
MARCINKIEWICZ CENTENARY VOLUME

BANACH CENTER PUBLICATIONS, VOLUME 95

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2011

MARCINKIEWICZ SPACES, COMMUTATORS
AND NON-COMMUTATIVE GEOMETRY

NIGEL J. KALTON

Nigel J. Kalton was one of the most eminent guests participating in the Józef Marcinkie-

wicz Centenary Conference. His contribution to the scientific aspect of the meeting was very

essential. Nigel was going to prepare a paper based on his plenary lecture. The editors are

completely sure that the paper would be a real ornament of the Proceedings. Unfortunately,

Nigel’s sudden death totally destroyed editors’ hopes and plans. Every mathematician knows

how unique were Nigel’s mathematical achievements. Moreover the community of mathemati-

cians in Poznań is very proud of Nigel’s friendship demonstrated many times during his visits

at the Adam Mickiewicz University. For these reasons, to commemorate Professor Kalton, the

editors of the Proceedings decided to print copies of the slides that he used during his plenary

talk on June 29, 2010.

The editors would like to thank very much Mrs Jennifer Kalton for her kind permission to

publish Nigel’s presentation. The editors are deeply grateful for such a wonderful gesture.

1. Sequence spaces and ideals. Let ξ ∈ c0. Then its decreasing rearrangement ξ∗ is
given by

ξ∗n = inf
{
λ > 0 :

∣∣{k : |ξk| > λ}
∣∣ < n

}
.

A symmetric sequence space E is a vector subspace of c0 such that ξ ∈ E, η ∈ c0 with
η∗ 6 ξ∗ ⇒ η ∈ E.

If E is a symmetric sequence space then SE is the ideal of compact operators T on a
separable Hilbert space H whose singular values satisfy

{sn(T )}∞n=1 ∈ E

E → SE defines a correspondence between symmetric sequence spaces and ideals of
compact operators. For example `p corresponds to the Schatten class Sp.
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2. Traces and symmetric functionals. If SE is an ideal of compact operators then a
trace on SE is any linear functional τ : SE → C such that

τ(AB) = τ(BA), A ∈ SE , B ∈ B(H).

τ is called positive if τ(P ) > 0 for all positive P ∈ SE . If τ is a trace then we can
define a linear functional on E by

ϕ(ξ) = τ(diag(ξ1, ξ2, . . . )).

ϕ is then a symmetric functional, i.e. ϕ(ξ) = ϕ(η) if η is a permutation of ξ.
(Figiel) There is a correspondence between traces on SE and symmetric functionals

on E; precisely if ϕ is a symmetric functional on E there is a unique trace τ on SE such
that

ϕ
(
{sn(P )}∞n=1

)
= τ(P ), P > 0, P ∈ SE .

3. Nonstandard positive traces. The first construction of a nonstandard positive
trace was by Dixmier. He takes E to be a Marcinkiewicz space Mψ where ψ is a concave
function with ψ(0) = 0 and limx→∞ ψ(x) =∞. Mψ consists of all sequences such that

‖ξ‖Mψ
= sup

n

1
ψ(n)

n∑
k=1

ξ∗k <∞.

We are particularly interested in the case ψ(x) = log(1 + x) when we write Mψ = Mlog.
We will write Mψ for the ideal SMψ

. Mlog is the dual of the Matsaev ideal.

4. Dixmier traces

Theorem 1 (Dixmier 1966). If

lim
n→∞

ψ(2n)
ψ(n)

= 1

then there is a positive trace τ on Mψ defined by

τ(P ) = ω
( 1
ψ(2n)

2n∑
k=1

sk(P )
)
, P ∈Mψ, P > 0.

Here ω is a (translation invariant) Banach limit.

Traces of this type are called Dixmier traces.
If ψ(x) = log(1 + x) then τ

(
diag{1/n}∞n=1

)
= 1 for every Dixmier trace.

5. Positive traces II

Theorem 2 (Dodds, de Pagter, Semenov and Sukochev 1988). The condition

lim inf
n→∞

ψ(2n)
ψ(n)

= 1

is necessary and sufficient for the existence of a positive trace on Mψ.

Dixmier traces play a significant role in noncommutative geometry via the Connes
trace theorem. Let us explain (in a very simplified case) how this goes.
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6. The Connes trace theorem. Let X be a compact Riemannian manifold of dimen-
sion d. (For example X = Td.) Let ∆ denote the negative Laplacian on X, and let dx
denote the standard volume measure on X. For f ∈ L∞(X) we define

Tf (g) = fg for g ∈ L2(X).

We now state “toy” version of the Connes trace formula.

Theorem 3 (Connes 1988). Then for any f ∈ C∞(X), and any Dixmier trace on Mlog

we have Tf (1 + ∆)−d/2 ∈Mlog and

τ
(
Tf (1 + ∆)−d/2

)
=

Ωd
d(2π)d

∫
X

f(x) dx.

Here Ωd is the surface area of the (d− 1)-dimensional sphere.

The correct statement is for classical pseudo-differential operators and considers inte-
gration over the cosphere bundle.

7. General traces. We now consider general (not necessarily positive or continuous)
traces. If E is any symmetric sequence space we define the commutator subspace of SE ,
Com SE , to be the linear span of all commutators [A,B] = AB − BA for A ∈ SE and
B ∈ B(H). A linear functional τ is a trace if and only if it annihilates Com SE .

The problem of existence of non-trivial traces on Sp was first considered by Pearcy
and Topping in 1971 who showed that Com Sp = Sp when p > 1, so that the only trace
on these ideals is the zero trace. If p < 1, Anderson (1986) showed that

Com Sp = {T ∈ Sp : trT = d}

so that the only traces are multiples of the standard trace.
The case p = 1 is more tricky. Weiss (1980) showed that there are discontinuous traces

so that Com S1 6= {T ∈ S1 : trT = 0}. Kalton (1989) gave a complete characterization of
Com S1.

8. General traces II. In fact in the middle of the 1990’s there appeared a complete
characterization of Com J for any ideal J. This was not published till 2004.

From now if T is a compact operator we write {λn(T )}∞n=1 for the eigenvalues of T ,
repeated according to algebraic multiplicity and arranged in (some) order of decreasing
absolute value so that

|λ1(T )| > |λ2(T )| > . . . .

If there are only finitely many eigenvalues the list is completed with zeros.

Theorem 4 (Dykema, Figiel, Weiss, Wodzicki 1995, 2004). Let J = SE. Let T ∈ J be a
normal operator. Then T ∈ Com J if and only if{λ1 + . . .+ λn

n

}∞
n=1
∈ E

where λj = λj(T ).
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9. General traces III. The DFWW theorem implies that Com J = J (or, equivalently,
J admits no nonzero traces) if J = SE where ξ ∈ E implies that { 1

n (ξ∗1 +. . .+ξ∗n)}∞n=1 ∈ E.
In the same paper the authors show that T ∈ Com J if and only if T can be expressed

as the sum of at most 3 commutators [Aj , Bj ] where Aj ∈ J and Bj ∈ B(H).

10. Formulas for nonstandard traces. Suppose τ is a trace on J = SE . The DFWW
theorem implies that to calculate τ(T ) we should write T = H + iK where H,K are
hermitian and then

τ(T ) = τ
(
diag{λn(H) + iλn(K)}∞n=1

)
.

Are there other natural formulas?

Theorem 5 (Kalton 1998). Suppose E is a Banach or quasi-Banach sequence space.
Then

τ(T ) = τ
(
diag{λn(T )}∞n=1

)
.

This theorem fails for arbitrary ideals (Dykema–Kalton 1998). This can be expressed
by saying that if E is quasi-Banach then a form of Lidskii’s theorem holds, i.e. all traces
are spectral.

11. Taking the diagonal. When can we compute τ just from the diagonal of the
operator? Let (en)∞n=1 be an orthonormal basis of H; can we compute

τ(T ) = τ
(
diag{(Ten, en)}∞n=1

)
?

Not in general of course.

Theorem 6 (Kalton, Lord, Potapov, Sukochev 2010). Let A be a positive compact op-
erator on H. Let (en)∞n=1 be an orthonormal basis of eigenvectors for H. Let τ be any
trace on JA (the smallest ideal containing A). Then for any T ∈ B(H) we have

τ(TA) = τ(AT ) = τ
(
diag{(TAen, en)}∞n=1

)
.

12. Idea of the proof. We can take T to be hermitian. Let (fn)∞n=1 be an orthonormal
basis of eigenvectors for H = 1

2 (TA + AT ) arranged so that Hfn = µnfn with |µn|
decreasing. We similarly suppose that Aen = λnen with λn decreasing.

The key is to estimate the difference
n∑
k=1

(Hfk, fk)−
n∑
k=1

(Hek, ek).

To do this we let En be the span of {e1, . . . , en, f1, . . . , fn} and Pn be the orthogonal
projection on En. Then∣∣∣ n∑

k=1

(Hfk, fk)− tr(PnH)
∣∣∣, ∣∣∣ n∑

k=1

(Hek, ek)− tr(PnH)
∣∣∣ 6 nλn‖T‖.

These estimates (and a little more) and the DFWW theorem allow us to show that
diag{(Hfk, fk)− (Hek, ek)}∞k=1 ∈ Com JA.
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13. Back to the Connes trace formula. Let X be a compact Riemannian manifold
of dimension d. (For example X = Td). Let ∆ denote the Laplacian on X, and let dx
denote the standard volume measure on X. For f ∈ L∞(X) we define Tfg = fg for
g ∈ L2(X).

Theorem 7 (Connes 1988). For any f ∈ C∞(X) and any Dixmier trace on Mlog we
have Tf (1 + ∆)−d/2 ∈Mlog and

τ(Tf (1 + ∆)−d/2) =
Ωd

d(2π)d

∫
X

f(x) dx.

Here Ωd is the surface area of the (d− 1)-dimensional sphere.

Let us take X = Td and use the preceding ideas.

14. The Connes trace formula for the torus. In this case A = (1 + ∆)−d/2 and so
JA = S1,∞ is associated with the weak-`1 sequence space `1,∞ = {ξ : ξ∗ = O(1/n)}. This
is strictly contained in the Marcinkiewicz space Mlog.

The basis of eigenvectors is given by en(2π)−d/2ei〈n,θ〉 for n ∈ Zd. Here n =
(n1, . . . , nd) ∈ Zd and θ = (θ1, . . . , θd) ∈ (−π, π]d.

If T = Tf is a multiplication operator with f ∈ L∞(Td) then

(Tfen, en) =
1

(2π)d

∫
f(x) dx

Hence if |n| = (n2
1 + . . .+ n2

d)1/2,

(Tf (1 + ∆)−d/2en, en) =
1

(2π)d
(1 + |n|2)−d/2

∫
f(x) dx.

15. The Connes trace formula for the torus II. Thus if τ is any trace on S1,∞ we
have

τ(Tf (1 + ∆)−d/2) =
1

(2π)d
τ
(
{(1 + |n|2)−d/2}n∈Zd

) ∫
f(x) dx.

If τ is normalized so that τ({1/n}∞n=1) = 1 (e.g. a Dixmier trace) one can evaluate

τ
(
{(1 + |n|2)−d/2}n∈Zd

)
= d−1Ωd.

This proves the Connes trace formula for L∞-functions (not just C∞-functions) and for
every (perhaps discontinuous) trace on S1,∞ (not just Dixmier traces).

For Dixmier traces the extension to L∞-functions was proved in Lord-Potapov-
Sukochev 2010.

16. Eigenvalues. Let us interpret this extension of Connes’s trace formula in terms of
the eigenvalues of S = Tf (1 + ∆)−d/2. Let λn = λn(S).

Theorem 8 (Kalton, Lord, Potapov, Sukochev 2010). There exists a constant C such
that ∣∣∣∣ n∑

k=1

λk −
Ωd log n
d(2π)d

∫
f(x) dx

∣∣∣∣ 6 C.

Note that `1,∞ is quasi-Banach so all traces are spectral.
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17. An improvement

Theorem 9 (Kalton, Lord, Potapov, Sukochev 2010). Let (en)∞n=1 be an orthonormal
basis of H and let T : H → H be a linear operator such that for some constant C we
have

n

∞∑
k=n+1

‖Tek‖2 6 C.

Then:

• T ∈ S1,∞,
• supn

∣∣∑n
k=1 λk(T )−

∑n
k=1(Tek, ek)

∣∣ <∞,
• τ(T ) = τ({(Tek, ek)}∞k=1) for every trace τ on S1,∞.

18. Operators on L2(Rd). We consider operators T : L2(Rd)→ L2(Rd) of the form

Tf(x) =
1

(2π)d

∫
Rd
ei〈x,ξ〉pT (x, ξ)f̂(ξ) dξ.

T is compactly supported if there is a compact set K so that pT (x, ξ) = 0 for x /∈ K and
Tf = 0 if f = 0 on K.

T is pseudo-differential operator of order m if pT is C∞ and satisfies estimates of the
type ∣∣∂αx ∂βξ pT (x, ξ)

∣∣ 6 Cα,β(1 + |ξ|)m−|β|.

However we do not need to consider such smooth kernels . . . We assume only that pT is
measurable.

19. Operators on L2(Rd) II

Theorem 10 (Kalton, Lord, Potapov, Sukochev 2010). Suppose for some constant C∫
Rd

∫
|ξ|>t

|pT (x, ξ)|2 dξ dx 6 Ct−d

and

Tf(x) =
1

(2π)d

∫
Rd
ei〈x,ξ〉pT (x, ξ)f̂(ξ) dξ

is compactly supported. For example T could be a pseudo-differential operator of order
−d. Then

• T ∈ S1,∞,
• supn

∣∣∑n
k=1 λk(T )− 1

(2π)d

∫
Rd
∫
|ξ|6n1/d pT (x, ξ) dξ dx

∣∣ <∞.

20. The Connes trace formula again

Theorem 11 (Kalton, Lord, Potapov, Sukochev 2010). Let X be a compact Riemannian
manifold and consider the operator S = Tf (1+∆)−d/2 where f ∈ L2(X). Then S ∈ S1,∞.
If τ is a normalized trace on S1,∞ we have

τ(S) =
Ωd

d(2π)d

∫
X

f(x) dx
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or, equivalently

sup
n

∣∣∣∣ n∑
k=1

λk(S)− Ωd log n
d(2π)d

∫
X

f(x) dx
∣∣∣∣ <∞.

Notice now we require f ∈ L2(X) (not f ∈ L∞(X)) so that Tf is potentially un-
bounded.

21. Lp for p < 2 ? One cannot expect Tf (1 + ∆)−d/2 be necessarily even a bounded
operator if p < 2. However one can consider (1 + ∆)−d/4Tf (1 + ∆)−d/4. All the previous
results would have worked in this case.

Theorem 12 (Lord, Potapov and Sukochev 2010). If f ∈ Lp where p > 1 then
(1 + ∆)−d/4Tf (1 + ∆)−d/4 ∈ Mlog and if τ is a Dixmier trace on Mlog one still has
the trace formula.

However for f ∈ L1 it is not necessarily true that (1 + ∆)−d/4Tf (1 + ∆)−d/4 is even
a bounded operator.

22. p < 2

Theorem 13 (Kalton, Lord, Potapov, Sukochev 2010). Suppose X = Sd or X = Td.
Suppose f ∈ L(logL)2(log logL)(X), i.e.∫

|f(x)|(log+ |f(x)|)2 log+ log+ |f(x)| dx <∞.

Then (1 + ∆)−d/4Tf (1 + ∆)−d/4 ∈ Mlog and for every normalized trace τ on Mlog, we
have

τ
(
(1 + ∆)−d/4Tf (1 + ∆)−d/4

)
=

Ωd
d(2π)d

∫
f(x) dx.
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