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Abstract. If C is a capacity on a measurable space, we prove that the restriction of the
K-functional K(t, f ; Lp(C), L∞(C)) to quasicontinuous functions f ∈ QC is equivalent to

K(t, f ; Lp(C) ∩QC, L∞(C) ∩QC).

We apply this result to identify the interpolation space (Lp0,q0(C) ∩QC, Lp1,q1(C) ∩QC)θ,q.

1. Introduction. Recently, the concept of capacity has become a tool that is used in
much the same way as measure is used. The way to integrate with respect to a capacity C,
which is not necessarily an additive set function, is to define the integral of a nonnegative
function f using the distributional form of a Lebesgue integral, as proposed by Choquet
in his seminal work on capacities [9]:∫

f dC :=
∫ ∞

0

C{f > t} dt.
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With this definition, the Lebesgue capacitary spaces can be introduced and they still
have many of the properties of the usual Lebesgue spaces if the capacity C : Σ→ [0,∞],
defined on a σ-algebra Σ on Ω, that in our case will be a subset of Rn, has the following
properties:

(a) C(∅) = 0,
(b) 0 ≤ C(A) ≤ ∞,
(c) C(A) ≤ C(B) if A ⊂ B,
(d) C(A ∪B) ≤ c(C(A) + C(B)), where c ≥ 1 is a constant (quasi-subadditivity),
(e) C(An)→ C(A) whenever An ↑ A (Fatou property).

From now on, we will suppose that C satisfies at least all these properties.
This is the case of the variational capacities, and of the Fuglede [10] and Meyers [12]

capacities of nonlinear potential theory. Although they are not Caratheodory metric
outer measures, they satisfy a Fatou type condition and, by a general theorem due to
G. Choquet (cf. [9]), every Borel set B ⊂ Rn is capacitable, this means that

sup{C(K) : K ⊂ B, K compact} = C(B) = inf{C(G) : G ⊃ B, G open}.

Then the σ-algebra of all Borel sets turns out to be a convenient domain for all of them.
We refer to [1] and [11] for an extended overview of these capacities.

Another well known class of capacities is that of Hausdorff contents. If h is a continuous
increasing function on [0,∞) vanishing only at 0, which is called a measure function in [5],
let µh be the corresponding Hausdorff measure on Rn, and let I or Ik represent a general
cube in Rn with its sides parallel to the axes. The use of the corresponding Hausdorff
capacity or Hausdorff content,

Eh(A) := inf
A⊂

⋃∞
k=1 Ik

{ ∞∑
k=1

h(|Ik|)
}
,

is often more convenient than µh, and Eh(A) = 0 if and only if µh(A) = 0.
These capacities of potential theory are very useful to obtain bounds for some classical

operators and in this note we are interested in obtaining results on interpolation of
capacitary function spaces on Rn of quasicontinuous functions, starting from previous
results on general functions contained in [7], [6] and [8]. This means, to obtain a result
about restriction of interpolation to the subspace QC of quasicontinuous functions (for
the definition, see Section 3).

We want to prove that the restriction of theK-functional of the couple (Lp(C), L∞(C))
to quasicontinuous functions f ∈ QC is equivalent to

K
(
t, f ;Lp(C) ∩QC,L∞(C) ∩QC

)
.

Then we will apply this result to identify the interpolation space of the couple of capac-
itary Lorentz spaces (Lp0,q0(C) ∩QC,Lp1,q1(C) ∩QC)θ,q.

The notation A . B means that A ≤ γB for some absolute constant γ ≥ 1, and
A ' B if A . B . A. We refer to [2] for general facts concerning function spaces.

2. Definitions. Under the above mentioned properties on C, a capacity on Σ, we will
say that (Ω,Σ, C) is a capacity space. In the theory of capacitary function spaces, it plays
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the role of a measure space (Ω,Σ, µ) in the theory of Banach function spaces. In [8] we
describe the properties for measure spaces that are still satisfied by the capacitary spaces.

We consider two functions, f and g, equivalent if they are equal C-q.e. In this case∫
|f | dC =

∫
|g| dC, since C{|f | > t} = C{|g| > t} for every t ≥ 0. Thus,

∫
|f | dC = 0 if

and only if f = 0 C-q.e.
The spaces Lp,q(C) (p, q > 0) are defined by the condition

‖f‖Lp,q(C) :=
(
q

∫ ∞
0

tq−1C{|f | > t}q/p dt
)1/q

<∞

if q <∞. If q =∞, ‖f‖Lp,∞(C) := supt>0 tC{|f | > t}1/p.
Observe that ‖f‖Lp,q(C) = 0 if and only if f = 0 C-q.e. and equivalent functions have

the same ‖ · ‖Lp,q(C)-norm. Moreover ‖λf‖Lp,q(C) = |λ|‖f‖Lp,q(C) and ‖f + g‖Lp,q(C) ≤
2c(‖f‖Lp,q(C) + ‖g‖Lp,q(C)).

We write Lp(C) = Lp,p(C) if p < ∞ with ‖f‖Lp(C) =
(∫

Ω
|f |p dC

)1/p

. L∞(C) is
defined as usual by the condition

‖f‖∞ := inf{M > 0 : |f | ≤M C-q.e.} <∞.

As shown in [8], these spaces are quasi-Banach spaces.
If Ā = (A0, A1) is a couple of quasi-Banach spaces, 0 < θ < 1 and 0 < q ≤ ∞, the

interpolation space Āθ,q is the quasi-Banach space of all f ∈ A0 +A1 such that

‖f‖θ,q :=
(∫ ∞

0

(t−θK(t, f ; Ā))q
dt

t

)1/q

<∞

where K(t, f ; Ā) is the K-functional,

K(t, f ; Ā) := inf
{
‖f0‖A0 + t‖f1‖A1 : f = f0 + f1

}
.

We refer to [3] and [4] for general facts concerning interpolation theory.
The following results are proved in [8]:

Theorem 1. Suppose 0 < θ < 1, 0 < p0 < q ≤ ∞ or 0 < p0 ≤ q < ∞, and 1
p = 1−θ

p0
.

Then
(Lp0(C), L∞(C))θ,q = Lp,q(C).

Corollary 1. Let 0 < p0, p1, q0, q1 <∞, p0 6= p1 and 0 < η < 1. Then

(Lp0,q0(C), Lp1,q1(C))η,q = Lp,q(C)

with 1/p = (1− η)/p0 + η/p1.

3. Interpolation of quasicontinuous functions

Definition 1. Let C be a capacity on Rn. A function f on Rn, or on some open subset,
is said to be C-quasicontinuous if for every ε > 0 there is an open set G such that
C(G) < ε and f |Gc ∈ C(Gc).

For 0 < p0 <∞ consider the spaces Lp0(C) and L∞(C). For every t > 0 we have

K(t, f ;Lp0(C), L∞(C)) ≤ K(t, f ;Lp0(C) ∩QC,L∞(C) ∩QC)

=: KQC(t, f ;Lp0(C), L∞(C)).
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Proposition 1. If f is nonnegative, then

K(t, f ;Lp0(C), L∞(C)) = inf
λ>0

(
‖(f − λ)+‖Lp0 (C) + t‖min(f, λ)‖L∞(C)

)
.

Proof. By definition, since f = (f − λ)+ + min(f, λ) for all λ > 0, we have

K(t, f ;Lp0(C), L∞(C)) ≤ inf
λ>0

(
‖(f − λ)+‖Lp0 (C) + t‖min(f, λ)‖L∞(C)

)
.

To prove the reverse estimate, let ε > 0 and choose f0, f1 ≥ 0 such that f = f0 + f1

and
‖f0‖Lp0 (C) + t‖f1‖L∞(C) ≤ K(t, f ;Lp0(C), L∞(C)) + ε.

If λ = ‖f1‖L∞(C), then f − λ ≤ f0 and 0 ≤ (f − λ)+ ≤ f0. Hence ‖(f − λ)+‖Lp0 (C) ≤
‖f0‖Lp0 (C), and also

∥∥min(f, λ)
∥∥
L∞(C)

≤ ‖f1‖L∞(C). Thus

inf
λ>0

(
‖(f − λ)+‖Lp0 (C) + t ‖min(f, λ)‖L∞(C)

)
≤ ‖(f − λ)+‖Lp0 (C) + t

∥∥min(f, λ)
∥∥
L∞(C)

≤ ‖f0‖Lp0 (C) + t‖f1‖L∞(C) ≤ K(t, f ;Lp0(C), L∞(C)) + ε

and the estimate follows.

Proposition 2. If f ∈ QC is nonnegative, then

KQC(t, f ;Lp0(C), L∞(C)) = K(t, f ;Lp0(C), L∞(C)).

Proof. If f ∈ QC is nonnegative, then for all λ > 0 we have (f − λ)+ ∈ QC and
min(f, λ) ∈ QC and they are nonnegative. Then, for all λ > 0,

KQC(t, f ;Lp0(C), L∞(C)) ≤ ‖(f − λ)+‖Lp0 (C) + t ‖min(f, λ)‖L∞(C)

and hence

KQC(t, f ;Lp0(C), L∞(C)) ≤ inf
λ>0

(
‖(f − λ)+‖Lp0 (C) + t ‖min(f, λ)‖L∞(C)

)
= K(t, f ;Lp0(C), L∞(C))

by Proposition 1.

Let us now show that K(t, f ;Lp0(C), L∞(C)) = K(t, |f |;Lp0(C), L∞(C)). Obviously,
K(t, f ;Lp0(C), L∞(C)) ≤ K(t, |f |;Lp0(C), L∞(C)). To prove the reversed inequality, let
ε > 0 and choose f0 ∈ Lp0(C), f1 ∈ L∞(C) such that f = f0 + f1 and

‖f0‖Lp0 (C) + t‖f1‖L∞(C) ≤ K(t, f ;Lp0(C), L∞(C)) + ε.

Define

s(f) :=

{
1, if f(x) ≥ 0

−1, if f(x) < 0.

Then s(f)f = s(f)(f0+f1) = s(f)f0+s(f)f1, which means that |f | = s(f)f0+s(f)f1,
‖f0‖Lp0 (C) = ‖s(f)f0‖Lp0 (C) and ‖f1‖L∞(C) = ‖s(f)f1‖L∞(C). Then

K(t, |f |;Lp0(C), L∞(C)) ≤ ‖s(f)f0‖Lp0 (C) + t‖s(f)f1‖L∞(C)

≤ K(t, f ;Lp0(C), L∞(C)) + ε

and we get
K(t, |f |;Lp0(C), L∞(C)) ≤ K(t, f ;Lp0(C), L∞(C)).



INTERPOLATION OF QUASICONTINUOUS FUNCTIONS 285

Since K(t, |f |;Lp0(C), L∞(C)) = K(t, f ;Lp0(C), L∞(C)), we conclude that∥∥|f |∥∥
(Lp0 (C),L∞(C))θ,q

= ‖f‖(Lp0 (C),L∞(C))θ,q .

Proposition 3. Let f be a quasicontinuous function, not necessarily positive, then

KQC(t, f ;Lp0(C), L∞(C)) ' K(t, f ;Lp0(C), L∞(C)).

Proof.

KQC(t, f ;Lp0(C), L∞(C)) = KQC(t, f+ − f−;Lp0(C), L∞(C))

≤ KQC(t, f+;Lp0(C), L∞(C)) +KQC(t, f−;Lp0(C), L∞(C))

≤ KQC(t, |f |;Lp0(C), L∞(C)) +KQC(t, |f |;Lp0(C), L∞(C))

= 2KQC(t, |f |;Lp0(C), L∞(C)) = 2K(t, |f |;Lp0(C), L∞(C))

= 2K(t, f ;Lp0(C), L∞(C)) ≤ 2KQC(t, f ;Lp0(C), L∞(C))

since |f | ∈ QC.
Thus, for 0 < θ < 1 and q > 0, we have

‖f‖(Lp0 (C)∩QC,L∞(C)∩QC)θ,q :=
(∫ ∞

0

(t−θKQC(t, f))q
dt

t

)1/q

.
∥∥|f |∥∥

(Lp0 (C),L∞(C))θ,q
.

Hence
(Lp0(C), L∞(C))θ,q ∩QC ↪→ (Lp0(C) ∩QC,L∞(C) ∩QC)θ,q

and therefore

(Lp0(C), L∞(C))θ,q ∩QC = (Lp0(C) ∩QC,L∞(C) ∩QC)θ,q. (1)

By defining Lp,q(C) = Lp,q(C) ∩QC, we obtain the following result:

Theorem 2. Suppose that 0 < θ < 1, 0 < p0 < q ≤ ∞ or 0 < p0 ≤ q <∞ and 1
p := 1−θ

p0
,

then
(Lp0(C),L∞(C))θ,q = Lp,q(C).

Proof.

(Lp0(C),L∞(C))θ,q = (Lp0(C) ∩QC,L∞(C) ∩QC)θ,q
= (Lp0(C), L∞(C))θ,q ∩QC = Lp,q(C) ∩QC = Lp,q(C)

by (1) and Theorem 1.

Corollary 2. Take 0 < p0, p1, q0, q1 <∞, p0 6= p1 and 0 < η < 1. Then

(Lp0,q0(C),Lp1,q1(C))η,q = Lp,q(C)

with 1
p := 1−η

p0
+ η

p1
.

Proof. Let 0 < r < min(p0, p1, q0, q1) and choose 1 − θi := r
pi
, i = 0, 1. Then, if θ =

(1− η)θ0 + ηθ1, since 1
p = 1−θ

r we get

(Lp0,q0(C),Lp1,q1(C))η,q = ((Lr(C),L∞(C))θ0,q0 , (L
r(C),L∞(C))θ1,q1)η,q

= (Lr(C),L∞(C))θ,q = Lp,q(C) = Lp,q(C) ∩QC
= (Lp0,q0(C), Lp1,q1(C))η,q ∩QC

by Theorem 2, Theorem 3.11.5 of [3], and Corollary 1.
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