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Abstract. We introduce the generalized fractional integrals Ĩα,d and prove the strong and weak
boundedness of Ĩα,d on the central Morrey spaces Bp,λ(Rn). In order to show the boundedness,
the generalized λ-central mean oscillation spaces Λ(d)

p,λ(Rn) and the generalized weak λ-central
mean oscillation spaces WΛ(d)

p,λ(Rn) play an important role.

1. Introduction. In 1989, Y. Chen and K. Lau [3] and J. Garćıa-Cuerva [6] introduced
the central mean oscillation spaces CMOp(Rn), 1 ≤ p <∞. These spaces contain Bp(Rn)
modulo constants. The spaces Bp(Rn) were introduced by A. Beurling [2], together with
their preduals Ap(Rn), so-called the Beurling algebras. Further, in 1994, J. Garćıa-Cuerva
and M. J. Herrero [7] defined Bp,q(Rn) and Λp,q(Rn), 1 ≤ p < ∞ and 0 < q ≤ 1,
which special cases where q = 1, give Bp(Rn) and CMOp(Rn), respectively. Later, in
2000, J. Alvarez, M. Guzmán-Partida and J. Lakey [1] introduced the non-homogeneous
central Morrey spaces Bp,λ(Rn) and the λ-central mean oscillation spaces CMOp,λ(Rn),
1 ≤ p < ∞ and λ ∈ R. Here note that when λ = n(1/q − 1) and 0 < q ≤ 1, Bp,λ(Rn)
gives Bp,q(Rn), and that Bp,λ(Rn) is the non-homogeneous Herz space K−n/p−λp,∞ (Rn) (cf.
H. Feichtinger [4] and C. Herz [10]).

On the other hand, for the fractional integrals Iα, 0 < α < n, which are defined by

Iαf(x) =
∫
Rn

f(y)
|x− y|n−α

dy, f ∈ L1
loc(Rn),
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the following results are well-known: For 0 < α < n, 1 ≤ p < n/α and 1/q = 1/p− α/n,
(i) Iα : Lp(Rn)→ Lq(Rn), 1 < p < n/α;

(ii) Iα : L1(Rn)→WLq(Rn), p = 1.
Remark 1.1. In the above, (i) is the famous Hardy–Littlewood–Sobolev theorem,
which is due to G. H. Hardy and J. E. Littlewood [8, 9] for the 1-dimensional case and
S. L. Sobolev [18] for the n-dimensional case, and (ii) belongs to A. Zygmund [19].

Afterwards, Z. W. Fu, Y. Lin and S. Z. Lu [5] proved that for 0 < α < n, 1 < p < n/α,
−n/p+ α ≤ λ+ α = µ < 0 and 1/q = 1/p− α/n,

Iα : Bp,λ(Rn)→ Bq,µ(Rn). (1.1)
Furthermore, in [11, 12], we introduced CMOp

q(Rn) and WCMOp
q(Rn), 1 ≤ p < ∞

and 0 < q ≤ 1, and for the modified fractional integrals Ĩα, which are defined by

Ĩα f(x) =
∫
Rn
f(y)

( 1
|x− y|n−α

− 1− χQ1(y)
|y|n−α

)
dy, (1.2)

where χQ1 is the characteristic function of Q1, proved the following: For 0 < α < 1,
1 ≤ p1 < n/α, n/(n+ 1− α) < q1 ≤ 1, 1/p2 = 1/p1 − α/n and 1/q2 = 1/q1 + α/n,

(i) Ĩα : Bp1
q1

(Rn)→ CMOp2
q2

(Rn), 1 < p1 < n/α;
(ii) Ĩα : B1

q1
(Rn)→WCMOp2

q2
(Rn), p1 = 1.

Here Bpq (Rn) = Bp,q(Rn) and CMOp
q(Rn) is the special case of CMOp,λ(Rn), where

λ = n(1/q − 1) and 0 < q ≤ 1.
Recently, in [15] (cf. [13]), in order to unify Bp,λ(Rn) and CMOp,λ(Rn), we intro-

duced the Bσ-function spaces, 0 ≤ σ < ∞, and showed several Bσ-Morrey–Campanato
estimates for Iα and Ĩα. From one of these estimates we obtained the following corollary:
For 0 < α < n, 1 < p < n/α, 1 ≤ q ≤ pn/(n− pα) and −n/p+ α ≤ λ+ α = µ < 1,

Ĩα : Bp,λ(Rn)→ CMOq,µ(Rn). (1.3)
As we stated above, for 0 < α < n and 1 < p < n/α, when −n/p ≤ λ < −α, Iα is

well-defined and bounded for Bp,λ(Rn) and when −n/p ≤ λ < 1 − α, Ĩα is well-defined
and bounded for Bp,λ(Rn) (see (1.1) and (1.3), respectively). Therefore, in this paper
for the whole of λ such that −n/p ≤ λ < ∞, we investigate the boundedness of Iα for
Bp,λ(Rn). In order to do so, first we introduce the “new” function spaces, the special
cases of which are Λp,q(Rn). Next we define the modification of Iα which is well-defined
for Bp,λ(Rn), when λ ≥ 1 − α, and show the strong estimate of this modification of Iα
for Bp,λ(Rn), using the above “new” function spaces. Moreover we also observe the weak
estimate of this modification of Iα for the critical case B1,λ(Rn).

We note that the same results in this paper still hold for the homogeneous versions
of the function spaces.

2. Generalized λ-CMO spaces. First we explain the notation used in the present
paper. We use the symbol A . B to denote that there exists a constant C > 0 such that
A ≤ CB. If A . B and B . A, we then write A ∼ B. For r > 0, by Qr, we mean the
following:

Qr = {y ∈ Rn : |y| < r} or Qr = {y = (y1, y2, . . . , yn) ∈ Rn : max
1≤i≤n

|yi| < r}.
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For a measurable set G ⊂ Rn, we denote the Lebesgue measure of G by |G| and the
characteristic function of G by χG. Further, for a function f ∈ L1

loc(Rn) and a measurable
set G ⊂ Rn with |G| > 0, let

fG = −
∫
G

f(y) dy = 1
|G|

∫
G

f(y) dy,

and let N0 = N ∪ {0}.
Next we state the definition of the non-homogeneous central Morrey space Bp,λ(Rn)

(see [1] and [5]).

Definition 2.1. For 1 ≤ p <∞ and −n/p ≤ λ <∞,
Bp,λ(Rn) = {f ∈ Lploc(Rn) : ‖f‖Bp,λ <∞},

where
‖f‖Bp,λ = sup

r≥1

1
rλ

(
−
∫
Qr

|f(y)|p dy
)1/p

.

Now we introduce the “new” function spaces, i.e., the generalized λ-central mean
oscillation spaces Λ(d)

p,λ(Rn) (see [7] and [14]; cf. [17]).

Definition 2.2. For 1 ≤ p < ∞, d ∈ N0 and −n/p ≤ λ < d + 1, the function f ∈
Lploc(Rn) will be said to belong to the generalized λ-central mean oscillation (λ-CMO)
space Λ(d)

p,λ(Rn) if and only if for every r ≥ 1, there is a polynomial P dr f of degree at
most d such that

‖f‖Λ(d)
p,λ

= sup
r≥1

1
rλ

(
−
∫
Qr

|f(y)− P dr f(y)|p dy
)1/p

<∞.

Also we define the generalized weak λ-CMO spaces WΛ(d)
p,λ(Rn).

Definition 2.3. For 1 ≤ p <∞, d ∈ N0 and−n/p ≤ λ < d+1, the function f ∈ Lploc(Rn)
will be said to belong to the generalized weak λ-CMO space WΛ(d)

p,λ(Rn) if and only if for
every r ≥ 1, there is a polynomial P dr f of degree at most d such that

‖f‖
WΛ(d)

p,λ

= sup
r≥1

1
rλ

( 1
|Qr|

sup
t>0

tp
∣∣{y ∈ Qr : |f(y)− P dr f(y)| > t}

∣∣)1/p
<∞.

Identifying functions which differ by a polynomial of degree at most d, a.e., we see
that Λ(d)

p,λ(Rn) is a Banach space and WΛ(d)
p,λ(Rn) is a complete quasi-normed space.

Remark 2.1. We note that particularly
Λ(0)
p,λ(Rn) = CMOp,λ(Rn) and WΛ(0)

p,λ(Rn) = WCMOp,λ(Rn).

Here CMOp,λ(Rn) and WCMOp,λ(Rn), so-called the λ-CMO space and the weak λ-CMO
space, are defined by

CMOp,λ(Rn) = {f ∈ Lploc(Rn) : ‖f‖CMOp,λ <∞},
where

‖f‖CMOp,λ = sup
r≥1

1
rλ

(
−
∫
Qr

|f(y)− fQr |p dy
)1/p

,

and
WCMOp,λ(Rn) = {f ∈ Lploc(Rn) : ‖f‖WCMOp,λ <∞},
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where

‖f‖WCMOp,λ = sup
r≥1

1
rλ

( 1
|Qr|

sup
t>0

tp
∣∣{y ∈ Qr : |f(y)− fQr | > t}

∣∣)1/p
,

respectively (see [1]; cf. [11]).
Remark 2.2 (Remark 6.2 of [17]). For 1 ≤ p < ∞, d ∈ N0, −n/p ≤ λ < d + 1 and
f ∈ Lploc(Rn), we have

‖f‖Λ(d)
p,λ

∼ sup
r≥1

inf
P∈Pd(Rn)

1
rλ

(
−
∫
Qr

|f(y)− P (y)|p dy
)1/p

and

‖f‖
WΛ(d)

p,λ

∼ sup
r≥1

inf
P∈Pd(Rn)

1
rλ

( 1
|Qr|

sup
t>0

tp
∣∣{y ∈ Qr : |f(y)− P (y)| > t}

∣∣)1/p
,

where Pd(Rn) is the set of all polynomials having degree at most d.

3. Generalized fractional integrals. Let 0 < α < n, 1 ≤ p < ∞ and −n/p ≤
λ < ∞. Now under the condition λ + α ≥ 1 we consider the boundedness of fractional
integrals Iα on Bp,λ(Rn). Then, in general, Iαf is not necessarily well-defined. Therefore
we modify the definition of fractional integrals Iα and introduce the following definition
of generalized fractional integrals Ĩα,d.
Definition 3.1. For 0 < α < n and d ∈ N0, we define the generalized fractional integral
(of order α), i.e., Ĩα,d, as follows: For f ∈ L1

loc(Rn),

Ĩα,d f(x) =
∫
Rn
f(y)

{
Kα(x− y)−

( ∑
{l:|l|≤d}

xl

l! (DlKα)(−y)
)

(1− χQ1(y))
}
dy,

where
Kα(x) = 1

|x|n−α

and for x = (x1, x2, . . . , xn) ∈ Rn and l = (l1, l2, . . . , ln) ∈ Nn0 , |l| = l1 + l2 + . . . + ln,
xl = xl11 x

l2
2 · · ·xlnn , and Dl is the partial derivative of order l, i.e.,

Dl = (∂/∂x1)l1(∂/∂x2)l2 · · · (∂/∂xn)ln .
Note that in particular

Ĩα,0 = Ĩα

(see (1.2) above) and that Ĩα,d(|f |) 6≡ ∞ on Rn, if∫
Rn

|f(y)|
(1 + |y|)n−α+d+1 dy <∞

(cf. Y. Mizuta [16]). If Iαf is well-defined, then Ĩα,df is also well-defined and Iαf − Ĩα,df
is a polynomial of degree at most d.

Then our results for a generalized fractional integral Ĩα,d are the following strong and
weak estimates on Bp,λ(Rn).
Theorem 3.1. Let 0 < α < n, 1 < p < n/α, d ∈ N0, −n/p+α ≤ λ+α = µ < d+ 1 and
q = pn/(n−pα), i.e., 1/q = 1/p−α/n. Then Ĩα,d is bounded from Bp,λ(Rn) to Λ(d)

q,µ(Rn),
that is, there exists a constant C > 0 such that

‖Ĩα,df‖Λ(d)
q,µ
≤ C‖f‖Bp,λ , f ∈ Bp,λ(Rn).
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Theorem 3.2. Let 0 < α < n, d ∈ N0, −n+ α ≤ λ+ α = µ < d+ 1 and q = n/(n− α),
i.e., 1/q = 1 − α/n. Then Ĩα,d is bounded from B1,λ(Rn) to WΛ(d)

q,µ(Rn), that is, there
exists a constant C > 0 such that

‖Ĩα,df‖WΛ(d)
q,µ
≤ C‖f‖B1,λ , f ∈ B1,λ(Rn).

In the above theorems, if d = 0, then we get the following strong and weak estimates
for Ĩα.

Corollary 3.3 (cf. Theorem 2.3 of [15]). Let 0 < α < n, 1 < p < n/α, −n/p + α ≤
λ + α = µ < 1 and q = pn/(n − pα), i.e., 1/q = 1/p − α/n. Then Ĩα is bounded from
Bp,λ(Rn) to CMOq,µ(Rn), that is, there exists a constant C > 0 such that

‖Ĩαf‖CMOq,µ ≤ C‖f‖Bp,λ , f ∈ Bp,λ(Rn).

Corollary 3.4. Let 0 < α < n, −n + α ≤ λ + α = µ < 1 and q = n/(n − α), i.e.,
1/q = 1−α/n. Then Ĩα is bounded from B1,λ(Rn) to WCMOq,µ(Rn), that is, there exists
a constant C > 0 such that

‖Ĩαf‖WCMOq,µ ≤ C‖f‖B1,λ , f ∈ B1,λ(Rn).

4. Proofs of the theorems. First of all, we show that Ĩα,df is well-defined.

Lemma 4.1. Let 0 < α < n, 1 ≤ p < ∞, d ∈ N0 and −n/p + α ≤ λ + α < d + 1. Then
for f ∈ Bp,λ(Rn), Ĩα,df is well-defined.

Proof. Let f ∈ Bp,λ(Rn), r ≥ 1 and x ∈ Qr, and let

Ĩα,df(x) = Ĩα,d(fχQ2r )(x) + Ĩα,d(f(1− χQ2r ))(x)

= Iα(fχQ2r )(x)−
∑

{l:|l|≤d}

xl

l!

∫
Q2r\Q1

f(y)(DlKα)(−y) dy

+
∫
Rn\Q2r

f(y)
(
Kα(x− y)−

∑
{l:|l|≤d}

xl

l! (DlKα)(−y)
)
dy. (4.1)

Since fχQ2r ∈ Lp(Rn), the first term is well-defined. The second term is also well-
defined, since (DlKα)(χQ2r − χQ1) ∈ Lp′(Rn), where 1/p+ 1/p′ = 1. Here we note that
the second term is a polynomial of degree at most d. For the third term, the integral
converges absolutely by virtue of Lemma 4.2, which is shown in the proof of Theorem 3.1
below, and so the present term is well-defined.

Further, since for 1 ≤ s < r,

fχQ2s + f(1− χQ2s) = fχQ2r + f(1− χQ2r ),

it follows that for x ∈ Qs ⊂ Qr,

Ĩα,d(fχQ2s)(x) + Ĩα,d(f(1− χQ2s))(x) = Ĩα,d(fχQ2r )(x) + Ĩα,d(f(1− χQ2r ))(x).

This shows that Ĩα,df is independent of Qr containing x. Thus Ĩα,df is well-defined
on Rn.

In the proofs of Theorems 3.1 and 3.2, the following two lemmas are important.
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Lemma 4.2 (Lemma 7.3 of [16]). Let x ∈ Rn, 0 < α < n and d ∈ N0. If y ∈ Rn \Q2|x|,
then ∣∣∣Kα(x− y)−

∑
{l:|l|≤d}

xl

l! (DlKα)(−y)
∣∣∣ ≤ C |x|d+1

|y|n−α+d+1 .

Lemma 4.3. Let 1 ≤ p <∞ and λ ∈ R. If β + λ < 0, then there exists a constant C > 0
such that ∫

Rn\Qr

|f(y)|
|y|n−β

dy ≤ Crβ+λ‖f‖Bp,λ for all f ∈ Bp,λ(Rn) and r ≥ 1.

Proof. This lemma is proved by the same argument as the proof of Lemma 4.1 of [15].
Since β + λ < 0, it follows from Hölder’s inequality that∫
Rn\Qr

|f(y)|
|y|n−β

dy .
∞∑
j=1

1
(2jr)n−β

∫
Q2jr\Q2j−1r

|f(y)| dy

. rβ
∞∑
j=1

2jβ
(
−
∫
Q2jr

|f(y)|p dy
)1/p

. rβ+λ
∞∑
j=1

(2β+λ)j‖f‖Bp,λ ∼ rβ+λ‖f‖Bp,λ ,

which concludes the proof.

Proof of Theorem 3.1. Let f ∈ Bp,λ(Rn), r ≥ 1 and x ∈ Qr. Since Ĩα,df is well-defined
by Lemma 4.1, we prove only that

‖Ĩα,df‖Λ(d)
q,µ
≤ C‖f‖Bp,λ .

Now, in (4.1), putting

Rdrf(x) = −
∑

{l:|l|≤d}

xl

l!

∫
Q2r\Q1

f(y)(DlKα)(−y) dy

and

Jα,d,rf(x) =
∫
Rn\Q2r

f(y)
(
Kα(x− y)−

∑
{l:|l|≤d}

xl

l! (DlKα)(−y)
)
dy,

we have(∫
Qr

∣∣Ĩα,df(x)−Rdrf(x)
∣∣q dx)1/q

≤
(∫

Qr

∣∣Iα(fχQ2r )(x)
∣∣q dx)1/q

+
(∫

Qr

|Jα,d,rf(x)|q dx
)1/q

= I1 + I2. (4.2)

To estimate I1, we apply the strong (p, q) boundedness of Iα. Then

I1 ≤ ‖Iα(fχQ2r )‖Lq . ‖fχQ2r‖Lp . rλ|Q2r|1/p‖f‖Bp,λ

∼ rλ+n/p‖f‖Bp,λ = rµ+n/q‖f‖Bp,λ .

Next we estimate I2. Since it follows from Lemma 4.2 that for x ∈ Qr and y ∈ Rn\Q2r,∣∣∣Kα(x− y)−
∑

{l:|l|≤d}

xl

l! (DlKα)(−y)
∣∣∣ . |x|d+1

|y|n−α+d+1 ≤
rd+1

|y|n−α+d+1 ,



GENERALIZED FRACTIONAL INTEGRALS ON CENTRAL MORREY SPACES 187

we obtain by Lemma 4.3 and the assumption λ+ α < d+ 1,

|Jα,d,rf(x)| . rd+1
∫
Rn\Q2r

|f(y)|
|y|n−α+d+1 dy . rλ+α‖f‖Bp,λ = rµ‖f‖Bp,λ . (4.3)

Consequently

I2 = ‖Jα,d,rf‖Lq(Qr) . rµ‖f‖Bp,λ · |Qr|1/q ∼ rµ+n/q‖f‖Bp,λ .

Thus we get

‖Ĩα,df‖Λ(d)
q,µ

. sup
r≥1

1
rµ

(
−
∫
Qr

∣∣Ĩα,df(y)−Rdrf(y)
∣∣q dy)1/q

. sup
r≥1

1
rµ

( 1
|Qr|

)1/q
· rµ+n/q‖f‖Bp,λ ∼ ‖f‖Bp,λ .

This completes the proof.

Proof of Theorem 3.2. The proof of Theorem 3.2 is similar to that of Theorem 3.1.
Therefore, in the same way as (4.2), it follows that for f ∈ B1,λ(Rn), r ≥ 1 and x ∈ Qr,

sup
t>0

(2t)q
∣∣∣{x ∈ Qr : |Ĩα,df(x)−Rdrf(x)| > 2t

}∣∣∣
≤ 2q

{
sup
t>0

tq
∣∣{x ∈ Qr : |Iα(fχQ2r )(x)| > t

}∣∣+ sup
t>0

tq
∣∣{x ∈ Qr : |Jα,d,rf(x)| > t

}∣∣}
= 2q(I1 + I2).

Then we have by using the weak (1, q) boundedness of Iα,

I
1/q
1 . rµ+n/q‖f‖B1,λ

and by (4.3),
I

1/q
2 . rµ+n/q‖f‖B1,λ .

Thus
‖Ĩα,df‖WΛ(d)

q,µ
. ‖f‖B1,λ ,

which shows the conclusion.

Acknowledgments. The author would like to express his gratitude to the referee for
his/her careful remarks.

References

[1] J. Alvarez, J. Lakey, M. Guzmán-Partida, Spaces of bounded λ-central mean oscillation,
Morrey spaces, and λ-central Carleson measures, Collect. Math. 51 (2000), 1–47.

[2] A. Beurling, Construction and analysis of some convolution algebras, Ann. Inst. Fourier
(Grenoble) 14 (1964), no. 2, 1–32.

[3] Y. Chen, K. Lau, Some new classes of Hardy spaces, J. Funct. Anal. 84 (1989), 255–278.
[4] H. Feichtinger, An elementary approach to Wiener’s third Tauberian theorem on Euclidean

n-space, Symp. Math. 29 (Cortona, 1984), Academic Press, New York 1987, 267–301.
[5] Z. W. Fu, Y. Lin, S. Z. Lu, λ-central BMO estimates for commutators of singular integral

operators with rough kernels, Acta Math. Sin. (Engl. Ser.) 24 (2008), 373–386.

http://dx.doi.org/10.1016/0022-1236(89)90097-9
http://dx.doi.org/10.1007/s10114-007-1020-y


188 K. MATSUOKA
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