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Abstract. It is proved for Abelian groups that the Reidemeister coincidence number of two

endomorphisms φ and ψ is equal to the number of coincidence points of bφ and bψ on the unitary

dual, if the Reidemeister number is finite. An affirmative answer to the bitwisted Dehn conjugacy

problem for almost polycyclic groups is obtained. Finally, we explain why the Reidemeister

numbers are always infinite for injective endomorphisms of Baumslag-Solitar groups.

1. Introduction

Definition 1.1. Let G be a countable discrete group and φ, ψ : G → G two endomor-
phisms. Two elements x, x′ ∈ G are said to be (φ, ψ)-conjugate iff there exists γ ∈ G

with
x′ = ψ(γ)xφ(γ)−1.

The number of (φ, ψ)-conjugacy classes is called the Reidemeister coincidence number of
endomorphisms φ and ψ, denoted by R(φ, ψ). If ψ is the identity map then the (φ, id)-
conjugacy classes are the φ-conjugacy classes in the group G and R(φ, id) = R(φ) is
the Reidemeister number of φ. If both φ and ψ are the identity maps then the (id, id)-
conjugacy classes are the usual conjugacy classes in the group G. We shall write {x}φ,ψ
for the (φ, ψ)-conjugacy or bitwisted conjugacy class of the element x ∈ G.

If G is a finite group, then the classical Burnside-Frobenius theorem (see e.g. [25])
says that the number of classes of irreducible representations is equal to the number
of conjugacy classes of elements of G. Let Ĝ be the unitary dual of G, i.e. the set of
equivalence classes of unitary irreducible representations of G.
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If φ : G→ G is an automorphism, it induces a map φ̂ : Ĝ→ Ĝ, φ̂(ρ) = ρ◦φ. Therefore,
by the Burnside-Frobenius theorem, if φ and ψ are the identity automorphisms of any
finite group G, then we have R(φ, ψ) = # Coin(φ̂, ψ̂), where Coin(φ̂, ψ̂) is the set of
coincidence points of φ̂ and ψ̂.

This statement remains true for φ 6= Id, ψ = Id and finite G [10]. Indeed, consider an
automorphism φ of a finite group G. Then R(φ) is equal to the dimension of the space
of twisted invariant functions on this group. Hence, by the Peter-Weyl theorem (which
asserts the existence of a two-side equivariant isomorphism C∗(G) ∼=

⊕
ρ∈ bG End(Hρ)),

R(φ) is identified with the sum of dimensions dρ of twisted invariant elements of End(Hρ),
where ρ runs over Ĝ, and the space of representation ρ is denoted by Hρ. By the Schur
lemma, dρ = 1, if ρ is a fixed point of φ̂, and is zero otherwise. Hence, R(φ) coincides
with the number of fixed points of φ̂.

The attempts to generalize the Burnside-Frobenius theorem to the case of non-iden-
tical endomorphisms and of non-finite group were inspired by the dynamical questions
and were the subject of a series of papers [6], [10], [13], [14], [15].

Remark 1.2. If φ : G→ G is an epimorphism, it induces a map φ̂ : Ĝ→ Ĝ, φ̂(ρ) = ρ ◦φ
(because a representation is irreducible if and only if the scalar operators in the space of
representation are the only ones which commute with all operators of the representation).
This is also true for a general endomorphism of an Abelian group G, but is not the case
for a general endomorphism φ of any group.

The paper consists of five sections. To make the presentation more detailed and trans-
parent we start in Section 2 from a new approach for compact groups and two auto-
morphisms. We develop this approach in Sections 3 and 4. After some preliminary and
technical considerations we prove in Section 3 the main result of the paper, namely

Theorem 1.3 (Bitwisted Burnside-Frobenius theorem). Let G be an Abelian group and
φ and ψ its endomorphisms. Then R(φ, ψ) = # Coin(φ̂, ψ̂) if one of these numbers is
finite.

If ψ is the identity map then the bitwisted Burnside-Frobenius theorem for Abelian
groups implies the twisted Burnside-Frobenius theorem for Abelian groups from [13]:
R(φ) = # Fix(φ̂) (the Reidemeister number of an endomorphism φ is equal to the number
of fixed points of φ̂ on the unitary dual, if one of these numbers is finite).

In some sense our theorem is a reply to a remark of J.-P. Serre [25], p. 34 that for
compact infinite groups an analogue of the Burnside-Frobenius theorem is not interesting:
∞ = ∞. It turns out that for infinite discrete groups the situation differs significantly,
and even in non-twisted situations the number of classes can be finite (for one of the
first examples see another book of J.-P. Serre [16]). A number of examples of groups and
automorphisms with finite Reidemeister numbers were studied in [6], [11], [14], [18].

In Section 4.1 a bitwisted Dehn conjugacy problem is formulated and an affirmative
answer to this problem for almost polycyclic groups is obtained.

Finally, in Section 5, based on [8], it is proved that for any two injective endomor-
phisms φ, ψ of a Baumslag-Solitar group B(1, n) the Reidemeister number R(φ, ψ) is
infinite. This is “opposite” case for the bitwisted Burnside-Frobenius theorem. It is an
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interesting open problem to describe all groups with the property that for any two injec-
tive endomorphisms φ, ψ the Reidemeister number R(φ, ψ) is infinite.

The interest in bitwisted and twisted conjugacy relations has its origins in the Nielsen-
Reidemeister coincidence and fixed point theory (see e.g. [6], [29]), in Selberg theory (see
e.g. [1]), and Algebraic Geometry (see e.g. [19]).

The Lefschetz coincidence theorem generalizes the celebrated fixed point theorem to
coincidences of two maps between closed connected orientable manifolds of the same
dimension. H. Schirmer [24] developed a Nielsen-Reidemeister coincidence theory and
proved a Wecken type theorem for coincidences.The analogous Lefschetz, Reidemeister
and Nielsen coincidence numbers play a key role in the Nielsen-Reidemeister theory.

2. Compact groups. Let G be a compact group and φ and ψ its automorphisms.
Hence Ĝ is a discrete space. Then C∗(G) = ⊕Mi, where Mi are the matrix algebras of
irreducible representations. The infinite sum is in the following sense:

C∗(G) = {fi}, i ∈ {1, 2, 3, . . . } = Ĝ, fi ∈Mi, ‖fi‖ → 0 (i→∞).

When G is finite and Ĝ is finite this is exactly the Peter-Weyl theorem.
The characteristic function of a bitwisted class is a functional on C∗(G). For a finite

group it is evident, for a general compact group it is necessary to verify only the measur-
ability of the bitwisted class with the respect to Haar measure, i.e. that bitwisted class is
Borel. For a compact G, the bitwisted conjugacy classes being orbits of bitwisted action
are compact and hence closed. Then its complement is open, hence Borel, and the class
is Borel too.

Under the identification it passes to a sequence {ϕi}, where ϕi is a functional on Mi

(the properties of convergence can be formulated, but they play no role at the moment).
The conditions of invariance are the following: for each ρi ∈ Ĝ one has g[ϕi] = ϕi, i.e. for
any a ∈Mi and any g ∈ G one has ϕi(ρi(ψ(g))aρi(φ(g−1))) = ϕi(a).

Let us recall the following well-known fact.

Lemma 2.1. Each functional on the matrix algebra has the form a 7→ tr(ab) for a fixed
matrix b.

Proof. One has dim(M(n,C))′ = dim(M(n,C)) = n × n and looking at matrices as
at operators in V , dimV = n, with base ei, one can remark that the functionals a 7→
〈aei, ej〉, i, j = 1, . . . , n, are linearly independent. Hence, any functional takes the form

a 7→
∑
i,j

bij〈aei, ej〉 =
∑
i,j

bija
j
i = tr(ba), b := ‖bij‖.

Theorem 2.2. Let G be a compact group and φ and ψ its automorphisms. Then R(φ, ψ)
= # Coin(φ̂, ψ̂) if one of these numbers is finite.

Proof. Let us consider invariant functionals on matrix algebras under bitwisted action of
group G:

tr(bρi(ψ(g))aρi(φ(g−1))) = tr(ba), ∀a, g,

tr((b− ρi(φ(g−1))bρi(ψ(g)))a) = 0, ∀a, g,
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hence,
b− ρi(φ(g−1))bρi(ψ(g)) = 0, ∀g.

Since ρi is irreducible, the dimension of the space of such b is 1 if ρi is a coincidence point
of φ̂ and ψ̂ and 0 in the opposite case. So, we are done.

Remark 2.3. In fact we are only interested in finite group case. Indeed, for a compact
G, the bitwisted conjugacy classes being orbits of bitwisted action are compact and hence
closed. If there is a finite number of them, then they are open too. Hence, the situation
is more or less reduced to a discrete group: quotient by the component of unity.

Remark 2.4. Bitwisted Burnside-Frobenius theorem for compact groups remains true
if φ is an automorphism and ψ is any endomorphism. It is equivalent to the twisted
Burnside-Frobenius theorem for the one endomorphism φ−1 ◦ ψ (see [15]).

Example 2.5. The following counterexample to the bitwisted Burnside-Frobenius the-
orem for two endomorphisms of a nonabelian finite group was proposed to the author
by E. Troitsky [27]. Let us consider two trivial endomorphisms φ and ψ of a nonabelian
finite group G, i.e. φ(g) = ψ(g) = e for every element g ∈ G. Then for every x ∈ G

and every γ ∈ G we have ψ(γ)xφ(γ−1) = x, hence R(φ, ψ) = #G. On the other hand,
φ̂(ρ) = ρ ◦ φ = I = ρ ◦ ψ = ψ̂(ρ) for every ρ ∈ Ĝ hence, if G is nonabelian, then
#Coin(φ̂, ψ̂) = #Ĝ and R(φ, ψ) = #G 6= #Ĝ = #Coin(φ̂, ψ̂).

3. Endomorphisms of Abelian groups. Let φ, ψ be endomorphisms of an Abelian
group G.

Lemma 3.1. Let G be Abelian. The bitwisted conjugacy class H of e is a subgroup. The
other ones are cosets gH.

Proof. The first statement follows from the equalities

(ψ(h)φ(h−1)ψ(g)φ(g−1) = ψ(gh)φ((gh)−1,

(ψ(h)φ(h−1))−1 = φ(h)ψ(h−1) = ψ(h−1)φ(h).

For the second statement suppose a ∼ b, i.e. b = ψ(h)aφ(h−1). Then

gb = gψ(h)aφ(h−1) = ψ(h)(ga)φ(h−1), gb ∼ ga.

Lemma 3.2. Suppose u1, u2 ∈ G, and χH is the characteristic function of H as a set.
Then

χH(u1u
−1
2 ) =

{
1, if u1, u2 are in one coset,
0, otherwise.

Proof. Suppose u1 ∈ g1H, u2 ∈ g2H, hence, u1 = g1h1, u2 = g2h2. Then

u1u
−1
2 = g1h1h

−1
2 g−1

2 ∈ g1g−1
2 H.

Thus, χH(u1u
−1
2 ) = 1 if and only if g1g−1

2 ∈ H and u1 and u2 are in the same class.
Otherwise it is 0.

The following lemma is well known.

Lemma 3.3. For any subgroup H the function χH is of positive type.
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Proof. Let us take arbitrary elements u1, u2, . . . , un of G. Let us renumber them in such
a way that some first are in g1H, the next ones are in g2H, and so on, till gmH, where
gjH are different cosets. By the previous lemma the matrix ‖pit‖ := ‖χH(uiu−1

t )‖ is
block-diagonal with square blocks formed by units. These blocks, and consequently the
whole matrix are positive semi-definite.

Lemma 3.4. In the Abelian case the characteristic functions of bitwisted conjugacy classes
belong to the Fourier-Stieltjes algebra B(G) = (C∗(G))∗.

Proof. By Lemma 3.1 in this case the characteristic functions of bitwisted conjugacy
classes are the shifts of the characteristic function of the class H of e. Hence, by Corollary
(2.19) of [5], these characteristic functions are in B(G).

Let us remark that there exists a natural isomorphism (Fourier transform)

u 7→ û, C∗(G) = C∗r (G) ∼= C(Ĝ), ĝ(ρ) := ρ(g),

(this is a number because irreducible representations of an Abelian group are 1-dimen-
sional). In fact, it is better to look (for what follows) at the algebra C(Ĝ) as an algebra
of continuous sections of a bundle of 1-dimensional matrix algebras over Ĝ.

Our characteristic functions, being in B(G) = (C∗(G))∗ in this case, are mapped to
the functionals on C(Ĝ) which, by the Riesz(-Markov-Kakutani) theorem, are measures
on Ĝ [C]. Which of these measures are invariant under the induced (bitwisted) action
of G? Let us remark that an invariant non-trivial functional gives rise to at least one
invariant space – its kernel.

Let us remark that convolution under the Fourier transform becomes point-wise mul-
tiplication. More precisely, the bitwisted action, for example, is defined as

g[f ](ρ) = ρ(ψ(g))f(ρ)ρ(φ(g−1)), ρ ∈ Ĝ, g ∈ G, f ∈ C(Ĝ).

There are 2 possibilities for the bitwisted action of G on the representation algebra
Aρ ∼= C: 1) the linear span of the orbit of 1 ∈ Aρ is equal to all Aρ, 2) and the opposite
case (the action is trivial).

The second case means that the space of intertwining operators between A bψρ and Abφρ
equals C, and ρ is a coincidence point of φ̂ and ψ̂. In the first case this is the opposite
situation.

If we have a finite number of such coincidence points, then the space of bitwisted
invariant measures is just the space of measures concentrated in these points. Indeed, let
us describe the action of G on measures in more detail.

Lemma 3.5. For any Borel set E one has g[µ](E) =
∫
E
g[1] dµ.

Proof. The restriction of a measure to any Borel set commutes with the action of G,
since the last is pointwise on C(Ĝ). For any Borel set E one has

g[µ](E) =
∫
E

1 dg[µ] =
∫
E

g[1] dµ.

Hence, if µ is bitwisted invariant, then for any Borel set E and any g ∈ G one has∫
E

(1− g[1]) dµ = 0.
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Lemma 3.6. Suppose f ∈ C(X), where X is a compact Hausdorff space, and µ is a regular
Borel measure on X, i.e. a functional on C(X). Suppose, for any Borel set E ⊂ X one
has

∫
E
f dµ = 0. Then µ(h) = 0 for any h ∈ C(X) such that f(x) = 0 implies h(x) = 0.

I.e. µ is concentrated off the interior of supp f.

Proof. Since the functions of the form fh are dense in the space of functions h, it is
sufficient to verify the statement for fh. Let us choose an arbitrary ε > 0 and a simple
function h′ =

∑n
i=1 aiχEi such that |µ(fh′)− µ(fh)| < ε. Then

µ(fh′) =
n∑
i=1

∫
Ei

aif dµ =
n∑
i=1

ai

∫
Ei

f dµ = 0.

Since ε is arbitrary, we are done.

Applying this lemma to a bitwisted invariant measure µ and f = 1 − g[1] we obtain
that µ is concentrated at our finite number of coincidence points of φ̂ and ψ̂, because
outside of them f 6= 0.

If we have an infinite number of coincidence points, then the space is infinite dimen-
sional (we have an infinite number of measures concentrated in a finite number of points,
each time different) and Reidemeister number is infinite as well. So, we have proved the
following theorem:

Theorem 3.7. Let G be an Abelian group and φ and ψ its endomorphisms. Then R(φ, ψ)
= # Coin(φ̂, ψ̂) if one of these numbers is finite.

4. Automorphisms of bitwisted conjugacy separable groups, weak bitwisted
Burnside-Frobenius theorem. If the endomorphisms φ and ψ are the automorphisms,
then the bitwisted Burnside-Frobenius problem is equivalent to the twisted Burnside-
Frobenius problem for the one automorphism φ−1 ◦ ψ. So we can apply all the results
from [15], [16], [28] for one automorphism. In the present paper we define the following
property for a countable discrete group G.

Definition 4.1. A group G is called (φ, ψ)-conjugacy separable with respect to endo-
morphisms φ, ψ : G → G or bitwisted conjugacy separable, if any pair g, h of non-
(φ, ψ)-conjugate elements of G are non-(φ, ψ)-conjugate in some finite quotient of G
respecting φ, ψ.

If ψ = id and φ is an automorphism then this definition gives us the definition of
φ-conjugacy separable discrete group [15]. If both φ = id and ψ = id then this definition
gives us the well known notion of conjugacy separable group.

Now we formulate the main results for two automorphisms, namely

1. (φ, ψ)-conjugacy separable groups and some extensions: Suppose, there is an ex-
tension H → G → G/H, respecting automorphisms φ and ψ where the normal
invariant subgroup H is a (φ′, ψ′)-conjugacy separable group; the Reidemeister
number R(φ, ψ) is finite; G/H is a finitely generated FC-group (i.e. a group with
finite conjugacy classes). Then G is a (φ, ψ)-conjugacy separable group.
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2. Classes of (φ, ψ)-conjugacy separable groups: almost polycyclic groups and finitely
generated groups of polynomial growth are (φ, ψ)-conjugacy separable groups if φ
and ψ are automorphisms.

3. Bitwisted Burnside-Frobenius theorem: LetG be a (φ, ψ)-conjugacy separable group
and φ and ψ its automorphisms. Denote by Ĝf the subset of the unitary dual Ĝ
related to finite-dimensional representations and by Cf (φ, ψ) the number of coinci-
dence points of φ̂f and ψ̂f on Ĝf . Then R(φ, ψ) = Cf (φ, ψ) if one of these numbers
is finite.

4. The affirmative answer to the bitwisted Dehn conjugacy problem for polycyclic-by-
finite groups (see subsection 4.1).

If ψ is the identity map then the bitwisted Burnside-Frobenius theorem implies the
twisted Burnside-Frobenius theorem from [15]: R(φ) = # Fix(φ̂f ) (the Reidemeister num-
ber of an automorphism φ is equal to the number of finite-dimensional fixed points of φ̂
on the unitary dual, if one of these numbers is finite).

In [13] one obtained from the twisted Burnside-Frobenius theorem the congruences for
Reidemeister numbers which are similar to the remarkable Dold congruences for the Lef-
schetz numbers and which, together with the twisted Burnside-Frobenius theorem itself,
are very important for the realization problem of Reidemeister numbers in topological
dynamics and the study of the Reidemeister zeta-function.

We would like to emphasize the following important remarks.

1. In the original formulation by Fel’shtyn and Hill [10] the conjecture about twisted
Burnside-Frobenius theorem asserts an equality of R(φ) and the number of fixed
points of φ̂ on Ĝ. This conjecture was proved in [10],[13] for f.g. type I groups.

2. As it follows from a key example, which we have studied in [14], a twisted con-
jugacy separable group can have infinite dimensional ”supplementary” coincidence
representations. More precisely we discuss in that paper the case of a semi-direct
product of the action of Z on Z ⊕ Z by a hyperbolic automorphism with finite
Reidemeister number (four to be precise) and the number of fixed points of φ̂ on Ĝ
equal or greater than five, while the number of fixed points on Ĝf is four.
This gives a counterexample to the conjecture in its original formulation and leads
to the formulation using only fixed (or coincidence) points in Ĝf .

3. The origin of the phenomenon of an extra coincidence point lies in bad separation
properties of Ĝ for general discrete groups. A more deep study leads to the following
general theorem.

Theorem 4.2 (Weak bitwisted Burnside-Frobenius theorem). Let G be a countable dis-
crete group and φ and ψ its automorphisms. The number R∗(φ, ψ) of (φ, ψ)-conjugacy
classes related to bitwisted invariant functions on G from the Fourier-Stieltjes algebra
B(G) is equal to the number C∗(φ, ψ) of generalized coincidence points of φ̂ and ψ̂ on
the Glimm spectrum of G, i.e. on the complete regularization of Ĝ, if one of the numbers
R∗(φ, ψ) and C∗(φ, ψ) is finite.

4. Nevertheless for extreme groups (like Osin group [15], which is infinite finitely gen-
erated simple group with two conjugacy classes), even the modified conjecture is not
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true. Keeping in mind that for non-elementary Gromov hyperbolic groups, mapping
class groups, saturated weakly branch groups and any two automorphisms φ, ψ the
Reidemeister number R(φ, ψ) is infinite [7], [20], [9], [12] as well as for any two in-
jective endomorphisms of Baumslag-Solitar groups cf. Section 5 and [8] while in the
”opposite” case the bitwisted Burnside-Frobenius theorem is proved, we can hope
that our results can lead to a complete resolution of the problem, if the extreme
groups will be handled.

Let us remark that in some cases the weak bitwisted Burnside-Frobenius theorem
easily implies the bitwisted Burnside-Frobenius theorem (in particular, in the form with
finite-dimensional representations). For example, we will show directly that R(φ, ψ) =
R∗(φ, ψ) in Abelian case. On the other hand, the unitary dual coincides with the Glimm
spectrum.

4.1. Bitwisted Dehn conjugacy problem. The subject is closely related to some decision
problem. Recall that M. Dehn in 1912 [4] has formulated in particular

Conjugacy problem. Does there exist an algorithm to determine whether an arbitrary
pair of group words U , V in the generators of G define conjugate elements of G?

The following question was posed by G. Makanin [22] [Question 10.26(a)]:

Question. Does there exist an algorithm to determine whether for an arbitrary pair
of group words U and V of a free group G and an arbitrary automorphism φ of G the
equation φ(X)U = V X solvable in G?

In [3] an affirmative answer to Makanin’s question is obtained.

In [2] the following problem, which generalizes the two above problems, was posed:

Twisted conjugacy problem. Does there exists an algorithm to determine
whether for an arbitrary pair of group words U and V in the generators of G the equality
φ(X)U = V X holds for some W ∈ G and φ ∈ H, where H is a fixed subset of Aut(G)?

In [17] we proved that the twisted conjugacy problem has the affirmative answer for
G being a polycyclic-by-finite group and H equal to a unique automorphism φ.

In this article we suggest the following problem, which generalises the three above
problems:

Bitwisted conjugacy problem. Does there exist an algorithm to determine whether
for an arbitrary pair of group words U and V in the generators of G the equality ψ(X)U =
V φ(X) holds for some W ∈ G and endomorphisms φ, ψ ∈ H, where H is a fixed subset
of End(G)?

Theorem 4.3. The bitwisted conjugacy problem has the affirmative answer for G being
an almost polycyclic group and H equal to a pair of automorphisms φ, ψ.

Proof. This follows immediately from (φ, ψ)-conjugacy separability of almost polycyclic
groups by the same argument as in the paper of Mal’cev [21] (see also [23], where the
property of conjugacy separability was first formulated) for the (non-twisted) conjugacy
problem.
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5. Baumslag-Solitar groups B(1, n). In this section based on (a part of) [8] it is
proved that for any two injective endomorphisms φ, ψ of a Baumslag-Solitar group B(1, n)
the Reidemeister number R(φ, ψ) is infinite. From [8] the similar result for two injective
endomorphisms of B(m,n) where |n| 6= |m| and |nm| 6= 0, 1 follows as well. For this class
of groups there is no bitwisted Burnside-Frobenius theorem (the Reidemeister number
R(φ, ψ) is infinite). It is an open problem to describe all groups with this property.

The presentation in this section is selfcontained.
Let B(1, n) = 〈a, b : a−1ba = bn, n > 1〉 be the Baumslag-Solitar groups. These groups

are finitely-generated solvable groups (in particular amenable) which are not virtually
nilpotent. These groups have exponential growth and they are not Gromov hyperbolic.
Furthermore, these groups are torsion free and metabelian (an extension of an Abelian
group by an Abelian one). More precisely one has

Proposition 5.1. B(1, n) ∼= Z[1/n] oθ Z, where the action of Z on Z[1/n] is given by
θ(1)(x) = x/n.

Proof. The map defined by ι(a) = (0, 1) and ι(b) = (1, 0) extends to a unique homomor-
phism ι : B(1, n)→ Z[1/n] o Z, because

ι(a−1) ∗ ι(b) ∗ ι(a) = (0,−1) ∗ (1, 0) ∗ (0, 1) = (0,−1) ∗ (1, 1) = (n, 0) = ι(bn).

One has

(1) ι(arbsa−r) = (0, r) ∗ (s,−r) =
( s
nr
, 0
)
.

The map ι is clearly surjective. Let us show that this homomorphism is injective.
Let us remark that the group relation implies a−1b−1a = b−n. Hence for any s one has
a−1bsa = bns. Thus we can move all a−1 to the right (until they annihilate with some
a or take the extreme right place) and all a to the left, with an appropriate changing of
powers of b. Hence any word in B(1, n) is equivalent to a word of the form w = ar1bsar2 ,
where r1 ≥ 0, r2 ≤ 0. Then ι(w) = (m, r1 +r2) for some m ∈ Z[1/n]. Hence, if r1 +r2 6= 0,
then ι(w) 6= e. Let now r1 + r2 = 0, then by (1) if ι(w) = e, then s = 0 and w = e.

Consider the homomorphism | |a : B(1, n) → Z which associates to each word
w ∈ B(1, n) the sum of the exponents of a in this word. Since this sum for the relation is
zero, this is a well defined map, which is evidently surjective.

Proposition 5.2 ([8]). We have a short exact sequence

0→ K → B(1, n)
| |a→ Z→ 1,

where K is the kernel of | |a. Moreover, B(1, n) equals a semidirect product K o Z.

Proof. The first statement follows from surjectivity of | · |a. Since Z is free, this sequence
splits.

Proposition 5.3 ([8]). The kernel K coincide with the normalizer N〈b〉 of the subgroup
〈b〉 generated by b in B(1, n):

(2) 0→ N〈b〉 → B(1, n)
| |a→ Z→ 1.

Proof. We have N〈b〉 ⊂ K. The quotient B(1, n)/N〈b〉 has the following presentation:
a−1ba = b

n
, b = 1. Therefore this group is isomorphic to Z under the identification
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[a] ↔ 1Z. Hence the natural projection coincides with the map | |a and we have the
following commutative diagram

0 // N〈b〉 //

∩
��

B(1, n) //

=

��

B(1, n)/(N〈b〉) //

∼=
��

1

0 // K // B(1, n) // Z // 1.

The five-lemma completes the proof.

Proposition 5.4 ([8]). Any endomorphism φ : B(1, n) → B(1, n) is an endomorphism
of the short exact sequence (2).

Proof. Let φ̄ be the endomorphism induced by φ on the abelianization B(1, n)ab of
B(1, n). The group B(1, n)ab is isomorphic to Zn−1+Z. The torsion elements of B(1, n)ab
form a subgroup isomorphic to Zn−1 which is invariant under any endomorphism. The
preimage of this subgroup under the projection B(1, n) → B(1, n)ab is exactly the sub-
group N(b), i.e. the elements represented by words where the sum of the powers of a is
zero. So it follows that N(b) is mapped into N(b) and the result follows.

Theorem 5.5 ([8]). For any two injective endomorphisms φ and ψ of B(1, n) the Rei-
demeister number R(φ, ψ) is infinite.

Proof. By Proposition 5.4 they are endomorphisms of the short exact sequence. The
induced maps φ and ψ on the quotient are injective endomorphisms of Z. If φ = IdZ, and
ψ = IdZ, then by [8] the number of bitwisted classes is infinite. Hence,at least one of φ
or ψ is multiplication by k 6= 0, 1. But this is impossible. Indeed, when we apply φ to the
relation a−1ba = bn, under the identification of Proposition 5.1 ι : B(1, n) ∼= Z[1/n] o Z
we have, because φ(b) ∈ N〈b〉 and hence ι(φ(b)) = (d, 0) for some d ∈ Z[1/n],

(nd, 0) = ι(φ(bn)) = ι(φ(a−1ba)) = ι(a−kφ(b)ak) = (d · nk, 0).

This implies that either n1−k = 1 or φ(b) = 0.
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dynamics, Ann. Scient. Éc. Norm. Sup. 33 (2000), 507–517.

[22] A. I. Malcev, On homomorphisms onto finite groups, Uchen. Zapiski Ivanovsk. Ped. In-

stituta 18 (1958), no. 5, 49–60 (= Selected Papers, Vol. 1, 1976, 450–461).

[23] V. D. Mazurov and E. I. Khukhro (eds.), The Kourovka notebook, augmented ed., Ros.

Akademiya Nauk, Sibirskoe Otdelenie, Institut Matematiki im. S. L. Soboleva, Novosi-

birsk, 2002, Unsolved problems in group theory.

[24] A. W. Mostowski, On the decidability of some problems in special classes of groups, Fund.

Math. 59 (1966), 123–135.

[25] H. Schirmer, Mindestzahlen von Koinzidenzpunkten. J. Reine Angew. Math. 194 (1955),

21–39.



42 A. FEL’SHTYN

[26] J.-P. Serre, Linear Representations of Finite Groups, Springer, New York, 1977.

[27] J.-P. Serre, Trees, Springer, Berlin, 2003.

[28] E. Troitsky, private communication.

[29] E. Troitsky, Noncommutative Riesz-Markov-Kakutani theorem and weak twisted Burnside

theorem, Funct. Anal. Appl., to appear.

[30] P. Wong, Reidemeister number, Hirsch rank, coincidences on polycyclic groups and solv-

manifolds, J. Reine Angew. Math. 524 (2000), 185–204.


