R)

≤ c(w(J))−1/p
(∫

R

w1−p′(t1, t2) dt1 dt2
)1/p
‖χJ‖Lp),θ

w (R).

Analogously we have
1
|J ′|

w1−p′(J ′)‖χJ‖Lp),θ
w (R) ≤ c(w(J ′))−1/p

(∫
J′
w1−p′(t1, t2) dt1 dt2

)1/p
‖χJ′‖Lp),θ

w (R).

Now the result follows by using Hölder’s inequality and arguing as in the case n = 1 (see
Section 3).

The fact that w1−p′(J) < ∞ for arbitrary n-dimensional subinterval of R follows in
the same way as in the case of n = 1 using the construction of n-dimensional subintervals
J and J ′ introduced and used above; details are omitted.

Now we discuss the operator I(n)
α . First we formulate the following statement which

follows in the same manner as Proposition 4.1 was proved (see also [16] for the strong
type case); details are omitted.
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Proposition 5.4. Let 0 < α < 1, 1 < p < 1
α , θ1 and θ2 be positive numbers such that

θ2 < θ1q/p, where q = p
1−αp . Then the operator Kα is not bounded from Lp),θ1(R0) to

WLq),θ2(R0), where Kα is I(n)
α or M(n)

α .

Theorem 5.5. Let 0 < α < 1/p, where 1 < p < ∞. Let q = p
1−αp . Then the following

conditions are equivalent:

(i) ‖Iα(fwα)‖
L
q),θq/p
w (R) ≤ c‖f‖Lp),θ

w (R) (one-weight inequality);
(ii) ‖Iα(fwα)‖

WL
q),θq/p
w (R) ≤ c‖f‖Lp),θ

w (R) (one-weight weak type inequality);
(iii) ‖Mα(fwα)‖

L
q),θq/p
w (R) ≤ c‖f‖Lp),θ

w (R);
(iv) ‖Mα(fwα)‖

WL
q),θq/p
w (R) ≤ c‖f‖Lp),θ

w (R);
(v) w ∈ A1+q/p′(R).

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iv) are obvious. By the estimate (17) we
have also (i) ⇒ (iii) and (ii) ⇒ (iv). The equivalence (i) ⇔ (v) was derived in [16]. The
implication (iv) ⇒ (v) follows in the same manner as in the proof of Theorem 4.2; we
need only to take n-dimensional intervals instead of one-dimensional ones and use Lemma
5.2 instead of Lemma 2.1 (see also [16] for some details).
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