COMMON EXTENSIONS FOR LINEAR OPERATORS

RODICA-MIHAELA DĂNEŢ
Technical University of Civil Engineering of Bucharest
Department of Mathematics and Computer Science
124, Lacul Tei Blvd., Bucharest, Romania
E-mail: rodica.danet@gmail.com

Abstract

The main meaning of the common extension for two linear operators is the following: given two vector subspaces G_{1} and G_{2} in a vector space (respectively an ordered vector space) E, a Dedekind complete ordered vector space F and two (positive) linear operators $T_{1}: G_{1} \rightarrow F$, $T_{2}: G_{2} \rightarrow F$, when does a (positive) linear common extension L of T_{1}, T_{2} exist?

First, L will be defined on $\operatorname{span}\left(G_{1} \cup G_{2}\right)$. In other results, formulated in the line of the Hahn-Banach extension theorem, the common extension L will be defined on the whole space E, by requiring the majorization of T_{1}, T_{2} by a (monotone) sublinear operator. Note that our first Hahn-Banach common extension results were proved by using two results formulated in the line of the Mazur-Orlicz theorem. Actually, for the first of these last mentioned results, we extend the name common extension to the case when E is without order structure, instead of G_{1}, G_{2} there are some arbitrary nonempty sets, instead of T_{1}, T_{2} there are two arbitrary maps f_{1}, f_{2}, and, in addition, we are given two more maps $g_{1}: G_{1} \rightarrow E, g_{2}: G_{2} \rightarrow E$ and a sublinear operator $S: E \rightarrow F$. In this case we ask: When is it possible to obtain a linear operator $L: E \rightarrow F$, dominated by S and related to the maps $f_{1}, f_{2}, g_{1}, g_{2}$ by some inequalities?

To extend positive linear operators between ordered vector spaces, some authors (Z. Lipecki, R. Cristescu and myself) have used a procedure which includes the introduction of an additional set and a corresponding map. Inspired by this technique, in this paper we also solve some common positive extensions problems by using an additional set.

1. Preliminaries. In this paper the terminology, the notation and some mentioned results are classical for the theory of the ordered vector spaces and linear operators (see, for example [1], 2] and [11]); X_{0} and X will be real vector spaces, E_{0} and E will be ordered vector spaces and, generally, F will be a Dedekind complete ordered vector space

2010 Mathematics Subject Classification: Primary 46A22; Secondary 47B60, 47B65.
Key words and phrases: Common extension of positive linear operators, sublinear operators, Hahn-Banach theorem, Mazur-Orlicz theorem, Maharam theorem.
The paper is in final form and no version of it will be published elsewhere.
(that is, every nonempty ordered bounded set in F has a supremum or, equivalently, an infimum).

For the main meaning of the common extension problem we consider two vector subspaces (or sets) G_{1}, G_{2} in $E_{0}, E=\operatorname{span}\left(G_{1} \cup G_{2}\right)$ and two linear operators (or arbitrary maps) $T_{1}: G_{1} \rightarrow F, T_{2}: G_{2} \rightarrow F$ and we are interested to give (necessary and) sufficient conditions for the existence of a (positive) linear operator $L: E \longrightarrow F$ such that L extends T_{1} and T_{2}, that is $L\left(v_{1}\right)=T_{1}\left(v_{1}\right)$ and $L\left(v_{2}\right)=T_{2}\left(v_{2}\right)$ for all $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$. Obviously, a necessary condition for this is that the operators T_{1} and T_{2} are consistent (in the terminology introduced in [9]) that is, $T_{1}=T_{2}$ on $G_{1} \cap G_{2}$.

Such results, for the case of linear functionals, appeared in [12] and 9. The importance of this problem appears, for example, in [9, [14, [15, [16] and 13].

The primary result in this sense is the following:
Theorem 1.1. Let X_{0} and Y be two vector spaces, G_{1} and G_{2} two vector subspaces of $X_{0}, X=\operatorname{span}\left(G_{1} \cup G_{2}\right)$ and $T_{j}: G_{j} \rightarrow Y, j \in\{1,2\}$, two linear operators. Then, the following are equivalent:
(i) There exists $L: X \rightarrow Y$, a common linear extension of T_{1}, T_{2}.
(ii) If $v_{1}+v_{2}=0$, with $v_{1} \in G_{1}, v_{2} \in G_{2}$, then $T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)=0$.
(iii) $T_{1}=T_{2}$ on $G_{1} \cap G_{2}$.

Note that, for the proof of (ii) \Rightarrow (i), we define $L: X \rightarrow Y$ by $L\left(v_{1}+v_{2}\right)=T_{1}\left(v_{1}\right)+$ $T_{2}\left(v_{2}\right)$ for all $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$ and, according to (ii), it follows that L is well-defined.

For a finite family $\left(T_{j}\right)_{j \in\{1, \ldots, n\}}$ of linear operators, Theorem 1.1 becomes:
Theorem 1.2. Let X_{0} and Y be two vector spaces, $\left(G_{j}\right)_{j \in\{1, \ldots, n\}}$ a family of vector subspaces of X_{0} and $T_{j}: G_{j} \rightarrow Y, j \in\{1, \ldots, n\}$ a family of linear operators. Then, the following are equivalent:
(i) There exists $L: \operatorname{span}\left(G_{1} \cup \ldots \cup G_{n}\right) \rightarrow Y$, a common linear extension of T_{1}, \ldots, T_{n}.
(ii) If $v_{1}+v_{2}+\ldots+v_{n}=0$, then $T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)+\ldots+T_{n}\left(v_{n}\right)=0$, where $v_{j} \in G_{j}$ for each $j \in\{1, \ldots, n\}$.
(iii) For each two sets N_{1}, N_{2} so that $N_{1} \cap N_{2}=\emptyset$ and $N_{1} \cup N_{2}=\{1, \ldots, n\}$, $\sum_{k \in N_{1}} T_{k}\left(v_{k}\right)=\sum_{j \in N_{2}} T_{j}\left(v_{j}\right)$ if $\sum_{k \in N_{1}} v_{k}=\sum_{j \in N_{2}} v_{j}$, where $v_{i} \in G_{i}$ for $i \in\{1, \ldots, n\}$.
It is easy to prove that (iii) from Theorem 1.2 is equivalent to the following condition:
(iii') For any $k \in\{2,3, \ldots, n\}, T_{k}=T_{1}+T_{2}+\ldots+T_{k-1}$ on $G_{k} \cap \operatorname{span}\left(G_{1} \cup \ldots \cup G_{k-1}\right)$, that is $T_{k}\left(v_{k}\right)=T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)+\ldots+T_{k-1}\left(v_{k-1}\right)$ for any $v_{k}=v_{1}+v_{2}+\ldots+v_{k-1}$, where $v_{j} \in G_{j}, j \in\{1, \ldots, k\}$.
The following result is a version of Theorem 1.1 in the ordered vector spaces setting, all the linear operators which appear being positive.

Theorem 1.3. Let E_{0} be an ordered vector space and let F be a Dedekind complete ordered vector space. Let also G_{1}, G_{2} be two vector subspaces of E_{0} and let $T_{1}: G_{1} \rightarrow F$, $T_{2}: G_{2} \rightarrow F$ be two positive linear operators. Let us consider the following statements, where $E=\operatorname{span}\left(G_{1} \cup G_{2}\right)$:
(i) There exists $L: E \rightarrow F$, a positive common linear extension of T_{1} and T_{2};
(ii) If $v_{1}+v_{2} \leq 0$, where $v_{1} \in G_{1}, v_{2} \in G_{2}$, then $T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq 0$;
(iii) If $v_{1}+v_{2} \geq 0$, where $v_{1} \in G_{1}, v_{2} \in G_{2}$, then $T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \geq 0$;
(iv) If $v_{1}+v_{2}=0$, where $v_{1} \in G_{1}, v_{2} \in G_{2}$, then $T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)=0$;
(v) $T_{1}=T_{2}$ on $G_{1} \cap G_{2}$.

Then, we have: (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v).
The proof of Theorem 1.3 is immediate. Also, the corresponding result which generalizes this theorem for a family $\left(T_{j}\right)_{j \in\{1, \ldots, n\}}$ of positive linear operators can easily be formulated.
2. Common extensions in the line of Mazur-Orlicz and Hahn-Banach theorems. In the following result having as a consequence the Mazur-Orlicz theorem (see Corollary 2.3 below), we meet another meaning for the common extension problem. We will consider two nonempty sets A_{1}, A_{2}, four maps $g_{1}: A_{1} \rightarrow X, g_{2}: A_{2} \rightarrow X$, $f_{1}: A_{1} \rightarrow F, f_{2}: A_{2} \rightarrow F$ and a sublinear operator $S: X \rightarrow F$ such that all these maps satisfy an inequality which implies that $f_{1} \leq S \circ g_{1}$ and $f_{2} \leq S \circ g_{2}$. Then we can extend simultaneously these inequalities, obtaining the existence of a linear operator $L: E \rightarrow F$ dominated by S and such that $f_{1} \leq L \circ g_{1}$ and $f_{2} \leq L \circ g_{2}$.

Actually, this result will be applied to obtain a common extension (for two positive linear operators) in the main meaning considered in this paper and in the line of the Hahn-Banach theorem.
Theorem 2.1. Let X be a vector space, F a Dedekind complete ordered vector space, A_{1} and A_{2} two nonempty arbitrary sets, $S: X \rightarrow F$ a sublinear operator, and $g_{j}: A_{j} \rightarrow X$ and $f_{j}: A_{j} \rightarrow F, j \in\{1,2\}$, four maps. Then, the following are equivalent:
(i) There exists $L: X \rightarrow F$ a linear operator such that
a) $L \leq S$ on X, and
b) $f_{1} \leq L \circ g_{1}$ on A_{1} and $f_{2} \leq L \circ g_{2}$ on A_{2}.
(ii) The inequality

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} f_{1}\left(a_{1 i}\right)+\sum_{j=1}^{m} \mu_{j} f_{2}\left(a_{2 j}\right) \leq S\left(\sum_{i=1}^{n} \lambda_{i} g_{1}\left(a_{1 i}\right)+\sum_{j=1}^{m} \mu_{j} g_{2}\left(a_{2 j}\right)\right) \tag{2.1}
\end{equation*}
$$

holds for all $n, m \in \mathbb{N}^{*},\left\{a_{11}, \ldots, a_{1 n}\right\} \subset A_{1}, \lambda_{1} \geq 0, \ldots, \lambda_{n} \geq 0,\left\{a_{21}, \ldots, a_{2 m}\right\} \subset$ $A_{2}, \mu_{1} \geq 0, \ldots, \mu_{m} \geq 0$.

Proof. First, we remark that we can suppose that $m=n$, taking $\lambda_{n+1}=\cdots=\lambda_{m}=0$, if $n<m$, respectively $\mu_{m+1}=\cdots=\mu_{n}=0$, if $m<n$.

Obviously, (i) \Rightarrow (ii). Indeed, using successively (i) b), the linearity of L from (i) and (i) a), we obtain

$$
\begin{aligned}
\sum_{i=1}^{n} \lambda_{i} f_{1}\left(a_{1 i}\right) & +\sum_{j=1}^{n} \mu_{j} f_{2}\left(a_{2 j}\right) \leq \sum_{i=1}^{n} \lambda_{i}\left(L \circ g_{1}\right)\left(a_{1 i}\right)+\sum_{j=1}^{n} \mu_{j}\left(L \circ g_{2}\right)\left(a_{2 j}\right) \\
= & L\left(\sum_{i=1}^{n} \lambda_{i} g_{1}\left(a_{1 i}\right)+\sum_{j=1}^{n} \mu_{j} g_{2}\left(a_{2 j}\right)\right) \leq S\left(\sum_{i=1}^{n} \lambda_{i} g_{1}\left(a_{1 i}\right)+\sum_{j=1}^{n} \mu_{j} g_{2}\left(a_{2 j}\right)\right) .
\end{aligned}
$$

To prove that (ii) implies (i), we use the technique of the auxiliary sublinear operator, and apply the existence form of the Hahn-Banach theorem ("For every sublinear operator $S_{1}: X \rightarrow F$ there exists a linear operator $L_{1}: X \rightarrow F$ such that $L_{1} \leq S_{1}$ on X."). For every $x \in X$, put $S_{1}(x)$ the infimum of the set

$$
\left\{S\left(x+\sum_{i=1}^{n} \lambda_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \mu_{i} g_{2}\left(a_{2 i}\right)\right)-\sum_{i=1}^{n} \lambda_{i} f_{1}\left(a_{1 i}\right)-\sum_{i=1}^{n} \mu_{i} f_{2}\left(a_{2 i}\right)\right\}
$$

where the infimum is taken over all finite subsets $\left\{a_{11}, \ldots, a_{1 n}\right\} \subset A_{1},\left\{a_{21}, \ldots, a_{2 n}\right\} \subset$ $A_{2},\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{R}_{+},\left\{\mu_{1}, \ldots, \mu_{n}\right\} \subset \mathbb{R}_{+}$and $n \in \mathbb{N}^{*}$. Note that $S_{1}(x)$ exists because, using condition (ii) and the sublinearity of S, we have

$$
\begin{aligned}
\sum_{i=1}^{n} \lambda_{i} f_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \mu_{i} f_{2}\left(a_{2 i}\right) \leq S & \left(\sum_{i=1}^{n} \lambda_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \mu_{i} g_{2}\left(a_{2 i}\right)\right) \\
& \leq S\left(x+\sum_{i=1}^{n} \lambda_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \mu_{i} g_{2}\left(a_{2 i}\right)\right)+S(-x)
\end{aligned}
$$

Hence

$$
-S(-x) \leq S\left(x+\sum_{i=1}^{n} \lambda_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \mu_{i} g_{2}\left(a_{2 i}\right)\right)-\sum_{i=1}^{n} \lambda_{i} f_{1}\left(a_{1 i}\right)-\sum_{i=1}^{n} \mu_{i} f_{2}\left(a_{2 i}\right)
$$

This inequality holds in the Dedekind complete ordered vector space F.
It is straightforward to prove that S_{1} is a sublinear operator. Then, using the existence form of the Hahn-Banach theorem ([11], p. 44), there exists a linear operator $L: X \rightarrow F$ such that

$$
\begin{equation*}
L(x) \leq S_{1}(x), \quad x \in X \tag{2.2}
\end{equation*}
$$

Using the definition of S_{1} we remark that

$$
\begin{equation*}
S_{1}(x) \leq S(x), \quad x \in X \tag{2.3}
\end{equation*}
$$

(2.2) and (2.3) imply (i) a), that is $L(x) \leq S(x)$ for all $x \in X$.

Now we prove (i) b), that is, for example, that

$$
\begin{equation*}
f_{1} \leq L \circ g_{1} \text { on } A_{1} . \tag{2.4}
\end{equation*}
$$

But, for every $a_{1} \in A_{1}$, we have

$$
L\left(-g_{1}\left(a_{1}\right)\right) \leq S_{1}\left(-g_{1}\left(a_{1}\right)\right) \leq S\left(-g_{1}\left(a_{1}\right)+g_{1}\left(a_{1}\right)\right)-f_{1}\left(a_{1}\right)=-f_{1}\left(a_{1}\right)
$$

and by using the linearity of L, we obtain (2.4).
Remark 2.2. We can easily extend Theorem 2.1 for any p sets A_{1}, \ldots, A_{p} and $2 p$ maps $g_{i}: A_{i} \rightarrow X, f_{i}: A_{i} \rightarrow F, i \in\{1, \ldots, p\}$, instead of A_{1}, A_{2} and $g_{1}, g_{2}, f_{1}, f_{2}$.
Corollary 2.3 (The vectorial form of the Mazur-Orlicz theorem [10]). Let X be a vector space, F a Dedekind complete ordered vector space and $S: X \rightarrow F$ a sublinear operator. Let A be an arbitrary nonempty set, and $f: A \rightarrow F$ and $g: A \rightarrow X$ two maps. The following conditions are equivalent:
(i) There exists a linear operator $L: E \longrightarrow F$ with the properties

$$
\text { a) } L \leq S \text { on } X \text {, and b) } f \leq L \circ g \text { on } A .
$$

(ii) The inequality

$$
\sum_{i=1}^{n} \lambda_{i} f\left(a_{i}\right) \leq S\left(\sum_{i=1}^{n} \lambda_{i} g\left(a_{i}\right)\right)
$$

holds for all finite subsets $\left\{a_{1}, \ldots, a_{n}\right\} \subset A$ and $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \mathbb{R}_{+}$.
Proof. Put in Theorem 1.2. $A_{1}=A, A_{2}=\{0\} \subset X, g_{1}=g, f_{1}=f, g_{2}=0, f_{2}=0$.
The following result is the version of Theorem 2.1 for ordered vector spaces.
Theorem 2.4. Let E be an ordered vector space, F a Dedekind complete ordered vector space, and K_{1}, K_{2} two nonempty convex sets, and $S: E \rightarrow F$ a monotone sublinear operator. For each $i \in\{1,2\}$, let $P_{i}: K_{i} \rightarrow E$ be a convex operator and $Q_{i}: K_{i} \rightarrow F$ a concave operator. Then, the following conditions are equivalent:
(i) There exists a positive linear operator $L: E \rightarrow F$ such that
a) $L \leq S$ on E, and
b) $Q_{1} \leq L \circ P_{1}$ on K_{1} and $Q_{2} \leq L \circ P_{2}$ on K_{2}.
(ii) The inequality

$$
\begin{equation*}
\lambda Q_{1}\left(a_{1}\right)+\mu Q_{2}\left(a_{2}\right) \leq S\left(\lambda P_{1}\left(a_{1}\right)+\mu P_{2}\left(a_{2}\right)\right) \tag{2.5}
\end{equation*}
$$

holds for all $a_{1} \in K_{1}, a_{2} \in K_{2}, \lambda \geq 0$ and $\mu \geq 0$.
Proof. First we remark that inequality (2.5) is equivalent to inequality (2.1) from Theorem 2.1. Indeed, it is obvious that (2.1) implies (2.5), if we put in (2.1) $m=n=2$, and $A_{i}=K_{i}, g_{i}=P_{i}$ and $f_{i}=Q_{i}, i \in\{1,2\}$. To prove the converse, if $a_{11}, \ldots, a_{1 n} \in K_{1}$, $a_{21}, \ldots, a_{2 n} \in K_{2}, \lambda_{1} \geq 0, \ldots, \lambda_{n} \geq 0, \mu_{1} \geq 0, \ldots, \mu_{n} \geq 0$, we can suppose that $\lambda:=\lambda_{1}+\ldots+\lambda_{n}>0$ and $\mu:=\mu_{1}+\ldots+\mu_{n}>0$. Let $\alpha_{i}=\frac{\lambda_{i}}{\lambda}$ and $\beta_{i}=\frac{\mu_{i}}{\mu}$, for each $i \in\{1, \ldots, n\}$. It follows that $\alpha_{1}+\ldots+\alpha_{n}=1, \beta_{1}+\ldots+\beta_{n}=1$ and hence, using that P_{1}, P_{2} are convex operators and Q_{1}, Q_{2} are concave operators, we obtain:

$$
P_{1}\left(\sum_{i=1}^{n} \alpha_{i} a_{1 i}\right) \leq \sum_{i=1}^{n} \alpha_{i} P_{1}\left(a_{1 i}\right), \quad P_{2}\left(\sum_{i=1}^{n} \beta_{i} a_{2 i}\right) \leq \sum_{i=1}^{n} \beta_{i} P_{2}\left(a_{2 i}\right)
$$

and

$$
Q_{1}\left(\sum_{i=1}^{n} \alpha_{i} a_{1 i}\right) \geq \sum_{i=1}^{n} \alpha_{i} Q_{1}\left(a_{1 i}\right), \quad Q_{2}\left(\sum_{i=1}^{n} \beta_{i} a_{2 i}\right) \geq \sum_{i=1}^{n} \beta_{i} Q_{2}\left(a_{2 i}\right)
$$

Then, using (2.5) and the condition that S is a monotone operator we have:

$$
\begin{aligned}
& \sum_{i=1}^{n} \lambda_{i} Q_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \mu_{i} Q_{2}\left(a_{2 i}\right)=\lambda \sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda} Q_{1}\left(a_{1 i}\right)+\mu \sum_{i=1}^{n} \frac{\mu_{i}}{\mu} Q_{2}\left(a_{2 i}\right) \\
&=\lambda \sum_{i=1}^{n} \alpha_{i} Q_{1}\left(a_{1 i}\right)+\mu \sum_{i=1}^{n} \beta_{i} Q_{2}\left(a_{2 i}\right) \leq \lambda Q_{1}\left(\sum_{i=1}^{n} \alpha_{i} a_{1 i}\right)+\mu Q_{2}\left(\sum_{i=1}^{n} \beta_{i} a_{2 i}\right) \\
& \leq S\left(\lambda P_{1}\left(\sum_{i=1}^{n} \alpha_{i} a_{1 i}\right)+\mu P_{2}\left(\sum_{i=1}^{n} \beta_{i} a_{2 i}\right)\right) \\
& \leq S\left(\lambda\left(\sum_{i=1}^{n} \alpha_{i} P_{1}\left(a_{1 i}\right)\right)+\mu\left(\sum_{i=1}^{n} \beta_{i} P_{2}\left(a_{2 i}\right)\right)\right) .
\end{aligned}
$$

Moreover, to prove (ii) \Rightarrow (i), we use that any linear operator $L: E \rightarrow F$ dominated by a monotone and positive homogeneous operator $S: E \rightarrow F$ is a positive operator (see, for example [4, Remark 2.3).

Corollary 2.5 (Mazur-Orlicz theorem for ordered vector spaces, see 4], Theorem 2.4). Let E be an ordered vector space, F a Dedekind complete ordered vector space and S : $E \rightarrow F$ a monotone sublinear operator. Let K be a nonempty convex set, $P: K \rightarrow E$ a convex operator, and $Q: K \rightarrow F$ a concave operator. Then the following conditions are equivalent:
(i) There exists a positive linear operator $L: E \longrightarrow F$ with the properties:

$$
\text { a) } L \leq S \text { on } E \text {, and b) } Q \leq L \circ P \text { on } K \text {. }
$$

(ii) The inequality $Q \leq S \circ P$ holds on K.

Now we remember two vectorial forms of the Hahn-Banach extension theorem, for cases in which the domain space is an arbitrary vector space, respectively an ordered vector space.

Theorem 2.6. Let X be a vector space, F a Dedekind complete ordered vector space, and $S: X \rightarrow F$ a sublinear operator. Let G be a vector subspace of X and $T: G \rightarrow F a$ linear operator. The following conditions are equivalent:
(i) There exists a linear operator $L: X \longrightarrow F$ with the properties

$$
\text { a) } L \leq S \text { on } X \text {, and b) } L=T \text { on } G \text {. }
$$

(ii) $T \leq S$ on G.

Theorem 2.7. Let E be an ordered vector space, F a Dedekind complete ordered vector space and $S: E \rightarrow F$ a monotone sublinear operator. Let G be a vector subspace of E and $T: G \rightarrow F$ a positive linear operator. Then, the following are equivalent:
(i) There exists a positive linear operator $L: E \rightarrow F$ such that
a) $L \leq S$ on E, and b) $L=T$ on G.
(ii) $T \leq S$ on G.

Remark that Corollary 2.3 (the Mazur-Orlicz theorem) is a generalization of Theorem 2.6 (the vectorial form of the Hahn-Banach extension theorem).

The following common extension result will be formulated in the line of the HahnBanach extension theorem with a vector space as the domain space (see Theorem 2.6).

Theorem 2.8. Let X be a vector space, F a Dedekind complete ordered vector space, and $S: X \rightarrow F$ a sublinear operator. Let G_{1} and G_{2} be two vector subspaces of X and $T_{1}: G_{1} \rightarrow F, T_{2}: G_{2} \rightarrow F$ two linear operators. The following conditions are equivalent:
(i) There exists a linear operator $L: X \rightarrow F$ with the properties:
a) $L \leq S$ on X, and
b) $L=T_{1}$ on $G_{1}, L=T_{2}$ on G_{2}.
(ii) The following inequality holds for all $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$,

$$
\begin{equation*}
T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq S\left(v_{1}+v_{2}\right) \tag{2.6}
\end{equation*}
$$

Proof. Obviously, (i) implies (ii). To prove the converse we can apply Theorem 2.1 for $A_{i}=G_{i}, f_{i}=T_{i}$ and $g_{i}=$ the inclusion of G_{i} in X, for each $i \in\{1,2\}$. We obtain a linear operator $L: X \rightarrow F$ such that $L \leq S$ on X and $T_{i} \leq L$ on G_{i}, for $i \in\{1,2\}$. Actually, we have even $T_{i}=L$ on G_{i}, that is L is an extension of T_{i}, because $T_{i} \leq L$ on G_{i}, and T_{i} and L are linear. (Indeed, if, for example $v_{1} \in G_{1}$, we have: $T_{1}\left(-v_{1}\right) \leq L\left(-v_{1}\right)$ and hence $-T_{1}\left(v_{1}\right) \leq-L\left(v_{1}\right)$. It follows that $\left.L\left(v_{1}\right) \leq T_{1}\left(v_{1}\right) \leq L\left(v_{1}\right)\right)$. Therefore L is a common extension of T_{1}, T_{2}.

Note that inequality (2.6) implies that

1) $T_{1} \leq S$ on G_{1} and $T_{2} \leq S$ on G_{2}.
2) $T_{1}=T_{2}$ on $G_{1} \cap G_{2}$.

Indeed, to prove 2), let $v \in G_{1} \cap G_{2}$ and put in (2.6) $v_{1}=v$ and $v_{2}=-v$. Then $T_{1}(v)+T_{2}(-v) \leq S(0)=0$ and hence $T_{1}(v) \leq T_{2}(v) ;$ similarly, $T_{2}(v) \leq T_{1}(v)$ and therefore $T_{1}(v)=T_{2}(v)$.

The following common extension result will be formulated in the line of the HahnBanach extension theorem with an ordered vector space as the domain space (see Theorem 2.7.

Theorem 2.9. Let E be an ordered vector space, F a Dedekind complete ordered vector space and $S: E \rightarrow F$ a monotone sublinear operator. Let G_{1} and G_{2} be two vector subspaces of X and $T_{1}: G_{1} \rightarrow F, T_{2}: G_{2} \rightarrow F$ two positive linear operators. Then, the following are equivalent:
(i) There exists a positive linear operator $L: E \rightarrow F$ such that
a) $L \leq S$ on E,
b) $L=T_{1}$ on $G_{1}, L=T_{2}$ on G_{2}.
(ii) $T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq S\left(v_{1}+v_{2}\right)$, for all $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$.

Proof. We apply Theorem 2.4 .
The following result is a consequence of Theorem 2.9 .
Corollary 2.10. Let E, F, G_{1}, G_{2} and T_{1}, T_{2} be like in the previous theorem. Then, the following are equivalent:
(i) There exists a positive linear operator $L: E \rightarrow F$ such that $L=T_{1}$ on G_{1} and $L=T_{2}$ on G_{2}.
(ii) There exists a monotone sublinear operator $S: E \rightarrow F$ such that

$$
T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq S\left(v_{1}+v_{2}\right)
$$

for all $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$.
In the following result, which is a consequence of Corollary 2.10, the condition that the sublinear operator S is monotone is dropped.

Theorem 2.11. Let E be an ordered vector space, F a Dedekind complete ordered vector space and G_{1}, G_{2} two vector subspaces of E. Let also $T_{1}: G_{1} \rightarrow F$ and $T_{2}: G_{2} \rightarrow F$ be two positive linear operators. Then, the following are equivalent:
(i) There exists a positive linear operator $L: E \rightarrow F$ such that $L=T_{1}$ on G_{1} and $L=T_{2}$ on G_{2}.
(ii) There exists $S: E \rightarrow F$ a sublinear operator such that

$$
\begin{equation*}
v_{1}+v_{2} \leq v \Rightarrow T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq S(v) \tag{2.7}
\end{equation*}
$$

where $v_{1} \in G_{1}, v_{2} \in G_{2}$ and $v \in E$.
Proof. (i) \Rightarrow (ii). We put $S=L$ and use that L is a positive linear common extension of T_{1} and T_{2}. We have $v_{1}+v_{2} \leq v \Rightarrow L\left(v_{1}\right)+L\left(v_{2}\right) \leq L(v) \Rightarrow T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq S(v)$.
(ii) \Rightarrow (i). Conversely, let $S: E \rightarrow F$ be a sublinear operator satisfying (2.7). We apply the technique of the auxiliary sublinear operator, defining $S_{1}: E \rightarrow F$ by the formula

$$
S_{1}(v)=\inf \{S(w) \mid w \in E, w \geq v\}, \text { for each } v \in E
$$

This infimum exists in F, because the set $\{S(w) \mid w \in E, w \geq v\}$ is minorized in F by $-S(-v)$. Indeed, we have for $v_{1}=v_{2}=0$, and $u \geq 0: 0=T_{1}(0)+T_{2}(0) \leq S(u)=$ $S(v+u-v) \leq S(v+u)+S(-v)$, hence $-S(-v) \leq S(v+u)$, for all $u \geq 0$, or, equivalently, $-S(-v) \leq S(w)$, for all $w \in E, w \geq v$.

Obviously $S_{1} \leq S$ on E. In addition the operator S_{1} has the following properties:

1) S_{1} is sublinear,
2) S_{1} is monotone,
3) $T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq S_{1}\left(v_{1}+v_{2}\right)$ for all $v_{1} \in G_{1}, v_{2} \in G_{2}$.

Now, we can apply Corollary 2.10, (ii) \Rightarrow (i), for S_{1} instead of S, obtaining a positive common linear extension of T_{1} and T_{2}.

Remark 2.12. Many results of this paper, including Theorem 2.9, can easily be generalized in the line of the Maharam theorem (1972).

Theorem 2.13 (Maharam theorem). Let E be a vector lattice with an order unit $e \in E_{+}$ and $\left(G_{\delta}\right)_{\delta \in \Delta}$ a family of subspaces of E such that $e \in \operatorname{span}\left(\bigcup_{\delta \in \Delta} G_{\delta}\right)$. Let also F be a Dedekind complete ordered vector space and let $\left\{T_{\delta}: G_{\delta} \rightarrow F \mid \delta \in \Delta\right\}$ be a family of positive linear operators. Then, the following conditions are equivalent:
(i) There exists $T: E \rightarrow F$ a positive linear extension of the family $\left(T_{\delta}\right)_{\delta \in \Delta}$ (that is, $T(x)=T_{\delta}(x)$ for all $\delta \in \Delta$ and $\left.x \in G_{\delta}\right)$.
(ii) The inequality $0 \leq T_{\delta}\left(v_{\delta}\right)$ holds for every family $\left(v_{\delta}\right)_{\delta \in \Delta} \in \Phi\left(\left(G_{\delta}\right)\right)$, satisfying $0 \leq \sum_{\delta \in \Delta} v_{\delta}$, where $\Phi\left(\left(G_{\delta}\right)_{\delta \in \Delta}\right)$ is the collection of all families $\left\{v_{\delta} \in G_{\delta} \mid \delta \in \Delta\right\}$ such that $v_{\delta} \neq 0$ for at most finitely many $\delta \in \Delta$.

This theorem was originally proved by D. Maharam in 9] (see also [13], Theorem 6.3).
The following result (see [4, Theorem 5.4) is an easy generalization of Theorem 2.13 , because if the ordered vector space E has an order unit $e>0$ and $G \subseteq E$ is a vector subspace so that $e \in G$, then G is a majorizing subspace of E.

THEOREM 2.14. Let E be an ordered vector space and let $\left(G_{\delta}\right)_{\delta \in \Delta}$ be a family of subspaces of E, such that there exists at least one which is majorizing, say $G_{\delta_{0}}$. Let F be a Dedekind complete ordered vector space and let $\left\{T_{\delta}: G_{\delta} \rightarrow F \mid \delta \in \Delta\right\}$ be a family of positive linear operators. Then the following conditions are equivalent:
(i) The family $\left\{T_{\delta}: G_{\delta} \rightarrow F \mid \delta \in \Delta\right\}$ has a positive common linear extension $T: E \rightarrow F$.
(ii) The implication $\sum_{\delta \in \Delta} v_{\delta} \geq 0 \Rightarrow \sum_{\delta \in \Delta} T_{\delta}\left(v_{\delta}\right) \geq 0$ holds for every family $\left(v_{\delta}\right)_{\delta \in \Delta} \in$ $\Phi\left(\left(G_{\delta}\right)_{\delta \in \Delta}\right)$.
REmARK 2.15. If we generalize Corollary 2.10 in the line of the Maharam theorem, we obtain Theorem 2.14 and hence Theorem 2.13 too, as consequences. To prove this it suffices to prove that Corollary 2.10 implies the version of Theorem 2.14 for $\Delta=\{1,2\}$. For this aim it is necessary to prove that (ii') \Rightarrow (ii) if at least one of the subspaces G_{1}, G_{2}, say G_{1}, is majorizing, where (ii) and (ii') are the following statements:
(ii) There exists a monotone sublinear operator S such that

$$
T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq S\left(v_{1}+v_{2}\right)
$$

for all $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$.
(ii') If $v_{1}+v_{2} \leq 0$, then $T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq 0$ for all $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$.
Suppose that (ii') is valid. Let us define $T: \operatorname{span}\left(G_{1} \cup G_{2}\right) \rightarrow F$ by the equality

$$
T\left(v_{1}+v_{2}\right)=T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)
$$

for all $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$.
The operator T has the following properties: 1) T is well-defined, according to (ii'); 2) T is linear; 3) T is positive.

Because we supposed that G_{1} is a majorizing subspace, it follows that the subspace $G=\operatorname{span}\left(G_{1} \cup G_{2}\right)$ is majorizing, too. Define $S: E \rightarrow F, S(x)=\bar{T}(x)$, for all $x \in E$, (that is $S(x)=\inf \{T(z) \mid z \in G, z \geq x\}$). It is known that S is a monotone sublinear operator and $T \leq S$ on E. We have: $T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)=T\left(v_{1}+v_{2}\right) \leq S\left(v_{1}+v_{2}\right)$ for all $v_{1} \in G_{1}$ and $v_{2} \in G_{2}$, that is, (ii) is valid.
3. Common positive extensions using an additional set. In the following result we will give a sufficient condition for the existence of a positive linear operator L satisfying the converse inequalities of Theorem 2.1(i) b). This condition is an implication between two inequalities and next we will simplify the form of the left and respectively of the right member of these inequalities. Note that, instead of majorization of L by a sublinear operator S, we will assume the existence of an additional set M and of two maps h : $M \rightarrow E$ and $r: M \rightarrow F$, obtaining that $L \circ h \leq r$ on M.

Theorem 3.1. Let E_{0} be an ordered vector space, F a Dedekind complete ordered vector space, and let A_{1}, A_{2} and M be arbitrary nonempty sets. Let also $g_{j}: A_{j} \rightarrow E_{0}, f_{j}$: $A_{j} \rightarrow F, j \in\{1,2\}$ and $h: M \rightarrow\left(E_{0}\right)_{+}, r: M \rightarrow F$ be arbitrary maps, and $E=$
$\operatorname{span}\left(g_{1}\left(A_{1}\right) \cup g_{2}\left(A_{2}\right) \cup h(M)\right) \subseteq E_{0}$. Suppose that

$$
\begin{array}{rl}
\sum_{i=1}^{n} \alpha_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} g_{2}\left(a_{2 i}\right) \leq \sum_{i=1}^{n} & h\left(z_{i}\right) \\
& \Rightarrow \sum_{i=1}^{n} \alpha_{i} f_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} f_{2}\left(a_{2 i}\right) \leq \sum_{i=1}^{n} r\left(z_{i}\right) \tag{3.1}
\end{array}
$$

where $n \in \mathbb{N}^{*}$, and $a_{1 i} \in A_{1}, a_{2 i} \in A_{2}, z_{i} \in M, \alpha_{i} \in \mathbb{R}, \beta_{i} \in \mathbb{R}$, for each $i \in\{1, \ldots, n\}$. Then, there exists a positive linear operator $L: E \rightarrow F$ such that
a) $L \circ g_{1} \leq f_{1}$ on $A_{1}, L \circ g_{2} \leq f_{2}$ on A_{2},
b) $L \circ h \leq r$ on M.

Proof. Step 1. Remark that condition (3.1) is equivalent to the following condition:

$$
\begin{align*}
\sum_{i=1}^{n} \alpha_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} g_{2}\left(a_{2 i}\right) \leq \sum_{i=1}^{n} & \lambda_{i} h\left(z_{i}\right) \\
& \Rightarrow \sum_{i=1}^{n} \alpha_{i} f_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} f_{2}\left(a_{2 i}\right) \leq \sum_{i=1}^{n} \lambda_{i} r\left(z_{i}\right) \tag{3.2}
\end{align*}
$$

where $n \in \mathbb{N}^{*}$, and $a_{1 i} \in A_{1}, a_{2 i} \in A_{2}, z_{i} \in M, \alpha_{i} \in \mathbb{R}, \beta_{i} \in \mathbb{R}, \lambda_{i} \geq 0$, for each $i \in\{1, \ldots, n\}$.

Obviously, $(3.2) \Rightarrow(3.1)$. To prove that $(3.1) \Rightarrow(3.2)$, we analyze three cases:
Case 1. Suppose that $\lambda_{1} \in \mathbb{N}^{*}, \ldots, \lambda_{n} \in \mathbb{N}^{*}$. We define the elements $\left(y_{i}\right)_{i=1}^{\lambda_{1}+\ldots+\lambda_{n}} \in M$ as follows:

$$
\begin{gathered}
y_{1}=\ldots=y_{\lambda_{1}}=z_{1} \\
y_{\lambda_{1}+1}=\ldots=y_{\lambda_{1}+\lambda_{2}}=z_{2} \\
\ldots \ldots \ldots \ldots \ldots \\
y_{\lambda_{1}+\ldots+\lambda_{n-1}+1}=\ldots=y_{\lambda_{1}+\ldots+\lambda_{n}}=z_{n}
\end{gathered}
$$

We set $m=\lambda_{1}+\ldots+\lambda_{n} \in \mathbb{N}^{*} \Rightarrow m \geq n$ because $\lambda_{i} \geq 1$ for all $i \in\{1, \ldots, n\}$. Now, we have:

$$
\begin{aligned}
\sum_{i=1}^{n} \alpha_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} g_{2}\left(a_{2 i}\right) & \leq \sum_{i=1}^{m} h\left(y_{i}\right) \\
& \stackrel{(3.1)}{\Rightarrow} \sum_{i=1}^{n} \alpha_{i} f_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} f_{2}\left(a_{2 i}\right) \leq \sum_{i=1}^{m} r\left(y_{i}\right)=\sum_{i=1}^{n} \lambda_{i} r\left(z_{i}\right) .
\end{aligned}
$$

Case 2. Assume that $\lambda_{i} \in \mathbb{Q}_{+}$, for all $i \in\{1, \ldots, n\}$. Let us suppose that $\lambda_{i}=\frac{p_{i}}{q_{i}}$, where $p_{i} \in \mathbb{N}$ and $q_{i} \in \mathbb{N}^{*}$ for all $i \in\{1, \ldots, n\}$. Denote by q the least common multiple of q_{1}, \ldots, q_{n}. It follows that for all $i \in\{1, \ldots, n\}$ there exist $k_{i} \in \mathbb{N}$ such that $q=k_{i} q_{i}$. If

$$
\sum_{i=1}^{n} \alpha_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} g_{2}\left(a_{2 i}\right) \leq \sum_{i=1}^{n} \frac{p_{i}}{q_{i}} h\left(z_{i}\right)=\sum_{i=1}^{n} \frac{p_{i} k_{i}}{q} h\left(z_{i}\right)
$$

then

$$
\begin{aligned}
& \sum_{i=1}^{n} q \alpha_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} q \beta_{i} g_{2}\left(a_{2 i}\right) \leq \sum_{i=1}^{n} p_{i} k_{i} h\left(z_{i}\right) \\
& \quad \stackrel{\text { Casee }}{\Rightarrow} \sum_{i=1}^{n} q \alpha_{i} f_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} q \beta_{i} f_{2}\left(a_{2 i}\right) \leq \sum_{i=1}^{n} p_{i} k_{i} r\left(z_{i}\right) \\
& \Rightarrow \sum_{i=1}^{n} \alpha_{i} f_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} f_{2}\left(a_{2 i}\right) \leq \sum_{i=1}^{n} \frac{p_{i} k_{i}}{q} r\left(z_{i}\right)=\sum_{i=1}^{n} \frac{p_{i}}{q_{i}} r\left(z_{i}\right)=\sum_{i=1}^{n} \lambda_{i} r\left(z_{i}\right) .
\end{aligned}
$$

Case 3. Suppose that $\lambda_{i} \in \mathbb{R}_{+}$, for all $i \in\{1, \ldots, n\}$. We apply Case 2 and use that F is Archimedean.

Step 2. We will prove that there exists a monotone sublinear operator $S: E \rightarrow F$ such that

$$
S \circ g_{1} \leq f_{1} \text { on } A_{1}, S \circ g_{2} \leq f_{2} \text { on } A_{2}, \text { and } S \circ h \leq r \text { on } M .
$$

Define $S: E \rightarrow F$ by the formula

$$
\begin{aligned}
& S(x)=\inf \left\{\sum_{i=1}^{n} \alpha_{i} f_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} f_{2}\left(a_{2 i}\right)+\sum_{i=1}^{n} \lambda_{i} r\left(z_{i}\right) \mid\right. \\
& x \leq \sum_{i=1}^{n} \alpha_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} g_{2}\left(a_{2 i}\right)+\sum_{i=1}^{n} \lambda_{i} h\left(z_{i}\right), n \in \mathbb{N}^{*}, \text { and } a_{1 i} \in A_{1}, a_{2 i} \in A_{2} \\
& \left.\quad z_{i} \in M, \alpha_{i} \in \mathbb{R}, \beta_{i} \in \mathbb{R}, \lambda_{i} \geq 0 \text { for all } i \in\{1, \ldots, n\}\right\}
\end{aligned}
$$

for each $x \in E$. (Remember that $E=\operatorname{span}\left(g_{1}\left(A_{1}\right) \cup g_{2}\left(A_{2}\right) \cup h(M)\right) \subseteq E_{0}$.)
First we will prove that the above infimum exists in F. Let

$$
\begin{aligned}
x=\sum_{j=1}^{m} \alpha_{j}^{\prime} g_{1}\left(a_{1 j}^{\prime}\right)+\sum_{j=1}^{m} \beta_{j}^{\prime} g_{2}\left(a_{2 j}^{\prime}\right)+\sum_{j=1}^{m} & \lambda_{j}^{\prime} h\left(z_{j}^{\prime}\right) \\
& \leq \sum_{i=1}^{n} \alpha_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} g_{2}\left(a_{2 i}\right)+\sum_{i=1}^{n} \lambda_{i} h\left(z_{i}\right)
\end{aligned}
$$

where $a_{1 j}^{\prime} \in A_{1}, a_{2 j}^{\prime} \in A_{2}, z_{j}^{\prime} \in M, \alpha_{j}^{\prime} \in \mathbb{R}, \beta_{j}^{\prime} \in \mathbb{R}, \lambda_{j}^{\prime} \in \mathbb{R}, j \in\{1, \ldots, m\}$ are fixed and $a_{1 i} \in A_{1}, a_{2 i} \in A_{2}, z_{i} \in M, \alpha_{i} \in \mathbb{R}, \beta_{i} \in \mathbb{R}, \lambda_{i} \geq 0, i \in\{1, \ldots, n\}$ are arbitrary. Obviously, we can suppose that $m=n$. Then we can write:

$$
\begin{aligned}
& \sum_{j=1}^{n} \alpha_{j}^{\prime} g_{1}\left(a_{1 j}^{\prime}\right)+\sum_{j=1}^{n} \beta_{j}^{\prime} g_{2}\left(a_{2 j}^{\prime}\right)-\sum_{j=1}^{n} \alpha_{j} g_{1}\left(a_{1 j}\right)-\sum_{j=1}^{n} \beta_{j} g_{2}\left(a_{2 j}\right) \\
& \leq \sum_{j=1}^{n} \lambda_{j} h\left(z_{j}\right)-\sum_{j=1}^{n} \lambda_{j}^{\prime} h\left(z_{j}^{\prime}\right)
\end{aligned}
$$

Since (3.2) holds, $-\lambda_{j}^{\prime} \leq\left|\lambda_{j}^{\prime}\right|$ for each $j \in\{1, \ldots, n\}$ and h takes positive values, we obtain the inequality:
$\sum_{j=1}^{n} \alpha_{j}^{\prime} f_{1}\left(a_{1 j}^{\prime}\right)+\sum_{j=1}^{n} \beta_{j}^{\prime} f_{2}\left(a_{2 j}^{\prime}\right)-\sum_{j=1}^{n} \alpha_{j} f_{1}\left(a_{1 j}\right)-\sum_{j=1}^{n} \beta_{j} f_{2}\left(a_{2 j}\right) \leq \sum_{j=1}^{n} \lambda_{j} r\left(z_{j}\right)+\sum_{j=1}^{n}\left|\lambda_{j}^{\prime}\right| r\left(z_{j}^{\prime}\right)$,
and hence,
$\sum_{j=1}^{n} \alpha_{j}^{\prime} f_{1}\left(a_{1 j}^{\prime}\right)+\sum_{j=1}^{n} \beta_{j}^{\prime} f_{2}\left(a_{2 j}^{\prime}\right)-\sum_{j=1}^{n}\left|\lambda_{j}^{\prime}\right| r\left(z_{j}^{\prime}\right) \leq \sum_{j=1}^{n} \alpha_{j} f_{1}\left(a_{1 j}\right)+\sum_{j=1}^{n} \beta_{j} f_{2}\left(a_{2 j}\right)+\sum_{j=1}^{n} \lambda_{j} r\left(z_{j}\right)$.
So, the set appearing in the definition of $S(x)$ is minorized in F and hence there exists its infimum (denoted by $S(x)$).

It is straightforward to prove that S is sublinear and monotone. Moreover we have:

1) $S \circ g_{j} \leq f_{j}$ on A_{j}, for each $j \in\{1,2\}$. (Indeed, for example, for $j=1$ and $a_{1} \in A_{1}$, we have $g_{1}\left(a_{1}\right)=1 \cdot g_{1}\left(a_{1}\right)+0 \cdot g_{2}\left(a_{2}\right)+0 \cdot h(z)$, with some $a_{2} \in A_{2}$ and $z \in M$, it follows that $S\left(g_{1}\left(a_{1}\right)\right) \leq 1 \cdot f_{1}\left(a_{1}\right)+0 \cdot f_{2}\left(a_{2}\right)+0 \cdot r(z)$.)
2) $S \circ h \leq r$ on M. (Indeed, if $z \in M$, then for some $a_{1} \in A_{1}$ and $a_{2} \in A_{2}$, we have $h(z)=0 \cdot g_{1}\left(a_{1}\right)+0 \cdot g_{2}\left(a_{2}\right)+1 \cdot h(z)$ and hence $\left.S(h(z)) \leq 0 \cdot f_{1}\left(a_{1}\right)+0 \cdot f_{2}\left(a_{2}\right)+1 \cdot r(z)=r(z) \cdot\right)$

Step 3. Now we will prove the existence of a positive linear operator $L: E \rightarrow F$ such that
a) $L \circ g_{j} \leq f_{j}$ on A_{j} for each $j \in\{1,2\}$, and
b) $L \circ h \leq r$ on M.

We apply Step 2 and the existence form of the Hahn-Banach theorem. Also, we apply the remark mentioned at the end of the proof of Theorem 2.4.

Now we will simplify successively the form of the left members in the inequalities which appear in (3.1).
Theorem 3.2. Let E_{0} be an ordered vector space, F a Dedekind complete ordered vector space, and let G_{1}, G_{2} be two ordered vector spaces and M a nonempty set. Let also h : $M \rightarrow\left(E_{0}\right)_{+}$and $r: M \rightarrow F$ be two maps, $P_{j}: G_{j} \rightarrow E_{0}$ linear operators and $T_{j}: G_{j} \rightarrow F$ positive linear operators, where $j \in\{1,2\}$. Let $E=\operatorname{span}\left(P_{1}\left(G_{1}\right) \cup P_{2}\left(G_{2}\right) \cup h(M)\right) \subseteq E_{0}$. Then, the following conditions are equivalent:
(i) There exists a positive linear operator $L: E \rightarrow F$ such that
a) $L \circ P_{j}=T_{j}$ on G_{j} for $j \in\{1,2\}$, and
b) $L \circ h \leq r$ on M.
(ii) The following implication holds

$$
\begin{equation*}
P_{1}\left(v_{1}\right)+P_{2}\left(v_{2}\right) \leq \sum_{i=1}^{n} h\left(z_{i}\right) \Rightarrow T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq \sum_{i=1}^{n} r\left(z_{i}\right) \tag{3.3}
\end{equation*}
$$

where $n \in \mathbb{N}^{*}, v_{1} \in G_{1}, v_{2} \in G_{2}$ and $z_{i} \in M$, for all $i \in\{1, \ldots, n\}$.
Proof. (i) \Rightarrow (ii) is immediate. Indeed, if $P_{1}\left(v_{1}\right)+P_{2}\left(v_{2}\right) \leq \sum_{i=1}^{n} h\left(z_{i}\right)$, then, because L is a positive linear operator, we have

$$
L\left(P_{1}\left(v_{1}\right)+P_{2}\left(v_{2}\right)\right) \leq \sum_{i=1}^{n} L\left(h\left(z_{i}\right)\right) \stackrel{(\mathrm{i})}{\Rightarrow} T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq \sum_{i=1}^{n} r\left(z_{i}\right)
$$

(ii) \Rightarrow (i) is a consequence of Theorem 3.1. Indeed, let us prove that, for example, $L \circ P_{1}=T_{1}$ on G_{1}. If $v_{1} \in G_{1}$, then, because $L \circ P_{1} \leq T_{1}$ on G_{1} we have $L\left(P_{1}\left(-v_{1}\right)\right) \leq$
$T_{1}\left(-v_{1}\right)$ and since L, P_{1} and T_{1} are linear, it follows that $-L\left(P_{1}\left(v_{1}\right)\right) \leq-T_{1}\left(v_{1}\right)$, that is $L \circ P_{1} \geq T_{1}$ on G_{1}.

We remark that the form of the left-hand side in the inequalities appearing in (3.3) can be still simplified, if G_{1} and G_{2} are two vector subspaces of the ordered vector space E_{0}.

Theorem 3.3. Let E_{0} be an ordered vector space, F a Dedekind complete ordered vector space, and let G_{1}, G_{2} be two ordered vector subspaces of E_{0} and M an arbitrary set. Let also $h: M \rightarrow\left(E_{0}\right)_{+}$, and $r: M \rightarrow F$ be two maps, and $T_{1}: G_{1} \rightarrow F, T_{2}: G_{2} \rightarrow F$ two positive linear operators. Let $E=\operatorname{span}\left(G_{1} \cup G_{2} \cup h(M)\right) \subseteq E_{0}$. Then, the following conditions are equivalent:
(i) There exists a common positive linear extension L of T_{1}, T_{2} to the space E (that is $L=T_{j}$ on G_{j}, for $\left.j \in\{1,2\}\right)$ such that $L \circ h \leq r$ on M.
(ii) The following implication holds

$$
\begin{equation*}
v_{1}+v_{2} \leq \sum_{i=1}^{n} h\left(z_{i}\right) \Rightarrow T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq \sum_{i=1}^{n} r\left(z_{i}\right) \tag{3.4}
\end{equation*}
$$

for $n \in \mathbb{N}^{*}, v_{1} \in G_{1}, v_{2} \in G_{2}$ and $z_{i} \in M$, for each $i \in\{1, \ldots, n\}$.
Proof. Apply Theorem 3.2 for $P_{j}=i_{j}$, the inclusion of G_{j} in E_{0} for $j \in\{1,2\}$.
A new step to simplify the right members of the inequalities that arise in (3.4) is to choose M an arbitrary subset of $\left(E_{0}\right)_{+}$and to take $h=i$, the inclusion of M in E_{0}.

ThEOREM 3.4. Let E_{0} be an ordered vector space, F a Dedekind complete ordered vector space, and let G_{1}, G_{2} be two ordered vector subspaces of E_{0} and M an arbitrary subset of $\left(E_{0}\right)_{+}$. Let also $r: M \rightarrow F$ be a map, and $T_{1}: G_{1} \rightarrow F, T_{2}: G_{2} \rightarrow F$ two positive linear operators. Denote by E the vector space $\operatorname{span}\left(G_{1} \cup G_{2} \cup M\right) \subseteq E_{0}$. Then the following statements are equivalent:
(i) There exists a common positive linear extension L of T_{1}, T_{2} to the space E such that $L \leq r$ on M.
(ii) The following implication holds

$$
\begin{equation*}
v_{1}+v_{2} \leq \sum_{i=1}^{n} z_{i} \Rightarrow T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq \sum_{i=1}^{n} r\left(z_{i}\right) \tag{3.5}
\end{equation*}
$$

where $n \in \mathbb{N}^{*}, v_{1} \in G_{1}, v_{2} \in G_{2}$ and $z_{i} \in M$, for each $i \in\{1, \ldots, n\}$.
Remark 3.5.

1) Note that this theorem generalizes a result formulated without proof in [5], and applied in [6]; for the proof, see Theorem 1, p. 63 in [7]. Also, Theorem 3.4 generalizes Theorem 6.4 in [4]. This result is the consequence of our Theorem 3.4, obtained taking $G_{2}=\{0\}$ and $T_{2}=0$ (the null operator on G_{2}).
2) If, additionally, the cone $\left(E_{0}\right)_{+}$in Theorem 3.4 is generating and $M=\left(E_{0}\right)_{+}$, then $E=E_{0}$ and thus Theorem 3.4 gives the existence of a common extension of T_{1}, T_{2} to the whole E_{0}.
3) We have also $E=E_{0}$ if E_{0} has a positive algebraic basis, chosen instead of M.

Note that we can also simplify the form of the right-hand side in the inequalities appearing in condition (ii) in all previous theorems of this section. It suffices to choose as M a nonempty set closed under addition (in an arbitrary ordered vector space E_{1} for Theorem 3.1 and Theorem 3.2 and to assume that the maps $-h$ and r are subadditive. So, for example (3.1) becomes

$$
\sum_{i=1}^{n} \alpha_{i} g_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} g_{2}\left(a_{2 i}\right) \leq h(z) \Rightarrow \sum_{i=1}^{n} \alpha_{i} f_{1}\left(a_{1 i}\right)+\sum_{i=1}^{n} \beta_{i} f_{2}\left(a_{2 i}\right) \leq r(z)
$$

for $n \in \mathbb{N}^{*}, z \in M$, and $a_{1 i} \in A_{1}, a_{2 i} \in A_{2}, \alpha_{i} \in \mathbb{R}, \beta_{i} \in \mathbb{R}$, for each $i \in\{1, \ldots, n\}$. Also, (3.5) becomes: $v_{1}+v_{2} \leq z \Rightarrow T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right) \leq r(z)$, where $v_{1} \in G_{1}, v_{2} \in G_{2}$ and $z \in M$.

REMARK 3.6. As consequences of the results included in this section, we obtain respectively Theorems 6.1, 6.2, 6.3 and 6.4 from [4].
4. Other common positive linear extensions using an additional set. The following common extension result is in the line of a result of R. Cristescu, concerning the extension of a positive linear operator. This result by R . Cristescu generalizes a result obtained by Z. Lipecki (see Corollary 4.3 below) for the extension of a positive linear operator defined on a majorizing vector subspace of an ordered vector space. Note that in the following theorem, F, the range of the operators is an ordered vector space, not necessary Dedekind complete.
Theorem 4.1. Let E_{0} and F be two ordered vector spaces, G_{1}, and G_{2} be two vector subspaces of E_{0} and $M \subseteq E_{0}$ a nonempty set. Let also $T_{1}: G_{1} \rightarrow F, T_{2}: G_{2} \rightarrow F$ be positive linear operators and $P: E_{0} \rightarrow F$ a monotone sublinear operator such that $P=T_{1}$ on G_{1} and $P=T_{2}$ on G_{2}. Let $E=\operatorname{span}\left(G_{1} \cup G_{2} \cup M\right)$ and suppose that

$$
\begin{equation*}
P\left(\sum_{i=1}^{n} z_{i}\right)=\sum_{i=1}^{n} P\left(z_{i}\right) \tag{4.1}
\end{equation*}
$$

where $n \in \mathbb{N}^{*}$ and $z_{1}, \ldots, z_{n} \in M$.
Then, there exists a positive linear operator $L: E \rightarrow F$ such that
a) $L=T_{1}$ on $G_{1}, L=T_{2}$ on G_{2}, and
b) $L=P$ on M.

Proof. Define $L: E \rightarrow F$ by the following equality:

$$
L\left(v_{1}+v_{2}+\sum_{i=1}^{n} \alpha_{i} z_{i}\right)=T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)+\sum_{i=1}^{n} \alpha_{i} P\left(z_{i}\right)
$$

where $n \in \mathbb{N}^{*}, v_{1} \in G_{1}, v_{2} \in G_{2}$ and $z_{i} \in M, \alpha_{i} \in \mathbb{R}$, for all $i \in\{1, \ldots, n\}$. We intend to prove that L is well-defined. First, we will prove that $(4.1) \Rightarrow(4.2)$, where (4.2) is the following statement:

$$
\begin{equation*}
P\left(\sum_{i=1}^{n} \lambda_{i} z_{i}\right)=\sum_{i=1}^{n} \lambda_{i} P\left(z_{i}\right) \tag{4.2}
\end{equation*}
$$

with $n \in \mathbb{N}^{*}, z_{i} \in M, \lambda_{i} \in \mathbb{R}_{+}$, for all $i \in\{1, \ldots, n\}$ (actually the statements (4.1) and (4.2) are equivalent). Of course, it suffices to prove the inequality " \geq " in (4.2). Fix
$\lambda \in \mathbb{R}_{+}$with $\lambda_{i} \leq \lambda$, for all $i \in\{1, \ldots, n\}$. Then, the subadditivity of P, the property of P to be positive homogeneous together with our assumption (4.1) yield:

$$
\begin{aligned}
P\left(\sum_{i=1}^{n} \lambda_{i} z_{i}\right) \geq P\left(\lambda \sum_{i=1}^{n} z_{i}\right)-P\left(\sum_{i=1}^{n}\right. & \left.\left(\lambda-\lambda_{i}\right) z_{i}\right) \\
& \geq \lambda \sum_{i=1}^{n} P\left(z_{i}\right)-\sum_{i=1}^{n}\left(\lambda-\lambda_{i}\right) P\left(z_{i}\right)=\sum_{i=1}^{n} \lambda_{i} P\left(z_{i}\right) .
\end{aligned}
$$

Next we show that

$$
\begin{equation*}
v_{1}+v_{2}+\sum_{i=1}^{n} \lambda_{i} z_{i} \geq 0 \Longrightarrow T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)+\sum_{i=1}^{n} \lambda_{i} P\left(z_{i}\right) \geq 0 \tag{4.3}
\end{equation*}
$$

if $v_{1} \in G_{1}, v_{2} \in G_{2}, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}, z_{1}, \ldots, z_{n} \in M$. Indeed, put $I=\left\{1 \leq i \leq n \mid \lambda_{i} \geq 0\right\}$, and $J=\left\{1 \leq j \leq n \mid \lambda_{j}<0\right\}$. We have

$$
v_{1}+v_{2}+\sum_{i \in I} \lambda_{i} z_{i} \geq \sum_{j \in J}\left(-\lambda_{j}\right) z_{j}
$$

and hence, by the monotonicity of P, it follows that

$$
P\left(v_{1}+v_{2}+\sum_{i \in I} \lambda_{i} z_{i}\right) \geq P\left(\sum_{j \in J}\left(-\lambda_{j}\right) z_{j}\right) .
$$

Now, we will use again the subadditivity of P and the equalities $P=T_{1}$ on $G_{1}, P=T_{2}$ on G_{2}, obtaining

$$
T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)+P\left(\sum_{i \in I} \lambda_{i} z_{i}\right) \geq P\left(\sum_{j \in J}\left(-\lambda_{j}\right) z_{j}\right)
$$

According to (4.2) we have

$$
T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)+\sum_{i \in I} \lambda_{i} P\left(z_{i}\right) \geq \sum_{j \in J}\left(-\lambda_{j}\right) P\left(z_{j}\right)
$$

and hence

$$
T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)+\sum_{i=1}^{n} \lambda_{i} P\left(z_{i}\right) \geq 0
$$

Now we will prove that L is well-defined. Let

$$
v_{1}^{\prime}+v_{2}^{\prime}+\sum_{i=1}^{m} \alpha_{i} z_{i}^{\prime}=v_{1}^{\prime \prime}+v_{2}^{\prime \prime}+\sum_{j=1}^{n} \beta_{j} z_{j}^{\prime \prime}
$$

where $v_{1}^{\prime}, v_{1}^{\prime \prime} \in G_{1}, v_{2}^{\prime}, v_{2}^{\prime \prime} \in G_{2}, m, n \in \mathbb{N}^{*}, z_{i}^{\prime} \in M, \alpha_{i} \in \mathbb{R}$ for all $i \in\{1, \ldots, m\}$, and $z_{j}^{\prime \prime} \in M, \beta_{j} \in \mathbb{R}$ for all $j \in\{1, \ldots, n\}$. Then

$$
\left(v_{1}^{\prime}-v_{1}^{\prime \prime}\right)+\left(v_{2}^{\prime}-v_{2}^{\prime \prime}\right)+\sum_{i=1}^{m} \alpha_{i} z_{i}^{\prime}+\sum_{j=1}^{n}\left(-\beta_{j}\right) z_{j}^{\prime \prime}=0
$$

so, according to (4.3),

$$
T_{1}\left(v_{1}^{\prime}-v_{1}^{\prime \prime}\right)+T_{2}\left(v_{2}^{\prime}-v_{2}^{\prime \prime}\right)+\sum_{i=1}^{m} \alpha_{i} P\left(z_{i}^{\prime}\right)+\sum_{j=1}^{n}\left(-\beta_{j}\right) P\left(z_{j}^{\prime \prime}\right) \geq 0
$$

It follows that

$$
\begin{aligned}
T_{1}\left(v_{1}^{\prime}\right)+T_{2}\left(v_{2}^{\prime}\right)+\sum_{i=1}^{m} \alpha_{i} P\left(z_{i}^{\prime}\right)= & T_{1}\left(v_{1}^{\prime \prime}\right)+T_{2}\left(v_{2}^{\prime \prime}\right)+\sum_{j=1}^{n} \beta_{j} P\left(z_{j}^{\prime \prime}\right) \\
& \Rightarrow L\left(v_{1}^{\prime}+v_{2}^{\prime}+\sum_{i=1}^{m} \alpha_{i} z_{i}^{\prime}\right)=L\left(v_{1}^{\prime \prime}+v_{2}^{\prime \prime}+\sum_{j=1}^{n} \beta_{j} z_{j}^{\prime \prime}\right)
\end{aligned}
$$

that is L is well-defined. It is straightforward to prove that L is a linear operator. By (4.3) it follows that L is positive, too.

Clearly, L extends T_{1} and T_{2}. (Indeed, for example, taking $v_{1} \in G_{1}, v_{2}=0 \in G_{2}$ and $z \in M$ we can write $v_{1}=v_{1}+0+0 \cdot z$ and therefore $L\left(v_{1}\right)=T\left(v_{1}\right)+T_{2}(0)+0 \cdot P(z)$, that is $L=T_{1}$ on G_{1}.) Also, obviously, $L=P$ on M.

Remark 4.2. The conditions of Theorem 4.1 determine L uniquely. Suppose by contradiction that there exists $L_{1}: \operatorname{span}\left(G_{1} \cup G_{2} \cup M\right) \rightarrow F$ such that: a) L_{1} is positive and linear; b) $L_{1}=T_{1}$ on $G_{1}, L_{1}=T_{2}$ on G_{2}; c) $L_{1}=P$ on M. Then we have

$$
\begin{aligned}
L_{1}\left(v_{1}+v_{2}+\sum_{i=1}^{n} \alpha_{i} z_{i}\right)= & L_{1}\left(v_{1}\right)+L_{1}\left(v_{2}\right)+\sum_{i=1}^{n} \alpha_{i} L_{1}\left(z_{i}\right) \\
& =T_{1}\left(v_{1}\right)+T_{2}\left(v_{2}\right)+\sum_{i=1}^{n} \alpha_{i} P\left(z_{i}\right)=L\left(v_{1}+v_{2}+\sum_{i=1}^{n} \alpha_{i} z_{i}\right)
\end{aligned}
$$

and so $L_{1}=L$.
Taking in Theorem4.1 $G_{1}=G, T_{1}=T$ and $G_{2}=\{0\} \subset E_{0}, T_{2}: G_{2} \rightarrow F, T_{2}(0)=0$, and $E=\operatorname{span}(G \cup M)$, we obtain a result of R. Cristescu (see [3]). This result generalizes a theorem of Z. Lipecki (see [8). Actually this Lipecki's result is a consequence of our Theorem4.1. Remember that a vector subspace G of an ordered vector space E_{0} is called a majorizing subspace if for each $x \in E_{0}$, there exists $v \in G$ such that $x \leq v$ (or, equivalently, there exists $u \in G$ such that $u \leq x$).

Also, if G is a majorizing vector subspace of E_{0}, F a Dedekind complete ordered vector space, and $T: G \rightarrow F$ is a positive linear operator, the operator $\bar{T}: E \rightarrow F$ (well-) defined by $\bar{T}(x)=\inf \{T(v) \mid v \in G, v \geq x\}, x \in E_{0}$ is monotone and sublinear. Also $T=\bar{T}$ on G, and if $L: E_{0} \rightarrow F$ is a positive linear operator which extends T, then $L \leq \bar{T}$ on E_{0}.

Corollary 4.3 ([8]). Let E_{0} be an ordered vector space, F a Dedekind complete ordered vector space, G a majorizing vector subspace of $E_{0}, M \subseteq E_{0}$ a nonempty set and T : $G \rightarrow F$ a positive linear operator. Then, the following are equivalent:
(i) T extends to a (unique) positive linear operator $L: E \rightarrow F$ such that $L=\bar{T}$ on M;
(ii) $\bar{T}\left(\sum_{i=1}^{n} z_{i}\right)=\sum_{i=1}^{n} \bar{T}\left(z_{i}\right)$, where $n \in \mathbb{N}^{*}$, and $z_{1}, \ldots, z_{n} \in M$.

Proof. (ii) \Rightarrow (i) follows from Theorem 4.1 .
Conversely, if $L: E \rightarrow F$ is a positive linear extension of T such that $L=\bar{T}$ on M,
we have, for $n \in \mathbb{N}^{*}$, and $z_{1}, \ldots, z_{n} \in M$,

$$
\sum_{i=1}^{n} \bar{T}\left(z_{i}\right)=\sum_{i=1}^{n} L\left(z_{i}\right)=L\left(\sum_{i=1}^{n} z_{i}\right) \leq \bar{T}\left(\sum_{i=1}^{n} z_{i}\right)
$$

Hence, according to the subadditivity of \bar{T}, we have $\sum_{i=1}^{n} \bar{T}\left(z_{i}\right)=\bar{T}\left(\sum_{i=1}^{n} z_{i}\right)$.
The following common positive linear extension result is a consequence of Theorem 4.1, formulated in the line of Corollary 4.3 .

Corollary 4.4. Let E_{0} be an ordered vector space, F a Dedekind complete ordered vector space, G_{1} and G_{2} be two vector subspaces of E_{0}, one of them, say G_{1}, majorizing, and M a nonempty subset of E_{0}. Let $T_{1}: G_{1} \rightarrow F$ and $T_{2}: G_{2} \rightarrow F$ be two positive linear operators such that $\bar{T}_{1}=T_{2}$ on G_{2}. Let $E=\operatorname{span}\left(G_{1} \cup G_{2} \cup M\right)$. Then the following statements are equivalent:
(i) There exists a positive linear operator $L_{1}: E_{1} \rightarrow F$ such that
a) $L=T_{1}$ on $G_{1}, L=T_{2}$ on G_{2}, and
b) $L=\bar{T}_{1}$ on M.
(ii) $\bar{T}\left(\sum_{i=1}^{n} z_{i}\right)=\sum_{i=1}^{n} \bar{T}\left(z_{i}\right)$, where $n \in \mathbb{N}^{*}$, and $z_{1}, \ldots, z_{n} \in M$.

Proof. (ii) \Rightarrow (i) is obviously, according to Theorem 4.1 applied for $P=\bar{T}_{1}$.
(i) \Rightarrow (ii) can be proved like in Corollary 4.3, by putting T_{1} instead of T.

The following result is a consequence of Theorem4.1 for the case when the set $M \subseteq E_{0}$ is closed under addition.
Corollary 4.5. Let E_{0} and F be two ordered vector spaces, G_{1} and G_{2} be two vector subspaces of E_{0}, and M a nonempty subset of E_{0}, closed under addition. Let $P: E_{0} \rightarrow F$ be a monotone sublinear operator, and $T_{1}: G_{1} \rightarrow F, T_{2}: G_{2} \rightarrow F$ two positive linear operators such that $P=T_{1}$ on G_{1} and $P=T_{2}$ on G_{2}. Let $E=\operatorname{span}\left(G_{1} \cup G_{2} \cup M\right)$. Then, the following are equivalent:
(i) There exists a positive linear operator $L: E \rightarrow F$ such that
a) $L=T_{1}$ on $G_{1}, L=T_{2}$ on G_{2}, and
b) $L=P$ on M.
(ii) P is additive on M.

References

[1] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Pure Appl. Math. 119, Academic Press, Orlando, 1985.
[2] R. Cristescu, Ordered Vector Spaces and Linear Operators, Ed. Academiei, Bucureşti; Abacus Press, Tunbridge, 1976.
[3] R. Cristescu, Extension of positive operators, in: Topological Ordered Vector Space 6, Univ. of Bucharest, 1985, 23-42 (Romanian).
[4] N. Dăneţ, R.-M. Dăneţ, Existence and extensions of positive linear operators, Positivity 13 (2009), 89-106.
[5] R.-M. Dăneţ, Positive linear extension of linear operators, in: Topological Ordered Vector Space 6, Univ. of Bucharest, 1985, 135-136 (Romanian).
[6] R.-M. Dăneţ, Some consequences of a theorem about the extension of positive linear operators, Rev. Roumaine Math. Pures Appl. 33 (1988), 721-729.
[7] R.-M. Dăneţ, Some Technics for the Existence and the Extension of Positive Linear Operators, Ed. Academiei Române, Bucureşti, 1993 (Romanian).
[8] Z. Lipecki, Maximal-valued extensions of positive operators, Math. Nachr. 117 (1984), 51-55.
[9] D. Maharam, Consistent extensions of linear functionals and of probability measures, in: Proc. Sixth Berkeley Symp. on Math. Stat. and Probab. (Berkeley, 1970/71), Univ. California Press, 1972, vol. II, 127-147.
[10] S. Mazur, W. Orlicz, Sur les espaces métriques linéaires II, Studia Math. 13 (1953), 137-179.
[11] P. Meyer-Nieberg, Banach Lattices, Springer, Berlin, 1991.
[12] V. Ptak, Simultaneous extensions of two functionals, Czechoslovak Math. J. 19 (1969), 553-566.
[13] K. D. Schmidt, Decomposition and extension of abstract measures in Riesz spaces, Rend. Istit. Math. Univ. Trieste 29 (1998) Suppl., 135-213.
[14] K. D. Schmidt, G. Waldschaks, Common extensions of order bounded vector measures Rend. Circ. Math. Palermo (2) Suppl. 28 (1992), 117-124.
[15] K. D. Schmidt, G. Waldschaks, Common extensions of positive vector measures, Portugal. Math. 48 (1991), 155-164.
[16] R. M. Shortt, F. Wehrung, Common extensions of semigroup-valued charges, J. Math. Anal. Appl. 187 (1994), 235-238.

