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Abstract. Using the algebraic theory of homotopies between maps of dga’s we obtain a ho-

motopy theory for algebraic structures defined by collections of multiplications and comultipli-

cations. This is done by expressing these structures and resolved versions of them in terms of

dga maps. This same homotopy theory of dga maps applies to extract invariants beyond ho-

mological periods from systems of moduli spaces that determine systems of chains that satisfy

master equations like dX + X ∗ X = 0. Minimal models of these objects resemble Postnikov

decompositions in the homotopy theory of spaces and maps.

Introduction and sketch. We interpret the words “master equation and solution of
master equation up to equivalence” in mathematical terms as triples (T, C, M) where
T is a a free triangular dga (see below) over an operad O, C is any dga over O and
M : T → C is any dga map over O and the triple is taken up to homotopy equivalence
(definition 3.5) of dgOa maps. The dgOa map from the free triangular object T to the
general dgOa C is called the master equation package. The nontrivial part of the story
is the notion of homotopy of dgOa maps which leads directly to the lemmas mentioned
below. Actually to develop all the geometric and algebraic applications, we envisage only
certain specific operads that need be considered. These correspond to either composing
multilinear maps or to gluing certain geometric objects together like graphs or Riemann
surfaces. We refer to these special operads needed to describe gluing or composition as
combination operads.

We sketch two general applications:
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Firstly, to the theory of the definition and homotopy theory of infinity or resolved
versions of general algebraic structures. This is new to the author for structures such as
noncompact Frobenius algebras and Lie bialgebras. Here the target C would be the total
Hom complex between various tensor products of another chain complex B, C = HomB,
O describes combinations of operations like composition and tensor product sufficient
to describe the algebraic structure and one says that B has the algebraic structure in
question. The master equation package is a description of the resolved or infinity form
of the structure. T is generated by the labels of the multilinear operations defining the
resolved structure. The differential in T describes relations in the structure that say
certain combinations of operations are chain homotopic to zero. M refers to the solution
of the master equation, i.e., the presentation of T , in C which is then interpreted as a
dgOa map from T to C.

Secondly, to geometric systems of moduli spaces up to deformation like the moduli of J

holomorphic curves in a symplectic manifold provided with an almost complex structure
or the moduli space of instantons in the theory of bundles with connections over a four
manifold. Here C is some geometric chain complex containing the fundamental top chains
of the pseudo manifold moduli spaces of the geometric problem. It is assumed that C

is provided with certain geometric operations of combination corresponding to gluing
geometric objects together. These are the operations required to describe the boundary
of the fundamental chains on the moduli spaces, and these are organized algebraically by
the combination operad O. The common feature of these problems is that the boundary
of these fundamental top chains can be described by combining together moduli spaces
of simpler complexity in a master equation formalism.

We also discuss analogues of homotopy groups for dgOa’s and Postnikov systems for
dgOa’s and for maps and impediments to using them related to linear terms in the mas-
ter equation. These linear terms are called anomalies as in the physics literature because
they can prevent certain evaluations related to the fundamental chains from yielding
information independent of certain arbitrary choices made in the evaluation. In effect
analogues of anomalies that appear there are here given a dga homotopy interpreta-
tion.

Certain operads which organize concrete composition operations or specific gluings
of geometric objects and which we refer to here as combination operads arise in the
algebraic study of multilinear structures and the geometric study of systems of moduli
spaces. Below we treat general operads but we are really only thinking of these specific
composition or gluing operads. For any operad O one may define differential graded
algebras over O. Let us call them dgOa’s. Fixing O they form an obvious category where
the maps are dgOa maps. We will make use of a derived homotopy category based on
free resolutions of dgOa’s and a notion of homotopy between dgOa maps. Resolutions
give a procedure to replace any dgOa by a nilpotent version of a free dgOa. There are
two similar classes of examples relevant here where the combination operad O describes
compositions or tensor products of multilinear operations in the first algebraic application
and where the combination operad O describes gluing or union of geometric chains in the
second geometric application.
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1. The setup of the algebraic application. Consider collections of multilinear j to
k operations for various j and k positive that define examples of algebraic structures
like traceless Frobenius algebra or Lie bialgebra. Such examples of algebraic structures,
because multiple outputs appear, cannot themselves be described as algebras over oper-
ads. However the concepts that might be used in terms of dioperads, properads or props
to describe these structures will be replaced here by the notion of the master equation
package. This will be possible because any prop, properad, dioperad respectively can be
described as an algebra over a specific combination operad, namely, over the combination
operad describing the combinations of operations required in the definition of that prop,
properad, dioperad, respectively.

There are a few choices for which combinations of operations are allowed varying from
the most parsimonious to the most generous.

For example consider the definition of a Lie bialgebra involving a two-to-one product
and a one-to-two coproduct. These are both skew commutative and satisfy three quadratic
relations requiring one variable substitution. There are four combination operads that
could be employed here. 1) All the operations freely generated by composing these two
in all possible ways with only one output inserted in to an input; 2) same as 1) but
with multiple outputs inserted into multiple inputs; 3) same as is 1) with tensor products
thrown in; 4) same as 2) with tensor products thrown in.

Since the generating operations are both graded skew symmetric the combination
operads in choices 1) 2) 3) 4) can be described as follows: 1) by gluing trivalent trees
with labeled inputs and outputs; 2) by gluing all connected directed trivalent graphs with
labeled non empty sets of input and output vertices and no directed cycles: 3) as in 1) but
not necessarily connected; 4) same as in 2) but not necessarily connected. On the other
hand consider the definition of a noncommutative Frobenius algebra (without a trace).
This is defined by an associative product and a coassociative coproduct satisfying two
quadratic compatibility relations. The four corresponding combination operads will be
described by the graphs as above but where the half edges at a vertex have the additional
structure of a cyclic order. We will see that resolved or infinity versions of these algebraic
structures will use higher valence graphs as well.

2. The setup of the geometric application. Consider gluing operations describing
compactifications in a system of moduli spaces coming from some geometric problem in-
volving, for example, Riemann surfaces, connections on G bundles or configuration spaces
of manifolds. The main point is a hereditary property of compactifications of these mod-
uli spaces. The homotopy theory of the master equation described here becomes relevant
if the points added in the compactifications of these moduli spaces can be described in
terms of other moduli spaces of the same system. This description uses gluing operations
on moduli spaces or their fundamental chains and these operations in turn are described
abstractly by a relevant gluing or combination operad.

The category of dgOa’s will be used in the two settings above via its associated
homotopy theory.
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3. Basic facts of dgOa homotopy theory. 1) One knows that there are free dgOa
algebras associated to any system of generating vector spaces with zero differential. For
example in the associative case the free algebra is the tensor algebra on the generating
spaces without the unit or ground ring term, namely the augmentation ideal of the tensor
algebra with unit.

One says a dgOa is free if it is free in this sense after suppressing the differential.
A free dgOa is called triangular if there is a partial ordering on the generators, with all
descending chains finite, so that the differential of any generator is a sum of O-operations
applied to strictly smaller generators for the partial order.

A free triangular dgOa is the analog of nilpotent space or nilpotent differential Lie
algebra in usual homotopy theory.

Lemma 3.1. If A is any dgOa there is a dgOa map T → A from a free triangular dgOa
T to A inducing an isomorphism on homology. Such maps are called resolutions.

This follows from a staightforward induction.
The first step of one induction, which is not the most efficient, is to choose a generating

set for the homology of A, form the free algebra on these over O, define the differential to
be zero there and map the generators to cycles representing the named homology classes.
The second step of this induction is to add generators to the domain whose differentials
put in a spanning set of homology relations among the cycles in A chosen in the first
step. These second stage generators are mapped to elements in A which exist because
these homology relations are satisfied. The third step puts in relations that kill the kernel
of this dgOa map etc. There are many constructions of resolutions.

In the homotopy theory of CW complexes the analog of resolution in this sense is the
Quillen plus construction. It is unique up to homotopy.

2) One also knows how to regain uniqueness of free resolutions in the case of modules
over a ring using chain equivalences and chain homotopies. Chain homotopies between
chain maps of free chain complexes which are bounded from below say can be defined
inductively by solving linear equations like dx = y, with y determined inductively and x

unknown. There is an analogous but more nontrivial notion of homotopy between dgOa
maps from a free triangular dgOa T into A an arbitrary dgOa. The theory follows the
same line as developed in [8] for dga’s over the graded commutative operad. Now one is
inductively solving a triangular system of equations dx = sum of O-operations of y’s with
x unknown and the right hand side determined inductively. This theory of homotopies
is described in detail for associative algebras over Novikov rings in [1]. This notion of
homotopy is also used in papers by Markl [5, 6, 7].

Using natural obstruction theory arguments one can show two lemmas:

Lemma 3.2. A dgOa map from T , a free triangular dgOa, into any dgOa A can be lifted
up to homotopy into B for any dgOa map B → A which induces an isomorphism on
homology. The lift is unique up to homotopy.

Corollary 3.3. A map between free triangular dgOa’s T → T ′ inducing isomorphisms
on homology is a homotopy equivalence in the usual sense: there is a map T ′ → T so that
each composition is homotopic to the identity.
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Lemma 3.4. Given two resolutions T → A and T ′ → A there is a homotopy equivalence
between T and T ′ which is unique up to homotopy such that the diagram into A commutes
up to homotopy.

Definition 3.5. Two maps T → A and T ′ → A′ are said to be homotopy equivalent if
there are homotopy equivalences f between T and T ′ and g between the resolutions of A

and A′ so that the lifted maps from T and T ′ to these resolutions together with f and g

form a commutative square up to homotopy.

4. First application: general algebraic structures, resolved infinity versions
thereof and their homotopy theory. Any algebraic structure described by j to k

multilinear operations, for various k and j positive, on a chain complex C satisfying
various identities can be viewed as a dgOa map over some composition operad O. The
domain of this “structure map” is a dgOa whose presentation in terms of generators and
relations defines the algebraic structure in question where the minimal combination op-
erad O is determined by just those kind of combinations required to express the relations
defining the algebraic structure. For example in the Lie bialgebra case above there were
two generators and three quadratic relations which in the most parsimonious description
required a composition operad defined by gluing together at single external edges di-
rected trivalent trees. Then O may be enlarged if desired by adding further combinations
as illustrated in the examples above. The range of the structure map is the total hom

complex, denoted Hom(C) between the various tensor powers of C endowed with the
composition and tensor product operations labeled by the operad chosen O.

Definition 4.1. An algebraic structure on B is defined to be a dgOa map of any dgOa
into HomB regarded as a dgOa where O is the combination operad describing the opera-
tions of composition and tensor product considered as part of the structure. If the domain
of the dgOa map is a free triangular dgOa the structure is called a resolved or infinity
algebraic structure. Any algebraic structure has a resolved or infinity version obtained by
replacing the domain of the structure map by a resolution of the domain. Forming com-
position with the resolution map associates with one particular instance of an algebraic
structure a particular instance of a resolved or infinity algebraic structure.

Remark: familiar examples of resolved or infinity versions of algebraic structures include
associative infinity, Lie infinity and commutative infinity. Other useful examples are Ger-
stenhaber infinity and BV infinity. The above theory now yields Frobenius infinity (non-
compact case) and Lie bialgebra infinity.

Together with a notion of homotopy equivalence (see below) all of these correspond to
free resolutions of the appropiate algebra over the appropiate composition operad defining
the structure. The corresponding free triangular dgOa in each case is by definition formal,
which by definition means it is homotopy equivalent to its own homology algebra as
a dgOa.

Note however we have extended the terminology of resolved or infinity algebra beyond
this formal case to include those structures defined by any free triangular dgOa. We can
think of these examples as being resolved or infinity versions of their own homotopy
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type which may not be formal. Their theory however has the same form as the formal
examples. A case in point that appears in string topology and in symplectic topology is
a structure dubbed a quantum Lie bialgebra. Here there is an operation with k inputs
and j outputs for each genus g = 0, 1, 2, . . . with k and j both positive integers. The
differential applied to the generators are quadratic expressions obtained summing over
all binary gluings of g-decorated corollae with inputs and outputs labeled.

The genus zero part of the structure defines an infinity Lie bialgebra. There is a
genus one relation, called the involutive relation, holding in the homology, which may
not be completely resolved by the rest of the structure and this homotopy type may not
be formal. Nevertheless it is a natural resolved structure that appears independently in
three contexts: string topology, symplectic topology and in algebra via bar and cobar
constructions.

Similarly there is a construction in riemannian geometry by Costello producing a
structure which is like the associative analogue of what was just said for Lie and which
has been dubbed a quantum cyclic A-infinity algebra. Now one has an operation for each
planar g-decorated corollae with inputs and outputs interspersed around the boundary
of the corollae.

The role of the involutive relation in the Lie context above which created some com-
plexity (like possible non formality) is now played by an euler relation which creates
complexity.

Definition 4.2. If C and D are two chain complexes, a HomO quasi isomorphism from
C to D is a homotopy class of homotopy equivalences between a resolution of HomC and
a resolution of HomD as dgOa algebras.

It follows from the definitions that one may transport infinity algebraic structures up
to equivalence back and forth between C and D by a HomO quasi isomorphism.

To use this notion the following lemma is useful.

Lemma 4.3. Suppose C and D are two quasi isomorphic chain complexes over the ratio-
nals. Then the dgOa algebras HomC and HomD have homotopy equivalent resolutions.
In other words, an ordinary quasi isomorphism implies a HomO quasi isomorphism.

The idea of the proof is to prove it for the case when D = H is the homology of C. In
this case there is a dgOa map from HomH to HomC using a purely algebraic analogue
of a Hodge decomposition of C. A multilinear operation on tensor products of harmonic
elements can be extended to all of C by defining it to be zero on tensors with exact or
coexact factors. This map induces an isomorphism on homology of the Hom complexes.

Definition 4.4. Two algebraic structures with possibly different presentations on possi-
bly different chain complexes are called quasi isomorphic or homotopy equivalent if their
associated infinity versions have homotopy equivalent structure maps (Definition 3.5)
after lifting them to resolutions of the Hom complexes.

5. Second application: nonlinear homology of systems of geometric moduli
spaces. 1) Various geometric problems that resonate with quantum or string discus-
sions in theoretical physics give rise to systems of oriented pseudomanifolds with bound-
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ary where the codimension one pieces of the boundary can be described by gluing and
intersection operations applied to earlier pseudomanifolds in the system. A correct for-
mal description of the pieces in such a theory leads to a free triangular dgOa where the
combination operad O describes the operations used in this description. Let X denote the
tuple labeling all the formal moduli pieces of the system. Then this description usually
takes the form of a “master equation” like dX + X ∗X = 0 or dX + LX + X ∗X = 0.
Here ∗ denotes the binary gluing operations of the description and L the unary op-
erations required in the description. The formal identity dd = 0 follows from the ge-
ometric fact that the boundary of a boundary of the formal moduli is zero. We ob-
tain from the master equation at this formal level a presentation of a free triangular
dgOa. The partial ordering may come from a dimension consideration or from an energy
consideration.

Solving the PDEs defining the formal moduli yields a set of chains solving the master
equation. The solutions of these equations in the geometric chain complex C defines a
dgOa map from T the triangular free dgOa into C the geometric dgOa.

So we see the same dgOa formalism that applies to algebraic structures also applies
to give a description of systems of moduli spaces assuming the hereditary property: in
the compactifications the ideal points are described by lower (in the sense of dimension
or energy) moduli spaces of the system. The difference is that now the range of the dgOa
map is not necessarily homotopy equivalent to a complex of the form C = HomB as it
was in the case of algebraic structures.

2) Varying the choices in the geometric equations perturbing the PDEs, e.g., to create
transversality, is meant to lead to a homotopy equivalence of the dgOa map associated
to this moduli package.

3) The linear terms in the master equation as just described are called anomalies. They
make the above discussion vulnerable to being homotopically trivial. This is analyzed by
looking at the linearized homology of the free triangular dgOa which will be discussed
next.

6. Postnikov systems and minimal models in the dgOa context. 1) Given a free
triangular dgOa T we can of course form the usual or global homology which is an algebra
over O. We can also form a linearized chain complex and its homology which is called
the linearized homology. The linearized complex is the quotient of the free dgOa by the d

submodule defined by the image of O operations with at least two inputs. The linearized
homology behaves like the homotopy groups of T or rather their dual spaces. The natural
map from the global homology of T to the linearized homology of T is analogous to the
dual of the Hurewicz homomorphism in topology from homotopy to homology.

When O is the graded commutative operad the dual of linearized homology of a dgOa
has the structure of a Lie algebra which is the leading part of a Lie infinity structure. In
topology this corresponds to Whitehead products and higher order Whitehead products
on homotopy.

This generalizes in the following way over the rationals.
2) Let H denote the linearized homology of a free triangular dgOa T .
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Corollary 6.1. There is a triangular differential in O(H), the free dgOa generated
by H, so that this dgOa is homotopy equivalent to T .

The proof in this setting is direct. View the differential in T as a dgOa map from a
fixed free triangular dgOa into Hom of the linearized complex. Lift this to HomH using
lemma 3.2 and the proof of lemma 4.3.

Note that the differential in O(H) consists of maps from H to various tensor products
of H with itself. This is a set of coproducts satisfying quadratic identities. In the dual
picture these provide the indicated generalization of Whitehead products and higher order
products to the O context. The commutative case of corollary 6.1 appeared in [8] but the
L infinity interpretation was missing before the work of Hinich and Schechtman [2, 3].
Corollary 6.1 in this generality is certainly due to Markl [5, 6, 7]. See also Kadeishvili [4]
and the thesis of Bruno Vallette [11].

3) Minimal models.

Definition 6.2. The O(H) version of the homotopy type of T just described is called
the minimal model of the homotopy type.

The minimal model is built up inductively by adding layers of dual homotopy groups
in an algebraic way that resembles combining base and fibre to get the total space in
a fibration. This is the analogue in the free triangular dgOa world of the nilpotent or
untwisted Postnikov system in homotopy theory.

4) More generally there is the algebraic analogue of the Postnikov system of a map in
homotopy theory where the stages follow the homotopy groups of the fibre of the map.
Namely given T → A one inductively adds generators to T and extends the map to make
it into a homology isomorphism i.e., a resolution of A. There are minimal versions of this
process which reveal a set of invariants of the homotopy type of the original map.

7. Anomalies. If starting from the geometry one finds a master equation of the form
dX + X ∗X+ higher order terms...= 0, then the domain of the dgOa map is in minimal
form and each component of X represents a nontrivial dual element to the homotopy
groups. Thus there are in general nontrivial invariants of such dgOa maps up to homotopy
equivalence. On the other hand if there are linear terms in the master equation dX +
LX + X ∗X+ higher terms...= 0, the linearized differential is the unary operator L and
its homology might be zero. In various geometric contexts it is sometimes possible to use
symmetry or other geometric devises to kill some of the linear terms of L by additional
gluing or filling in. Reducing L increases the linearized homology and thus the fund of
possible invariants. See [1, 9, 10, 12].
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