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Abstract. We consider the problem of optimally placing market orders so as to minimize the

expected liquidity costs from buying a given amount of shares. The liquidity price impact of

market orders is described by an extension of a model for a limit order book with resilience

that was proposed by Obizhaeva and Wang (2006). We extend their model by allowing for a

time-dependent resilience rate, arbitrary trading times, and general equilibrium dynamics for the

unaffected bid and ask prices. Our main results solve the problem of minimizing the expected

liquidity costs within a given convex set of predictable trading strategies by reducing it to a

deterministic optimization problem. This deterministic problem is explicitly solved for the case in

which the convex set of strategies is defined via finitely many linear constraints. A detailed study

of optimal portfolio liquidation in markets with opening and closing call auctions is provided as
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10 A. ALFONSI ET AL.

an illustration. We also obtain closed-form solutions for the unconstrained portfolio liquidation

problem in our time-inhomogeneous setting and thus extend a result from our earlier paper [1].

1. Introduction. A common problem for stock traders consists in unwinding large block
orders of shares, which can comprise a significant percentage of the daily traded volume
of shares. Orders of this size create significant impact on the asset price and, to reduce
the overall market impact, it is necessary to split them into smaller orders that are placed
during a certain time interval. The question at hand is to allocate an optimal proportion
of the entire order to each individual placement so as to minimize the overall price
impact. Problems of this type were investigated by Bertsimas and Lo [6], Almgren and
Chriss [3, 4], Almgren [2], Almgren and Lorenz [5], Obizhaeva and Wang [13], Schied and
Schöneborn [15, 16], and in our earlier paper [1], to mention only a few. For extensions to
situations with several competing traders, see [10], [11], [17], and the references therein.

The mathematical formulation of the corresponding optimization problem relies first
of all on specifying a stock price model that takes into account the feedback effects
resulting from the placement of large orders. It is a well established empirical fact that at
least a part of the price impact of large market orders is only temporary. In the majority of
models in the literature, this temporary impact has no duration and only instantaneously
affects the trade that has triggered it. It is therefore equivalent to a penalization by
transaction costs. Models of this type underlie the above-mentioned papers [6], [3], [4],
[5], [10], [11], and [17].

Another type of model has recently been proposed by Obizhaeva and Wang [13].
Instead of merely postulating the dynamics of the price process, models of this type
derive their dynamics from an intuitive underlying model of a limit order book (LOB).
In [13] it is assumed that the ask part of the LOB consists of a uniform distribution of
shares offered at prices higher than the current best ask price. When the large trader is
not active, the mid price of the LOB fluctuates according to the Bachelier model, and
the bid-ask spread remains constant. A buy market order of the large trader consumes
a block of shares closest to the best ask and thus increases the ask price proportionally
to the size of the order. This corresponds to a linear price impact. As found in empirical
studies, the flow of incoming limit sell orders in real-world order books is concentrated in
the vicinity of the new best ask price and thus tends to quickly close at least a part of the
gap created by the preceding market order; see, for instance, Biais et al. [7], Potters and
Bouchaud [14], Bouchaud et al. [9], and Weber and Rosenow [18]. In the LOB model, this
resilience effect is described by an exponential decay of the part of the price impact that is
not permanent. Hence, the resulting impermanent price impact is neither instantaneous
nor entirely permanent but decays on an exponential scale.

In our previous paper [1], we generalized the model from [13] by allowing for a nonlin-
ear shape of the LOB, which leads to a nonlinear price impact. In addition, we considered
general equilibrium dynamics for the unaffected bid and ask prices rather than just the
Bachelier model. In this extended framework, we obtained closed-form solutions for the
problem of minimizing the expected liquidity costs within the class of predictable trad-
ing strategies. As a byproduct, we obtained a new closed-form solution for the optimal
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strategy in a block-shaped LOB, whereas in [13] this strategy was only given in terms of
an entangled forward-backward recursive scheme.

In this paper, we look at a different extension of the market impact model from [13].
It is well known to practitioners that trading volume and liquidity are inhomogeneously
distributed over the trading day, often with a U-shaped or W-shaped pattern. Due
to the mechanism of LOB recovery described above, one thus expects a similar time-
inhomogeneous pattern for the resilience rate of the LOB. Therefore, we allow for a
time-dependent resilience rate in our model and, as a consequence, are also able to treat
arbitrarily spaced trading times. On the other hand, we use a block-shaped LOB as
in [13].

After introducing the time-inhomogeneous LOB model, we consider the problem of
optimally executing a buy order for X0 shares within a certain time frame [0, T ]. The focus
on buy orders is for the simplicity of the presentation only; completely analogous results
hold for sell orders as well. While most other papers, including [13], focus on optimization
within the class of deterministic strategies, we will here allow for dynamic updating of
trading strategies, that is, we optimize over the larger class of adapted strategies. We
also allow for intermediate sell orders in our strategies.

Our first result, Theorem 3.1, provides an explicit solution of the optimal portfolio
liquidation problem in our time-inhomogeneous framework and thus extends [1, Corol-
lary 6.1]. Our main contribution, however, is to analyze the cost optimization problem
under convex constraints on our trading strategies. Such constraints can arise rather
naturally in many situations. For instance, linear constraints will allow us to give a de-
tailed analysis of optimal liquidation strategies in markets with opening and closing call
auctions.

In a first step to solving the optimal portfolio liquidation problem, Theorem 3.3 re-
duces the original constrained stochastic optimization problem to the minimization of a
positive definite quadratic form on a convex subset of Euclidean space. We are then able
to explicitly compute the inverse of the corresponding matrix and thus, in a second step,
to solve the finite-dimensional minimization problem by means of the Kuhn-Tucker the-
orem. The corresponding result is formulated in Theorem 3.4, together with an explicit
solution for the case of finitely many linear constraints.

The paper is organized as follows. In Section 2, we explain the market impact model
based on LOB dynamics. In Section 3, we set up the resulting optimization problems and
state our main results. The case study of a market with opening and closing call auctions
is carried out in Section 4. The proofs of our main results are given in Sections 5 and 6.

2. Model setup. In this section, we present an extension of the market impact model
of Obizhaeva and Wang [13]. This one-asset model derives its price dynamics from a
dynamic model of a limit order book (LOB) with resilience. A limit order is an order to
buy or sell the asset at a specified price, and a LOB consists of the collection of all buy
and sell limit orders at various prices. Matching buy and sell limit orders are immediately
executed, so a limit order book consists of two disjoint blocks of buy and sell limit orders.
The lowest price asked for a sell limit order is called the best ask price. It is larger than
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the highest bid for buying shares, which is usually called the best bid price. Following [13],
we here make the simplifying assumption that the ask and bid sides of the LOB consist
of a continuous price distribution of orders with constant height q > 0. That is, for h > 0,
q ·h is the amount of shares offered in a price interval [x, x+h] for some price x ∈ R that
is bigger than the best ask price. Similarly, if x ∈ R is lower than the best bid price, then
q · h is the amount of buy limit orders in the interval [x− h, x]; see Figure 1.

best bid
price B0

best ask
price A0

price

buyers' bid offers sellers' ask offers

bid-ask spread

q

Fig. 1. The limit order book model before the large investor is active

We now consider the actions of a large trader whose goal is to purchase a large
amount X0 > 0 of shares within a certain time period [0, T ]. In reality, T typically ranges
from a few hours up to a few trading days. Since the timing of orders is critical, the large
trader uses market orders rather than limit orders. A market order consists of an order
to buy (or sell) a specific number of shares at the best price currently available. Thus,
a market buy order of x0 > 0 shares placed at time t = 0 consumes all shares between
the current best ask price, A0, and the price A0+ that is determined by the condition
q · (A0+−A0) = x0. Thus, A0+ will be the best ask price immediately after the execution
of the market order; see Figure 2.

B0 A0 price

new bid-ask
spread

A0+

market order
x0=q(A0+-A0) q

Fig. 2. Impact of a market buy order of x0 shares

To describe the dynamics of the LOB between the recurrent orders of the large trader,
it is convenient to first specify reference dynamics for the case when the large trader
is never active. In this case, the dynamics of the limit order book are determined by
the actions of noise traders only. We assume that the corresponding unaffected best ask
price, A0

t , t ≥ 0, is a martingale on a given filtered probability space (Ω, (Ft),F ,P)
and satisfies A0

0 = A0. This assumption includes in particular the case in which A0 is
a Bachelier model, i.e., A0

t = A0 + σWt for an (Ft)-Brownian motion W , as considered
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in [13]. We emphasize, however, that we can take any martingale and hence use, e.g.,
a risk-neutral geometric Brownian motion, which avoids the counterintuitive negative
prices of the Bachelier model. Moreover, we can allow for jumps in the dynamics of A0

so as to model the trading activities of other large traders in the market.
When the large trader is active, his or her previous market orders will have moved

the best ask price away from the unaffected best ask price A0
t . Let us thus denote by At

the actual best ask price at time t, and let

DA
t := At −A0

t

be the extra spread caused by the past transactions of the trader. Another buy market
order of xt > 0 shares placed at time t consumes all the shares offered at prices betweenAt
and

At+ := At +DA
t+ −DA

t = A0
t +DA

t+,

where DA
t+ is determined by the condition

(DA
t+ −DA

t ) · q = xt.

Thus, the process DA captures the impact of market orders on the current best ask price.
We still need to specify how DA evolves when our trader is inactive in between mar-

ket orders. It is a well established empirical fact that order books exhibit a certain re-
silience as to the price impact of large block orders; see, e.g., Biais et al. [7], Potters and
Bouchaud [14], Bouchaud et al. [9], and Weber and Rosenow [18]. That is, only a fraction
of the immediate impact xt/q is permanent, while the remaining fraction is impermanent
and decays to zero. In modeling this resilience, we consider an exponential recovery of
the impermanent part of the impact with a time-dependent recovery rate ρt, which we
assume to be a strictly positive measurable function on [0, T ]. More precisely, the price
impact at time t+ u of a buy market order xt placed at time t is supposed to be

γxt + κe−
R t+u

t
ρs dsxt,

where γ < 1/q quantifies the fraction of the permanent impact and

(1) κ :=
1
q
− γ

is the portion of the impermanent impact. The process DA is now defined as the cumu-
lative impact of all past buy market orders. That is, if buy market orders xtn are placed
at times tn, then

(2) DA
t = γ

∑
tn<t

xtn + κ
∑
tn<t

e−
R t

tn
ρs dsxtn .

Such an extension of their original model was suggest by Obizhaeva and Wang in [13,
Section 8.1].

Up to now, we have only described the effect of buy market orders on the upper half
of the LOB. Since the overall goal of the trader is to buy X0 > 0 shares up to time T , a
restriction to buy orders would seem to be plausible. However, we do not wish to exclude
the a priori possibility that, under certain market conditions, it could be beneficial to
also sell some shares and to buy them back at a later point in time. To incorporate this
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possibility, we also need to model the impact of sell market orders on the lower part of
the LOB. As for ask prices, we will distinguish between an unaffected best bid price, B0

t ,
and the actual best bid price, Bt, for which the price impact of previous sell orders of
our trader is taken into account. All we assume on the dynamics of B0 is

(3) B0
t ≤ At at all times t.

This assumption allows the unaffected best bid price B0
t to depend in a nontrivial way

on past buy orders of the trader, which for large buy orders is quite realistic. We do not
need to specify the details of this interaction, however. The asymmetry in assumptions
on the dynamics of A0 and B0 is natural in view of the overall task of the trader, which
consists in buying a large amount of shares.

The quantity
DB
t := Bt −B0

t

is called the extra spread in the bid price. A sell market order of xt < 0 shares placed at
time t will consume all the shares offered at prices between Bt and

Bt+ := Bt +DB
t+ −DB

t = B0
t +DB

t+,

where DB
t+ is determined by the condition (DB

t+−DB
t ) ·q = xt. More precisely, we assume

that the process DB behaves analogously to its counterpart DA, i.e.,

(4) DB
t = γ

∑
tn<t

xtn + κ
∑
tn<t

e−
R t

tn
ρs dsxtn ,

where the sum is taken over all past sell market orders xtn .

3. The cost minimization problem. When placing a single buy market order of
size xt ≥ 0 at time t, the trader purchases q dx shares at price A0

t + x, with x ranging
from DA

t to DA
t+. Hence, the total cost of the buy market order amounts to

πt(xt) :=
∫ DA

t+

DA
t

(A0
t + x)q dx = A0

txt +
q

2
((DA

t+)2 − (DA
t )2).(5)

For a sell market order xt ≤ 0, we have

πt(xt) := B0
t xt +

q

2
((DB

t+)2 − (DB
t )2).(6)

In practice, very large orders are often split into a number of consecutive market
orders to reduce the overall price impact. Hence, the question at hand is to determine
the size of the individual orders so as to minimize a cost criterion. So let us assume that
the trader needs to buy a total of X0 > 0 shares until time T and that trading can occur
at N + 1 predetermined times 0 ≤ t0 < t1 < · · · < tN ≤ T . We emphasize that we do not
require these times to be located at equidistant points as is assumed in [13] and [1]. An
admissible strategy is a sequence ξ = (ξ0, ξ1, . . . , ξN ) of random variables such that

•
∑N
n=0 ξn = X0,

• each ξn is measurable with respect to Ftn ,
• each ξn is bounded from below.
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The quantity ξn corresponds to the size of the market order placed at time tn. Note that
we do not a priori require ξn to be positive, i.e., we also allow for intermediate sell orders,
but we make the realistic assumption that there is some lower bound on sell orders.

The average cost C(ξ) of an admissible strategy ξ is defined as the expected value of
the total costs incurred by the consecutive market orders:

(7) C(ξ) = E
[ N∑
n=0

πtn(ξn)
]
.

Our first goal in this paper consists in finding admissible strategies that minimize the
average cost within the class of all admissible strategies. The corresponding result can be
found in the next theorem. It provides an explicit solution for the time-inhomogeneous
version of the forward-backward recursive scheme of [13, Proposition 1] and thus general-
izes [1, Corollary 6.1]. Subsequently, we will consider the problem of minimizing the cost
functional C under additional constraints on strategies. Let us introduce the following
notation:

(8) a0 := 0 and an := e
−

R tn
tn−1

ρs ds for n = 1, . . . , N.

Theorem 3.1 (Unconstrained optimal strategy). There exists a unique optimal strategy
ξ∗ = (ξ∗0 , . . . , ξ

∗
N ) in the class of all admissible strategies. With the notation

λ0 :=
X0

2
1+a1

+
∑N
n=2

1−an

1+an

,

the initial market order is

ξ∗0 =
λ0

1 + a1
,

the intermediate market orders are given by

ξ∗n = λ0

(
1

1 + an
− an+1

1 + an+1

)
, n = 1, . . . , N − 1,

and the final market order is

ξ∗N =
λ0

1 + aN
.

In particular, the optimal strategy is deterministic. Moreover, it consists only of nontrivial
buy orders, i.e., ξ∗n > 0 for all n.

An important feature of our method is that it can easily be extended to incorporate
constraints on strategies. In fact, Theorem 3.1 is a special case of our more general results.
Its proof will be derived from these general results in Example 3.5.

Remark 3.2 (Time-homogeneous case). Let us consider the case of a constant resilience
speed ρ > 0 and an equidistant time grid tn = nT/N , n = 0, . . . , N , as considered by
Obizhaeva and Wang [13] and Section 6 of our earlier paper [1]. Then an = e−ρT/N =: a,
and the optimal strategy becomes

(9) ξ∗0 = ξ∗N =
X0

(N − 1)(1− a) + 2
and ξ∗1 = · · · = ξ∗N−1 = ξ∗0(1− a).
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This is equivalent to our formula given in [1, Corollary 6.1]. Thus, the proof of our
Theorem 3.1 provides a new approach to the optimal execution problem in [13]. While
it provides the same explicit solution as in our earlier paper [1], the proof given here is
significantly shorter and simpler in comparison. Note that the solution in [13] is only given
in terms of an entangled forward-backward recursion formula and that our setup differs
by allowing for general martingale dynamics of A0 and for a larger class of admissible
strategies.

To formulate our general results on optimal portfolio liquidation under constraints, let
us first introduce some notation. With 1 we will denote the (N + 1)-dimensional column
vector (1, . . . , 1)′, where the apostrophe indicates the transpose of a vector or a matrix.
An admissible strategy can be regarded as a measurable map ξ : Ω → RN+1 such that
the inner product with 1 satisfies 〈ξ,1〉 = X0. We thus introduce

(10) Ξ := {x ∈ RN+1|〈x,1〉 = X0}.

Constraints on strategies can now be modeled by considering only admissible strategies ξ
such that ξ : Ω → Ξ0, where Ξ0 is a closed convex subset of Ξ. We have the follow-
ing abstract result on constrained portfolio liquidation, which reduces the original cost
optimization problem to the minimization of the quadratic form corresponding to the
symmetric matrix

(11) M :=



1 a1 a1a2 · · · · · · a1a2 · · · aN
a1 1 a2 a2a3 · · · a2a3 · · · aN

a1a2 a2 1 a3 · · ·
...

...
. . . . . . . . .

...
a2 · · · aN aN−1 1 aN
a1a2 · · · aN · · · · · · aN−1aN aN 1


.

Theorem 3.3 (Reduction to a deterministic problem). Let Ξ0 be a closed convex subset
of Ξ. Then the following assertions hold.

(a) The matrix M is positive definite, and so the quadratic form

C(x) =
1
2
〈x,Mx〉, x ∈ Ξ0,

admits a unique minimizer x∗ = (x∗0, . . . , x
∗
N ) in Ξ0.

(b) If x∗n ≥ 0 for n = 0, . . . , N , then ξ∗n := x∗n is the unique optimal liquidation strategy
within the class of Ξ0-valued admissible strategies.

Given the preceding theorem, we focus now on the constrained minimization of the
quadratic form C(x) = 1

2 〈x,Mx〉. This can be done by applying the Kuhn-Tucker the-
orem. While this approach can, in principle, be carried out for rather general, nonlinear
constraints, it will often be sufficient to work with linear constraints in practical ap-
plications. Confinement to linear constraints also greatly simplifies the complexity of
the problem. Let us now formulate a corresponding result. We assume that the linear
constraints on strategies are defined via vectors u1, . . . ,uk,v1, . . . ,vl ∈ RN+1, where
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k, l ∈ N0, and we consider the following constraints set:

(12) Ξ0 = {x ∈ Ξ | 〈ui,x〉 = 0, i = 1, . . . , k, 〈vj ,x〉 ≥ 0, j = 1, . . . , l}.

For instance, the constraint x0 + xN ≥ X0/4 can be obtained as 〈v,x〉 ≥ 0 for v =
(1, 0, . . . , 0, 1)′ − 1

41.

Theorem 3.4 (Solution of the deterministic problem). Let x∗ be the unique minimizer of
C(x) = 1

2 〈x,Mx〉 on the set Ξ0 defined in (12), and let J denote the index set of active
constraints for x∗, that is, the set of all j ∈ {1, . . . , l} such that 〈vj ,x∗〉 = 0. Suppose
furthermore that {1}∪{u1, . . . ,uk}∪{vj | j ∈ J} is a set of linearly independent vectors
in RN+1. Then

(13) x∗ = λ0M
−11 +

k∑
i=1

λiM
−1ui +

∑
j∈J

µjM
−1vj

for multipliers λ0, λ1, . . . , λk ∈ R and µj ≥ 0, j ∈ J , which are uniquely determined by
the following system of linear equations:

X0 = λ0〈1,M−11〉+
k∑
i=1

λi〈1,M−1ui〉+
∑
j∈J

µj〈1,M−1vj〉

0 = λ0〈up,M−11〉+
k∑
i=1

λi〈up,M−1ui〉+
∑
j∈J

µj〈up,M−1vj〉(14)

0 = λ0〈vq,M−11〉+
k∑
i=1

λi〈vq,M−1ui〉+
∑
j∈J

µj〈vq,M−1vj〉,

where p runs through {1, . . . , k} and q through J .
Moreover, the inverse of M is explicitly given as the tridiagonal matrix

(15) M−1 =



1
1−a2

1

−a1
1−a2

1
0 · · · 0

−a1
1−a2

1

(
1

1−a2
1

+ a2
2

1−a2
2

)
−a2
1−a2

2
0 · · · 0

0
. . . . . . . . .

...
...

. . . −aN−1

1−a2
N−1

(
1

1−a2
N−1

+ a2
N

1−a2
N

)
−aN

1−a2
N

0 · · · 0 −aN

1−a2
N

1
1−a2

N


.

We now discuss examples and applications illustrating the use of Theorems 3.3 and 3.4.
The first application is actually the proof of Theorem 3.1.

Example 3.5 (Proof of Theorem 3.1). In the unconstrained case we have Ξ0 = Ξ, and
so (13) reduces to x∗ = λ0M

−11 and (14) to λ0 = X0/〈1,M−11〉. One easily shows that

(16) M−11 =



1
1+a1

1
1+a1

− a2
1+a2

...
1

1+aN−1
− aN

1+aN
1

1+aN

 ,
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and this gives

(17) λ0 =
X0

2
1+a1

+
∑N
n=2

1−an

1+an

.

From this we obtain the formula of the optimal strategy in Theorem 3.1. We still need
to show that all components of x∗ = λ0M

−11 = (x∗0, . . . , x
∗
N ) are strictly positive. This

is clear for x∗0 and x∗N since 0 < an < 1 for n = 1, . . . , N . For i = 1, . . . , N − 1 we have

x∗i = λ0 ·
(1− aiai+1)

(1 + ai)(1 + ai+1)
> 0.

This, together with an application of Theorem 3.3, concludes the proof of Theorem 3.1.

One can think of a number of applications and examples for constraints in portfolio
liquidation. For instance, in view of additional volatility risk it may be preferable to buy
faster and thus require 〈v,x∗〉 ≥ 0 for some vector v with decreasing components. In the
next section, we give a detailed case study dealing with a possible approach to portfolio
liquidation in stock markets with call auctions.

4. Liquidation strategies in markets with call auctions. At most stock exchanges,
morning and evening call auctions take place at the beginning and end of every trading
day. Continuous trading is halted during the auction period, while bidding continues. As
a result, the sell and buy sides of the order book may start overlapping. At the end of
this so-called order collection or calling phase, a price per share is determined so that
the overall volume of executed trades is maximized. Although the duration of an auction
is usually in the order of a few minutes, a significant amount of shares may be traded
within this period. For instance, Kehr et al. [12] investigate data from stocks in the DAX
index for the year 1996 and find that more than 20% of the daily traded Siemens shares
are exchanged during auctions.

In view of the huge trading volume during auctions, traders may want to make sure
that, in their liquidation strategies, a minimum percentage of shares is traded during
the auctions. To illustrate a possible approach, let us suppose that [0, T ] is one trading
day and that the first and last market orders occur during the respective opening and
closing auctions. Hence there is one trade per auction. To make sure that at least α×100
percent of shares are traded during these auctions, the trader may want to impose the
constraint ξ0 + ξN ≥ αX0 for some α ∈ ]0, 1[. The corresponding set Ξ0 is given as

Ξ0 = {x ∈ Ξ | 〈v,x〉 ≥ 0} for v = (1, 0, . . . , 0, 1)′ − α1.

Clearly, 1 and v are linearly independent, so the assumptions of Theorem 3.4 are auto-
matically satisfied. The minimizer x∗ is therefore given by

(18) x∗ = λ0M
−11 + µM−1v

for certain multipliers λ0 ∈ R and µ ≥ 0. The constraint 〈x,v〉 ≥ 0 is only nontrivial
if αX0 is larger than the sum of the first and last market orders of the unconstrained
optimal strategy from Theorem 3.1. In this case, we must have 〈x∗,v〉 = 0 and (14)
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becomes

X0 = λ0〈1,M−11〉+ µ〈1,M−1v〉,
0 = λ0〈v,M−11〉+ µ〈v,M−1v〉.

The symmetry of M−1 implies 〈1,M−1v〉 = 〈v,M−11〉, and so the values for λ0 and µ

are obtained as

λ0 = C〈v,M−1v〉 and µ = −C〈v,M−11〉

for

C :=
X0

〈1,M−11〉〈v,M−1v〉 − 〈v,M−11〉2
.

Note that 0 < C <∞ since M is positive definite. We see in particular that the condition
µ ≥ 0 is equivalent to 〈v,M−11〉 ≤ 0. By Example 3.5, M−11 is proportional to the
optimal strategy ξ∗ in Theorem 3.1. Therefore µ ≥ 0 holds if and only if ξ∗ does not
already satisfy ξ∗0 + ξ∗N > αX0.

Using the shorthand notation w := (1, 0 . . . , 0, 1)′, we thus get

x∗ = C(〈v,M−1w〉M−11− 〈v,M−11〉M−1w).

To continue, we make the simplifying assumption that resilience during auctions is such
that a1 = aN = a, while for regular trading a2 = · · · = aN−1 = b. We then have

M−1w =
1

1− a2
· (1,−a, 0, . . . , 0,−a, 1)′,

and hence, by using (16),

〈w,M−1w〉 =
2

1− a2
,

〈1,M−1w〉 = 〈w,M−11〉 =
2

1 + a
,

〈1,M−11〉 =
3− a
1 + a

+ (N − 2)
1− b
1 + b

,

〈v,M−1w〉 = 2 · 1− α(1− a)
1− a2

,

〈v,M−11〉 =
2− α(3− a)

1 + a
− α(N − 2)

1− b
1 + b

.

Now we can compute the optimal strategy. It is clear a priori that x∗0 + x∗N = αX0.
Since moreover x∗0 = x∗N , we have

x∗0 = x∗N =
αX0

2
.

On the other hand, the formulas above give us

x∗0 = x∗N =
αC

1− a2

(
1 + (N − 2)

1− b
1 + b

)
,

and this yields the following simple formula for C:

C = X0 ·
1− a2

2
(
1 + (N − 2) 1−b

1+b

) .
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Consequently,

x∗2 = · · · = x∗N−2 = X0 ·
(1− α(1− a))(1− b)
N − 1− (N − 3)b

,

which is positive for any choice of α. Finally,

x∗1 = x∗N−1 = X0 ·
1− α

(
1
2a(1− b)(N − 3) + 1

)
N − 1− (N − 3)b

.

Hence, if

α

(
1
2
a(1− b)(N − 3) + 1

)
≤ 1,

then x∗ defines the optimal strategy for portfolio liquidation in the presence of call
auctions. An illustration is given in Figure 3.

Fig. 3. Optimal strategies (x∗0, ..., x
∗
N ) in a market with call auctions: the large investor wants to

buy X0 = 100, 000 shares of which at least 30% should be placed during call auctions (α = 0.3).
The resilience coefficients are a = e−5 and b = e−1 in the first graph and a = e−1 and b = e−5

in the second graph.

5. Proof of Theorem 3.3. We have to reduce the minimization of the cost functional

C(ξ) = E
[ N∑
n=0

πtn(ξn)
]

with respect to all admissible strategies ξ to the minimization of the quadratic form
C(x) := 1

2 〈x,Mx〉, x ∈ RN+1.
To this end, we first introduce simplified model dynamics by collapsing the bid-ask

spread into a single value. More precisely, for any admissible strategy ξ, we define the
process

(19) Dt := DA
t +DB

t .

We now introduce the simplified price of ξn at time tn by

(20) πtn(ξn) := A0
tnξn +

q

2
(D2

tn+ −D2
tn),

regardless of the sign of ξn. We have the following simple lemma.

Lemma 5.1. For any admissible strategy ξ,

(21) πtn(ξn) ≤ πtn(ξn) with equality if ξk ≥ 0 for all k ≤ n.
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Proof. Since Dtn+ −Dtn = ξn/q, we can rewrite πtn(ξn) as

(22) πtn(ξn) =
q

2
((A0

tn +Dtn+)2 − (A0
tn +Dtn)2).

If ξn ≥ 0 then Dtn+ = DA
tn+ +DB

tn+ = DA
tn+ +DB

tn , and hence

πtn(ξn) =
q

2
((A0

tn +DA
tn+ +DB

tn)2 − (A0
tn +DA

tn +DB
tn)2)

≤ q

2
((A0

tn +DA
tn+)2 − (A0

tn +DA
tn)2)

= πtn(ξn),

due to the fact that DB
tn ≤ 0.

If ξn ≤ 0 then (3) and DB
tn+ −DB

tn ≤ 0 imply that

πtn(ξn) =
q

2
((Atn +DB

tn+)2 − (Atn +DB
tn)2)

≤ q

2
((B0

tn +DB
tn+)2 − (B0

tn +DB
tn)2) = πtn(ξn).

We now define a simplified price functional as

C(ξ) := E
[ N∑
n=0

πtn(ξn)
]
.

We will show that the simplified price functional C has a unique minimizer ξ∗, which, if
all its trades are nonnegative, must be the optimal strategy according to Lemma 5.1. To
this end, we further reduce the minimization of C to the minimization of a functional C
defined on deterministic strategies. Let us use the notation

(23) Xt := X0 −
∑
tk<t

ξk for t ≤ T and XtN+1 := 0.

The accumulated simplified price of an admissible strategy ξ is
N∑
n=0

πtn(ξn) =
N∑
n=0

A0
tnξn +

q

2

N∑
n=0

(D2
tn+ −D2

tn).

Integrating by parts yields

(24)
N∑
n=0

A0
tnξn = −

N∑
n=0

A0
tn(Xtn+1 −Xtn) = X0A0 +

N∑
n=1

Xtn(A0
tn −A

0
tn−1

).

Since ξ is admissible, Xt is a bounded predictable process. Hence, due to the martin-
gale property of the unaffected best ask process A0, the expectation of (24) is hence
equal to X0A0. Next, observe that the simplified extra spread process D evolves deter-
ministically once the values ξ0, ξ1(ω), . . . , ξN (ω) are given. Consequently, there exists a
deterministic function C : RN+1 → R such that

(25)
q

2

N∑
n=0

(D2
tn+ −D2

tn) = C(ξ0, . . . , ξN ).

It follows that
C(ξ) = A0X0 + E[C(ξ0, . . . , ξN ) ].
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We will now turn to further simplifying the function C. For any deterministic strat-
egy (x0, . . . , xN ) ∈ Ξ, the extra spread is given by Dtn+ = Dtn + xn/q and

Dt = γ
∑
tn<t

xn + κ
∑
tn<t

e−
R t

tn
ρs dsxn.

Hence,

C(x0, . . . , xN ) =
q

2

N∑
n=0

(D2
tn+ −D2

tn) =
q

2

N∑
n=0

((Dtn + xn/q)2 −D2
tn)

=
N∑
n=0

xnDtn +
1
2q

N∑
n=0

x2
n

= γ

N∑
n=0

n−1∑
k=0

xnxk + κ

N∑
n=0

n−1∑
k=0

xne
−

R tn
tk

ρs dsxk +
γ + κ

2

N∑
n=0

x2
n

=
γ

2
X2

0 + κ

N∑
n=0

n−1∑
k=0

xne
−

R tn
tk

ρs dsxk +
κ

2

N∑
n=0

x2
n.

Therefore it is enough to minimize the function

(26) C(x0, . . . , xN ) :=
N∑
n=0

n−1∑
k=0

xne
−

R tn
tk

ρs dsxk +
1
2

N∑
n=0

x2
n

over Ξ0. Moreover, the problem is in fact independent of γ and κ as long as κ > 0. Let
us define a matrix M by

Mij = e−|
R tj

ti
ρs ds| for i, j ∈ {0, . . . , N}.

Then

C(x0, . . . , xN ) = C(x) =
1
2
〈x,Mx〉 for x = (x0, . . . , xN ) ∈ RN+1.

The matrix M is symmetric and C is a quadratic form. By recalling the notation (8), we
obtain the representation (15) for M . We will show in the next section that M is positive
definite. From this, existence and uniqueness of a minimizer x∗ of C on Ξ0 follow. By the
preceding reduction arguments, we must then have ξ∗ = x∗, provided that all coordinates
of x∗ are nonnegative.

6. Proof of Theorem 3.4. Let e0, . . . , eN denote the canonical basis of RN+1 and let
us define a set of vectors y0, . . . ,yN ∈ RN+1 by the following recursive formula:

y0 = e0,

yn = yn−1an + en
√

1− a2
n, n = 1, . . . , N.

Then M is equal to the corresponding Gram matrix, that is, Mij = 〈yi,yj〉 for all
pairs i, j. Indeed, induction first shows that 〈yi,yi〉 = 1 for all i, and then one readily
obtains that 〈yi,yj〉 = 〈yi,yi〉ai+1 · · · aj = Mij for i < j. It is also not difficult to show



CONSTRAINED PORTFOLIO LIQUIDATION 23

the following explicit formula for yn

(27) yn =
n∑
j=0

[( n∏
i=j+1

ai

)√
1− a2

j

]
ej ,

where we use the conventions a0 := 0 and
∏
i∈∅(. . . ) = 1. Let us denote by Y the upper

triangular matrix with columns y0,y1, . . . ,yN . Then

M = Y ′Y.

Since tn− tn−1 > 0 and ρt > 0, we have 0 < an < 1 for n = 1, . . . , N . Hence, the diagonal
coefficients of the upper triangular matrix Y are all strictly positive, and it follows that Y
is invertible. Consequently,

(28) C(x0, . . . , xN ) =
1
2
x′Mx =

1
2
‖Y x‖2 > 0 for all nonzero x = (x0, . . . , xN )′.

In particular, M is positive definite as claimed in Theorem 3.3.
Note that the gradient of C at x is given by Mx. Hence, under the assumptions of

the theorem, the Kuhn-Tucker theorem, e.g., in the form given in Borwein and Lewis [8,
Theorem 7.2.9], states the existence of multipliers λ0λ1, . . . , λk ∈ R and µj ≥ 0, j ∈ J ,
such that

(29) Mx∗ = λ01 +
k∑
i=1

λiui +
∑
j∈J

µjvj .

Multiplication with M−1 gives (13). Since {1} ∪ {u1, . . . ,uk} ∪ {vj | j ∈ J} is a set
of linearly independent vectors in RN+1, it is clear that the multipliers are uniquely
determined by (14).

Let us now prove the formula for M−1. By (27), we have

Y ′ =



1 0 · · · · · · 0
a1

√
1− a2

1 0 · · · 0
...

. . . . . . . . .
...

a1 · · · aN−1 · · ·
√

1− a2
N−1 0

a1 · · · aN · · · aN

√
1− a2

N−1

√
1− a2

N


.

To invert the matrix Y ′, we write the equation Y ′z = x for z = (z0, . . . , zN )′ and
x = (x0, . . . , xN )′ in the following way:

z0 = x0,

a1z0 +
√

1− a2
1z1 = x1,

a1a2z0 + a2

√
1− a2

1z1 +
√

1− a2
2z2 = x2,

. . .

(a1 · · · aN )z0 + (a2 · · · aN )
√

1− a2
1z1 + · · ·+

√
1− a2

NzN = xN .
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This can be simplified as follows:

z0 = x0,

a1x0 +
√

1− a2
1z1 = x1,

a2x1 +
√

1− a2
2z2 = x2,

. . .

aNxN−1 +
√

1− a2
NzN = xN .

We therefore get

(Y ′)−1 =



1 0 · · · · · · 0
−a1√
1−a2

1

1√
1−a2

1

0 · · · 0

0
. . . . . . 0 0

...
. . . −aN−1√

1−a2
N−1

1√
1−a2

N−1
0

0 · · · 0 −aN√
1−a2

N

1√
1−a2

N


.

It follows that M−1 = Y −1(Y ′)−1 is given by the following tridiagonal matrix:

M−1 =



1
1−a2

1

−a1
1−a2

1
0 · · · 0

−a1
1−a2

1

(
1

1−a2
1

+ a2
2

1−a2
2

)
−a2
1−a2

2
0 · · · 0

0
. . . . . . . . .

...
...

. . . −aN−1

1−a2
N−1

(
1

1−a2
N−1

+ a2
N

1−a2
N

)
−aN

1−a2
N

0 · · · 0 −aN

1−a2
N

1
1−a2

N


.

This concludes the proof of Theorem 3.4.
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