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Abstract. In this paper, we generalize the equivariant homotopy groups or equivalently the
Rhodes groups. We establish a short exact sequence relating the generalized Rhodes groups and
the generalized Fox homotopy groups and we introduce Γ-Rhodes groups, where Γ admits a
certain co-grouplike structure. Evaluation subgroups of Γ-Rhodes groups are discussed.

1. Introduction. In 1966, F. Rhodes [8] introduced the fundamental group of a trans-
formation group (X,G) for a topological space on which a group G acts. This group,
denoted by σ1(X,x0, G), is the equivariant analog of the classical fundamental group
π1(X,x0). Rhodes showed that σ1(X,x0, G) is a group extension of π1(X,x0) with quo-
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tient G. Thus, σ1(X,x0, G) incorporates the G-action as well as the action of π1(X,x0)
on the universal cover X̃ of the space X. This group has been used in [10] to study
the Nielsen fixed point theory for equivariant maps. In 1969, F. Rhodes [9] extended
σ1(X,x0, G) to σn(X,x0, G), which is the equivariant higher homotopy group of (X,G).
Like σ1(X,x0, G), σn(X,x0, G) is an extension of the Fox torus homotopy group τn(X,x0)
but not of the classical homotopy group πn(X,x0) by G. The Fox torus homotopy groups
were first introduced by R. Fox [2] in 1948 in order to give a geometric interpretation
of the classical Whitehead product. Recently, a modern treatment of τn(X,x0) and of
σn(X,x0, G) has been given in [4] and in [5], respectively. In [5], we further investigated
the relationships between the Gottlieb groups of a space and of its orbit space, analogous
to the similar study in [3]. Further properties of the Fox torus homotopy groups, their
generalizations, and Jacobi identities were studied in [6]. It is therefore natural to gen-
eralize σn(X,x0, G) to more general constructions with respect to general spaces and to
co-grouplike spaces Γ other than the 1-sphere S1.

The main objective of this paper is to generalize σn(X,x0, G) of a G-space X with
respect to a space W and also with respect to a pair (W,Γ), where W is a space and
Γ satisfies a suitable notion of the classical co-grouplike space. We prove in section 1
that the Rhodes exact sequence of [9] can be generalized to σW (X,x0, G) := {[f ; g] |
f : (Σ̂W, v1, v2) → (X,x0, gx0)}, the W -Rhodes group, with the generalized Fox torus
homotopy group τW (X,x0) as the kernel. In section 2, we further extend the construction
of Rhodes groups to σΓ

W (X,x0, G) := {[f ; g] | f : (Γ(W ), γ̄1, γ̄2)→ (X,x0, gx0)}, the W -
Γ-Rhodes groups, where Γ admits a co-grouplike structure with two basepoints. Under
such assumptions, we obtain a W -Γ-generalization of the Rhodes exact sequence [9]. In
the last section, we generalize the notion of the Gottlieb (evaluation) subgroup to that of
a W -Γ-Rhodes group and we establish a short exact sequence generalizing [5, Theorem
2.2]. Throughout, G denotes a group acting on a compactly generated Hausdorff path-
connected space X with a basepoint x0. The associated pair (X,G) is called in the
literature a transformation group.

2. Generalized Rhodes groups. For n ≥ 1, F. Rhodes [9] defined higher homotopy
groups σn(X,x0, G) of a pair (X,G) which is an extension of τn(X,x0) by G so that

1→ τn(X,x0)→ σn(X,x0, G)→ G→ 1 (1)

is exact. Here, τn(X,x0) denotes the n-th torus homotopy group of X introduced by
R. Fox [2]. The group τn = τn(X,x0) is defined to be the fundamental group of the
function space XTn−1

and is uniquely determined by the groups τ1, τ2, . . . , τn−1 and the
Whitehead products, where Tn−1 is the (n− 1)-dimensional torus. The group τn is non-
abelian in general.

Now we recall the construction of σn(X,x0, G) presented in [9]. Suppose that X
is a G-space with a basepoint x0 ∈ X and let Cn = I × Tn−1. We say that a map
f : Cn → X is of order g ∈ G provided f(0, t2, . . . , tn) = x0 and f(1, t2, . . . , tn) = g(x0)
for (t2, . . . , tn) ∈ Tn−1. Two maps f0, f1 : Cn → X of order g are said to be homotopic if
there exists a continuous map F : Cn × I → X such that:
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• F (t, t2, . . . , tn, 0) = f0(t, t2, . . . , tn);
• F (t, t2, . . . , tn, 1) = f1(t, t2, . . . , tn);
• F (0, t2, . . . , tn, s) = x0;
• F (1, t2, . . . , tn, s) = gx0 for all (t2, . . . , tn) ∈ Tn−1 and s, t ∈I.

Denote by [f ; g] the homotopy class of a map f : Cn → X of order g and by σn(X,x0, G)
the set of all such homotopy classes. We define an operation ∗ on the set σn(X,x0, G) by

[f ′; g′] ∗ [f ; g] := [f ′ + g′f ; g′g].

This operation makes σn(X,x0, G) a group.
We have generalized the Fox torus homotopy groups in [4]. In this section, we give a

similar generalization of Rhodes groups. In a special case, we obtain an extension group
of the Abe group considered in [1].

Let X be a path-connected space with a basepoint x0. For any space W , we let

σW (X,x0, G) := {[f ; g] | f : (Σ̂W, v1, v2)→ (X,x0, gx0)}

where [f ; g] denotes the homotopy class of the map f of order g ∈ G, v1 and v2 are the
vertices of the cones C+W and C−W , respectively and Σ̂W = C+W ∪C−W . Under the
operation [f1; g1] ∗ [f2; g2] := [f1 + g1f2; g1g2], σW is a group called a W -Rhodes group.

Write C(W,X) for the mapping space of all continuous maps from W to X with the
compact-open topology. We point out that σW (X,x0, G) = σ1(C(W,X), x̄0, G) provided
W is a locally-compact space, where (gf)(x) = gf(x) for f ∈ C(W,X), g ∈ G and x̄0

denotes the constant map from C(W,X) determined by the point x0 ∈ X.
The canonical projection σW (X,x0, G)→ G given by [f ; g] 7→ g has the kernel {[f ; 1] |

f : (Σ̂W, v1, v2) → (X,x0, x0)}. It is easy to see that this kernel is isomorphic to the
generalized Fox torus group [Σ(W t ∗), X] = τW (X,x0) defined in [4]. Therefore, we get
the following result.

Theorem 1. The sequence

1→ τW (X,x0)→ σW (X,x0, G)→ G→ 1 (2)

is exact.

Remark 1. When W = Tn−1, the (n − 1)-dimensional torus, σW coincides with the
n-th Rhodes group σn and (2) reduces to (1). When W = Sn−1, the (n− 1)-sphere, τW
becomes κn, the n-th Abe group (see [2] or [4]). Thus, by Theorem 1, we have the exact
sequence

1→ πn(X,x0) o π1(X,x0) ∼= κn(X,x0)→ σSn−1(X,x0, G)→ G→ 1. (3)

One can also generalize the split exact sequence for Rhodes groups from [9] as follows.

Theorem 2. Let W be a space with a basepoint w0. Then, for any space V , the sequence

1→ [(V ×W )/V,ΩX]→ σV×W (X,x0, G) L99→ σV (X,x0, G)→ 1 (4)

is split exact.

Proof. By [4, Theorem 3.1], we have the split exact sequence

1→ [(V ×W )/V,ΩX]→ τV×W (X) L99→ τV (X)→ 1. (5)
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Given [F ; g] ∈ σV×W (X,x0, G), where F : Σ̂(V ×W )→ X, let f : Σ̂V → X be the com-
posite map of Σ̂V ≈ Σ̂(V ×{w0})→ Σ̂(V ×W ) with F . This map gives rise to a homomor-
phism σV×W (X,x0, G)→ σV (X,x0, G). Likewise, using the projection V ×W → V , one
obtains a section σV (X,x0, G)→ σV×W (X,x0, G). We have the commutative diagram

1 −−−−→ τV×W (X,x0) −−−−→ σV×W (X,x0, G) −−−−→ G −−−−→ 1y y ∥∥∥
1 −−−−→ τV (X,x0) −−−−→ σV (X,x0, G) −−−−→ G −−−−→ 1,

(6)

where the first two vertical homomorphisms have sections. Combining with (5), the as-
sertion follows.

As an immediate corollary of Theorem 2, we have the following:

Corollary 3. The sequence

1→ [W,ΩX]→ σW (X,x0, G) L99→ σ1(X,x0, G)→ 1 (7)

is split exact.

Proof. The result follows from Theorem 2 by letting V be a point.

Remark 2. For any space W , Corollary 3 asserts that σ1(X,x0, G) acts on [ΣW,X] =
[W,ΩX] according to the splitting. Furthermore, when W = Sn−1, this corollary gives
an alternate description of the action of σ1 on πn(X) as described in [5, Remark 1.4]. In
this case, σW (X,x0, G) = σSn−1(X,x0, G) is the extension group of the n-th Abe group
κn(X,x0) [1] as in (3). Thus, one can either embed σ1 in σn as in [5, Remark 1.4] or in
σSn−1(X,x0, G).

Unlike the reduced suspension Σ which has the loop functor Ω as its right adjoint, the
un-reduced suspension Σ̂ does not admit a right adjoint. Nevertheless, one can describe
the adjoint property for the W -Rhodes groups as follows. Recall that a typical element
in σW (X,x0, G) is a homotopy class [f ; g] where f : (Σ̂W, v1, v2) → (X,x0, gx0). Thus,
σW is a subset of [Σ̂W,X]0 ×G, where [Σ̂W,X]0 denotes the homotopy classes of maps
f : Σ̂W → X such that f(v1) = x0 and f(v2) is independent of the homotopy class of f .
Then, σW is also a subset of [W,Px0 ]∗×G, where [W,Px0 ]∗ denotes the set of homotopy
classes of unpointed maps from W to the space Px0 of paths originating from x0. In the
special case when G = {1}, σW = [Σ(W ∪ ∗), X] = σ∗W = [W,ΩY ]∗ = [W ∪ ∗,ΩX].

3. Generalized W -Γ-Rhodes groups. In the definition of the generalized Rhodes
group σW (X,x0, G), the two cone points from the un-reduced suspension Σ̂W = C+W ∪
C−W play an important role. Therefore in replacing S1 with arbitrary co-grouplike space,
we require that the space has two distinct basepoints.

Let Γ be a space and γ1, γ2 ∈ Γ satisfying the following conditions:

(I) there exists a map ν : (Γ, γ1, γ2) → (Γ × {γ1} ∪ {γ2} × Γ, (γ1, γ1), (γ2, γ2)) such
that proji ◦ ν ' id as maps of triples for each i = 1, 2, where proj1, proj2 : (Γ × {γ1} ∪
{γ2} × Γ, (γ1, γ1), (γ2, γ2))→ (Γ, γ1, γ2) are the canonical projections;
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(II) there exists a map η : Γ→ Γ such that:

(a) η(γ1) = γ2, η(γ2) = γ1;
(b) ∇ ◦ (id ∨ η) ◦ ν is homotopic to the constant map at γ1, where

id ∨ η : Γ× {γ1} ∪ {γ2} × Γ, (γ1, γ1), (γ2, γ2)→ Γ× {γ1} ∪ {γ2} × Γ, (γ1, γ2), (γ2, γ1)

with id(γ, γ1) = (γ, γ2), η(γ2, γ) = (γ2, η(γ)) for γ ∈ Γ and ∇ : (Γ × {γ2} ∪ {γ2} ×
Γ, (γ1, γ2), (γ2, γ1))→ (Γ, γ1, γ2) is the folding map;

(c) similarly, ∇ ◦ (ĩd ∨ η̃) ◦ ν is homotopic to the constant map at γ2, where

ĩd ∨ η̃ : Γ× {γ1} ∪ {γ2} × Γ, (γ1, γ1), (γ2, γ2)→ Γ× {γ1} ∪ {γ2} × Γ, (γ2, γ1), (γ1, γ2)

with ĩd(γ2, γ) = (γ1, γ), η̃(γ, γ1) = (η(γ), (γ1)) for γ ∈ Γ;
(III) Moreover, we have co-associativity so that the diagram

(Γ, γ1, γ2)
ν−→ (Γ× {γ1} ∪ {v2} × Γ, (γ1, γ1), (v2, v2))

ν

??y ??yĩd∨ν̃

Γ× {γ1} ∪ {v2} × Γ, (γ1, γ1), (v2, v2)
id∨ν−−−→Γ× {(γ1, γ1)} ∪ {v2} × (Γ× {γ1} ∪ {v2} × Γ), γ∗1 , v

∗
2

is commutative up to homotopy, where γ∗1 = (γ1, (γ1, γ1)), γ∗2 = (γ2, (γ2, γ2)), and
id(γ, γ1) = (γ, (γ1, γ1)), ν(γ2, γ) = (γ2, ν(γ)), ĩd(γ2, γ) = ((γ2, γ2), γ)), ν̃(γ, γ1) =
(ν(γ), γ1) for γ ∈ Γ.

Now, we generalize the notion of a co-grouplike space presented e.g. in [7]. A co-
grouplike space with two basepoints Γ = (Γ, γ1, γ2; ν, η) consists of a topological space
Γ together with basepoints γ1, γ2 and maps ν, η satisfying conditions (I)–(III). For any
space W , the smash product is given by

Γ(W ) := W × Γ/{(w, γ1) ∼ (w′, γ1), (w, γ2) ∼ (w′, γ2)}
for any w,w′ ∈W .

For instance, if Γ = ([0, 1], 0, 1; ν, η) with ν(t) =
{

(2t, 0) if 0 ≤ t ≤ 1
2 ,

(1, 2t− 1) if 1
2 ≤ t ≤ 1

and

η(t) = 1− t for t ∈ [0, 1] then Γ(W ) = Σ̂W , the un-reduced suspension of W .

Remark 3. Note that if γ1 = γ2, we obtain the usual co-grouplike structure and Γ0 :=
Γ/ ∼ given by identifying the basepoints γ1 and γ2 is a co-grouplike space as well.

Next, we define the W -Γ-Rhodes groups.
Let Γ be a co-grouplike space with two basepoints, (X,G) a G-space and W a space.

The W -Γ-Rhodes group of X with respect to W is defined to be

σΓ
W (X,x0, G) = {[f ; g] | f : (Γ(W ), γ̄1, γ̄2)→ (X,x0, gx0)}.

Write τΓ0
W (X,x0) for the Γ0-W -Fox group considered in [6].

We can easily show:

Proposition 4. Let π : σΓ
W (X,x0, G) → G be the projection sending [f ; g] 7→ g. By

identifying the two basepoints of Γ(W ), the quotient space Γ(W )/ ∼ is canonically hom-
eomorphic to Γ0 ∧ (W ∪ {∗}). Furthermore,

Kerπ ∼= [Γ(W )/ ∼, X] = τΓ0
W (X,x0).
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Then we obtain a general Γ-Rhodes exact sequence, generalizing (2).

Theorem 5. The sequence

1→ τΓ0
W (X,x0)→ σΓ

W (X,x0, G) π→ G→ 1

is exact.

We now derive the following generalized split exact sequence for the W -Γ-Rhodes
groups.

Corollary 6. Let W be a space with a basepoint w0 and Γ be a co-grouplike space with
two basepoints. The sequence

1→ [Γ0 ∧ ((V ×W )/V ),ΩX]→ σΓ
V×W (X,x0, G) L99→ σΓ

V (X,x0, G)→ 1 (8)

is split exact.

Proof. From Theorem 5, we have the short exact sequences

1→ τΓ0
V×W (X,x0)→ σΓ

V×W (X,x0, G) π→ G→ 1

and
1→ τΓ0

V (X,x0)→ σΓ
V (X,x0, G) π→ G→ 1.

Moreover, the following split exact sequence was shown in [6, Theorem 4.1]:

1→ [Γ0 ∧ ((V ×W )/V ),ΩX]→ τΓ0
V×W (X,x0, G) L99→ τΓ0

V (X,x0, G)→ 1.

A straightforward diagram chasing argument involving these short exact sequences yields
the desired split exact sequence.

4. Evaluation subgroups of W -Γ-Rhodes groups. We end this note by extending
a result concerning the evaluation subgroups of the Rhodes groups and the Fox torus
homotopy groups obtained in [5, Theorem 2.2].

Given a G-space X, the function space XX is also a G-space where the action is
pointwise, that is, (gf)(x) = gf(x) for f ∈ XX , g ∈ G and x ∈ X. Let Γ be a co-grouplike
space with two basepoints and W be a space.

The evaluation subgroup of the W -Γ-Rhodes group of X is defined by

GσΓ
W (X,x0, G) := Im(ev∗ : σΓ

W (XX , idX , G)→ σΓ
W (X,x0, G)).

Similarly, the evaluation subgroup of τΓ0
W (X,x0) is defined by

GτΓ0
W (X,x0) := Im(ev∗ : τΓ0

W (XX , idX)→ τΓ0
W (X,x0)).

It is straightforward to see that the proof of [5, Theorem 2.2] is also valid in the setting
of W -Γ-Rhodes groups. Therefore, we have the following generalization.

Theorem 7. Let G0 be the subgroup of G consisting of elements g considered as homeo-
morphisms of X which are freely homotopic to the identity map idX . Then the sequence

1→ GτΓ0
W (X,x0)→ GσΓ

W (X,x0, G)→ G0 → 1

is exact.
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