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Abstract. We consider a stochastic overlapping generations model for a continuum of individ-

uals with finite lives in presence of a financial market. In this paper, an agent’s heterogeneity

is given by the dates of birth of the household members, in contrast to standard models, in

which each agent has his own aversion coefficient on his utility function. By means of martingale

arguments, we compute the agent’s optimal consumption and portfolio. A characterization of

interest rate trajectories is given by mixed-type functional differential equations and the stability

of these trajectories is studied.

1. Introduction. We consider an OverLapping Generations (OLG) framework for a
continuum of individuals in the presence of a financial market. In non-OLG models,
as in [13] for example, an agent’s heterogeneity appears through the different relative
risk aversion coefficients, the individuals commonly live on a finite time interval and
the economy contains a finite number of agents. On the contrary, in OLG models, an
agent’s heterogeneity appears through the demographic structure, the individuals are
characterized by their birth date and a continuum of agents is considered. Furthermore,
the economy lives on an infinite time horizon and the number of agents is unknown.

The main goal of this paper is the study of interest-rates and prices behaviors on
different markets. Our approach is a stochastic extension of the general equilibrium for
deterministic OLG models developed in particular by Polemarchakis and Demichelis [19]
and by d’Albis and Augeraud-Véron [6]. In these cases, the intertemporal equilibrium
is the solution of a mixed type functional differential equation (MFDE). We show that
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the stochastic extension preserves this MFDE. Some results on mixed type and retarded
functional differential equations are presented in the appendix section.

In Section 2, we compute the optimal consumption/investment strategy of a house-
hold. This type of problem has been widely studied in the last few decades. In two papers,
Merton [17, 18] introduced a model with constant coefficients and solved the associated
Hamilton-Jacobi-Bellman equation. Bismut [3] obtained formulas for optimal consump-
tion using his stochastic duality theory (Bismut [2]). We also refer to Lehoczky, Sethi
and Shreve [15], Karatzas, Lehoczky and Shreve [10] and Cox and Huang [5] for similar
results.

In Section 3, we present our market equations and give conditions for existence of
steady states. These conditions recover in particular the ones of d’Albis and Augeraud-
Véron for the deterministic case. The multiple steady states we obtain are possible under
conditions relying on endowment distribution similar to those proposed by Kim [14]. In
the standard stochastic equilibrium model, as in [9], [11] and [12], the endowment of
agents is an exogeneous process and individuals wish to hedge the variability in their
endowment processes by trading with one another. This justifies the introduction of a
financial market. Applying this setting to our stochastic overlapping generations model
leads to very complex equations. Consequently, deterministic wages are considered instead
of stochastic endowment. For this reason, this model can’t be seen as an equilibrium
model.

Section 4 is dedicated to the local dynamics of the interest rates around the steady-
states we have obtained. This stability analysis gives us the behaviors of the trajecto-
ries and uses the theory of MFDE, in particular the recent results of Mallet-Paret and
Verduyn-Lunel [16].

2. The model. We consider a standard complete financial market with two assets. One
of them is a non risky asset with price per unit B(t) governed by the equation:

dB(t) = r(t)B(t)dt, B(0) = 1,

where r(t) is the interest rate. The second asset is a risky one with price process (S(t),
t ≥ 0) defined by the following stochastic differential equation:

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), S(0) = x,

where W is a standard, one-dimensional Brownian motion on R, defined on a probability
space (Ω,F , P ) equipped with the filtration (Ft) generated by the Brownian motion W

and augmented. Throughout the paper, we assume that r(·), µ(·) and σ(·) are determin-
istic functions. The economy is a pure exchange one with a single perishable good and
we assume that the quantity produced in the economy is normalized to 1.

Individual setting. We consider an agent born at time s ∈ R+ and living for a time
interval of a unit length. During his lifetime, he receives a wage w(s, t) defined by

w(s, t) =
{
w if t ∈ [s+ α, s+ β],
0 otherwise,
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with 0 ≤ α < β ≤ 1 and w a constant. At each time t ∈ [s, s + 1], he chooses the
proportion of wealth π(s, t) he invests in the risky asset and his consumption c(s, t).

Definition 2.1. The consumption process of an individual born at time s is an {Ft}-
progressively mesurable, nonnegative process c(s, .), satisfying∫ s+1

s

c(s, t)dt <∞, ∀s ∈ R+,

and ∫ t

t−1

c(s, t)ds <∞, ∀t ∈ R+,

almost surely.

Denoting by X(s, t) his wealth at time t, his budget constraint reads:

dX(s, t) = [(r(t) + π(s, t)(µ(t)− r(t))X(s, t)− c(s, t) + w(s, t)]dt

+σ(t)π(s, t)X(s, t)dW (t), (2.1)

X(s, s) = 0.

Utility functions. We denote by R∗+ the set {x ∈ R;x > 0}. Denote by U(s) the intertem-
poral utility of an individual born at time s ≥ 0 and given by:

U(s) = E
[∫ s+1

s

e−ρ(t−s)u(c(s, t))dt
∣∣∣Fs] (2.2)

where u(·) is a utility function and ρ ≥ 0 is the discount rate.

Definition 2.2. A utility function is a concave, nondecreasing, upper semicontinuous
function u : R∗+ → R satisfying:

• the half-line dom(u) , {x ∈ R∗+ ; u(x) > −∞} is a nonempty subset of [0,∞);
• u′ is continuous, positive, and strictly decreasing on the interior of dom(u), and

u′(∞) , lim
x→∞

u′(x) = 0;

• the Inada condition holds:

u′(0) , lim
x→0

u′(x) =∞.

The strictly decreasing, continuous function u′ : (0,∞) onto→ (0, u′(0)) has a strictly de-
creasing, continuous inverse I : (0, u′(0)) onto→ (0,∞). We set I(y) = 0 for U ′(0) ≤ y ≤ ∞.

Definition 2.3. Let u be a utility function. The convex dual of u defined on R∗+ is the
function

ũ(y) , sup
x≥0
{u(x)− xy}.

The convex dual ũ is in fact the Legendre-Fenchel transform of u except for the minus
sign. By Lemma 4.3, Chapter 3 of [13] we have:

ũ(y) = u(I(y))− yI(y) if y > 0. (2.3)
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The optimization problem. The individual program is to maximize (2.2) subject to (2.1).
In the sequel, we will consider the particular case of u(c(s, t)) = c(s, t)1−1/γ/(1− 1/γ)
where γ > 0 stands for the elasticity of intertemporal substitution. Using the martingale
approach, it is well-known that we can transform our constraint into the following one:

E
[∫ s+1

s

H(u)
H(s)

c(s, u)du
∣∣∣∣Fs] = E

[∫ s+1

s

H(u)
H(s)

w(s, u)du
∣∣∣∣Fs]

where H(t) = exp{−
∫ t

0
r(τ) + 1

2θ(τ)2dτ −
∫ t

0
θ(τ)dW (τ)} and the Sharpe ratio is θ(t) =

(µ(t)− r(t))/σ(t), see Karatzas and Shreve [13], Chapter 3, for more details.

Proposition 2.4. The optimal consumption and portfolio process pair (c∗, π∗) is given
by

c∗(s, t) = eρ(t−s)
(
H(t)
H(s)

)−γ ∫ s+1

s
B(s)
B(u)w(s, u)du∫ s+1

s

(
B(s)
B(u)

)1−γ
e−

γ
2 (1−γ)

R u
s
θ(τ)2dτ+γρ(u−s)du

,

π∗(s, t) =
Ψ(s, t)H(s)

σ(t)X(s, t)H(t)
+
θ(t)
σ(t)

,

where Ψ(s, t) is the integrand in the stochastic integral representation M(s, t) =∫ t
s

Ψ(s, u)dW (u) of the martingale

M(s, t) , E
[∫ s+1

s

H(u)
H(s)

(c(s, u)− w(s, u))du
∣∣∣∣Ft] .

Proof. The proof can be found in [13], Chapter 3, Section 3.6 and 3.7.

3. Prices and interest rates behaviors. In this section, we give a characterization
of the behaviors of prices and interest rate considering equalities on different markets.
These equalities can be seen as simplifications of equilibrium equations in the sense that
we represent the demand/supply equalities in expectation.

Market equations. First of all, we introduce the equalities on different markets. This
definition is adapted from Definition 5.1, Chapter 4 of [13].

Definition 3.1. A vector (r∗(t), θ∗(t)) is a solution of the market equations if:

1. The pair (c∗, π∗) is optimal for each individual.
2. The markets clear:

E
[∫ t

t−1

c∗(s, t)ds
]

=
∫ t

t−1

w(s, t)ds, (3.1)

E
[∫ t

t−1

π∗(s, t)X(s, t)ds
]

= 0, (3.2)∫ t

t−1

w(s, t)ds = 1. (3.3)

The interpretation for the market equations is the following: At all times the aggregate
wage is consumed as it enters the economy and the asset is in zero net supply. The first
condition is due to the perishable good, the second one reflects the fact that for every
buyer in the financial market, there must be a seller.
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This definition can be seen as a restriction for our model. However, this permits us to
obtain explicit solutions for prices, otherwise this is not the case. These equations give
the result below.

Theorem 3.2. The vector (r∗(t), θ∗(t)) is a solution of market equations if and only if,
for all t ∈ R+:∫ t

t−1

e−γρ(t−s)
(
B(s)
B(t)

)−γ e
γ
2 (1+γ)

R t
s
θ∗(τ)2dτ

∫ s+1

s
B(s)
B(u)w(s, u)du∫ s+1

s

(
B(s)
B(u)

)1−γ
e−

γ
2 (1−γ)

R u
s
θ∗(τ)2dτ−γρ(u−s)du

ds = 1 (3.4)

and

θ(t)
σ(t)

[∫ t

t−1

∫ s+1

t

B(t)
B(u)

w(s, u)duds− (1− γ)
∫ t

t−1

(
B(s)
B(t)

)−γ
e
γ
2 (1+γ)

R t
s
θ∗(τ)2dτ

×
∫ s+1

s

B(s)
B(u)

w(s, u)du

∫ s+1

t

(
B(t)
B(u)

)1−γ
e−

γ
2 (1−γ)

R u
t
θ∗(τ)2dτ−γρ(u−s)du∫ s+1

s

(
B(s)
B(u)

)1−γ
e−

γ
2 (1−γ)

R u
s
θ∗(τ)2dτ−γρ(u−s)du

ds

]
= 0 (3.5)

where B(t) = exp{
∫ t

0
r∗(s)ds}. Moreover, equation (3.3) gives w = 1/(β − α).

Proof. The first part of this result is obtained by computing the expectations and using
the martingale property of exp{

∫ t
s
θ∗(τ)dW (τ)− 1

2

∫ t
s
θ∗(τ)2dτ}. For the second part we

use the definition of w(s, t) which is w(s, t) = w1[s+α,s+β](t) with 0 ≤ α < β ≤ 0.

Steady states. The goal is now to determine the conditions of existence and multiplicity
of steady states for our market equations.

Definition 3.3. A time-independent vector (r(t), θ(t)) = (r∗, θ∗) satisfying equations
(3.4) and (3.5) is called a steady state.

The first result is the following:

Lemma 3.4. For all steady state vectors (r∗, θ∗) we have∫ 1

0
eγr

∗τ+ρτ+ γ
2 (1+γ)θ∗2τdτ

∫ 1

0
e−r

∗τ−θ∗κτdτ∫ 1

0
e−(1−γ)r∗τ− γ2 (1−γ)θ∗2τ+ρτdτ

=
∫ 1

0

eντdτ (3.6)

and at least one of these equations are satisfied:

• θ∗ = 0,

•
∫ β

α

er
∗u

∫ β

u

e−r
∗τdτds+

∫ α

0

er
∗u

∫ β

α

e−r
∗τdτds− (1− γ)

∫ 1

0

(
er

∗u+γθ∗2u

∫ β

α

e−r
∗τdτ

×
∫ 1

u
e−(1−γ)r∗τ− γ2 (1−γ)θ∗2τ−γρτdτ∫ 1

0
e−(1−γ)r∗τ− γ2 (1−γ)θ∗2τ−γρτdτ

)
ds = 0.

Remarks 3.5. 1. We obtain steady states which are the same as the solutions which can
be found in non-OLG equilibrium models.

2. θ∗ = 0 is the unique solution if γ ≥ 1.
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In the sequel we focus on the case θ∗ = 0 and study solutions to equation (3.6). To
simplify the notation, we drop the star indices and define

Φ(r;α, β, γ, ρ) =

∫ 1

0
eγrs+γρsds

∫ β
α
e−rsds

(β − α)
∫ 1

0
e−(1−γ)rs+γρsds

which is obtained by replacing θ by 0 in equation (3.6). When there is no ambiguity for
the parameter values, we denote Φ(r;α, β, γρ) = Φ(r).

Property 3.6. A steady state is an r that satisfies Φ(r) = 1 if r 6= 0 and Φ′(r) = 0 if
r = 0.

Proof. For r 6= 0, the property is an immediate implication of lemma 3.4. For r = 0, we
just observe that Φ(0) = 1 and use l’Hôpital’s Rule.

To obtain r = 0 as a solution, we have to make some restrictions on the parameters:

Proposition 3.7. r = 0 is a steady state if and only if{
α+ β = 2

( eγρ(γρ−1)+1
γρ(eγρ−1)

)
if ρ 6= 0,

α+ β = 1 if ρ = 0.

Proof. The first derivative of function Φ yields:

Φ′(r) = Φ(r)

[
γ

∫ 1

0
seγrs+γρsds∫ 1

0
eγρsds

−
∫ β
α
se−rsds∫ β

α
e−rsds

+ (1− γ)

∫ 1

0
se−(1−γ)rs+γρsds∫ 1

0
e−(1−γ)rs+γρsds

]
.

Replacing r = 0 in Φ′(r), we conclude directly.

The two following propositions present the existence and multiplicity of the steady
states for equation (3.6).

Proposition 3.8. There exists (α, β, ρ, γ) such that there is no steady state.

Proof. We show that there is no r such that Φ(r) = 1 if α = 0 and β ∈ (0, 1 − γ) with
ρ = 0. Define Ψ(β) = Φ(r; 0, β, γ, 0). Then

Ψ(β) =

∫ 1

0
eγrsds

∫ β
0
e−rsds

β
∫ 1

0
e−(1−γ)rsds

and

Ψ′(β) =
[

r

erβ − 1
− 1
β

]
Ψ(β).

Consequently, if r > 0 we verify that Ψ′(β) < 0 and limβ→1−γ Ψ(β) > 1. Conversely, if
r < 0, Ψ′(β) > 0 and limβ→0 Ψ(β) > 1. This concludes the proof. Notice that it can also
be shown that there is no solution r such that Φ(r) = 1 if β = 1 and α ∈ [γ, 1).

Proposition 3.9. There exists (α, β, ρ, γ) such that there are multiple steady states.

Proof. Suppose β = 1− α and ρ = 0. With Proposition 3.7, r = 0 is a steady state. We
show that there are at least two other solutions such that Φ(r) = 1 if γ ∈ (α, 2α(1−α)).
We have

lim
r→−∞

Φ′(r)
Φ(r)

= γ − α and lim
r→+∞

Φ′(r)
Φ(r)

= α− γ.



STOCHASTIC OVERLAPPING GENERATION MODEL 33

Consequently, for γ > α

lim
r→±∞

Φ(r) = +∞.

Moreover, Φ′(0) = 0, and since

Φ′′(0) =
1
6

(γ − 2α(1− α)),

then Φ′′(0) < 0, for γ < 2α(1− α).

4. Stability analysis. In this section we are interested in the local dynamics around
the steady state r∗ = 0. Let us define x(t) such that r(t) = r∗ + εx(t). We take ρ = 0,
then from Proposition 3.7, β = 1− α.

Lemma 4.1. The function x(·) satisfies the following MFDE:∫ t

t−1

[
(1− 2α)

(
γ

∫ t

s

x(u)du+ (1− γ)
∫ s+1

s

∫ u

s

x(τ)dτdu
)

−
∫ s+1−α

s+α

∫ u

s

x(τ)dτdu
]
ds = 0. (4.1)

Proof. The result is obtained by replacing r(t) by r∗ + εx(t) in equation (4.1) and by
taking a Taylor expansion in the neighbourhood of ε = 0.

In the sequel, to simplify, we take α = 0. In this case, the new equation is:∫ t

t−1

[∫ t

s

x(u)du−
∫ s+1

s

∫ u

s

x(τ)dτdu
]
ds = 0. (4.2)

We now apply the results presented in Section 2 for our equation (4.2).

Stability of equation (4.1). The characteristic function associated to equation (4.2) is:

∆(λ) =
−λ2 + eλ − 2 + e−λ

λ3
·

First, note that the roots of this function are symmetric with respect to both coordinate
axes. Defining ΛU = {λ ∈ C; ∆(λ) = 0 and Re(λ) > 0} and ΛS = {λ ∈ C; ∆(λ) = 0 and
Re(λ) < 0}, the following lemma holds:

Lemma 4.2. If λ ∈ ΛU ,−λ ∈ ΛS.

We use the factorization result of Mallet-Paret and Verduyn Lunel [16] and remark
that Proposition 2.1 can be applied. So we obtain this fundamental theorem:

Theorem 4.3. Let x(t) with t ∈ [−1, 0]. There exists a unique, bounded and continuous
trajectory x(t), t ∈ R+, such that

d2x(t)
dt2

= x(t+ 1)− 2x(t) + x(t− 1). (4.3)

Proof. This result is obtained by differentiating three times the first equation and using
the exponential dichotomies result of Mallet-Paret and Verduyn-Lunel [16].



34 E. AUGERAUD-VÉRON AND D. DAVID

Comments. According to our stability analysis, the mixed-type functional differential
equation theory tells us that there are oscillations around the steady states for the tra-
jectory x(t). Our steady state was for θ∗ = 0, so we have r∗ = µ∗. Denoting µ(t) as
µ∗+ εy(t), the dynamics of y(t) are associated to the ones of x(t) and we obtain the same
oscillations for y(t) as for x(t). These oscillations decrease in magnitude and eventually
disappear.

5. Conclusion. We considered a stochastic overlapping generations model in which the
shock in the economy comes only from the risky asset on the financial market. In this
approach, we obtained steady states which were very similar to the equilibrium solutions
for non-OLG models. We added asymptotic results for an exchange economy without
any terminal time and for heterogeneous agents. In this paper, we focused on the steady
state r∗ = 0 and θ∗ = 0. The dynamics of r(·) were given by a functional differential
equation of mixed type, due to the anticipation behavior in the individual program and to
the demographic modelling. The study of these dynamics provided replacement echoes,
which are usual in models with delays as in Boucekkine, Germain and Licandro [4].

6. Appendix. In this appendix section, we present the theory of MFDE we use in
Section 5. Results for advanced and retarded equations come from Mallet-Paret and
Verduyn Lunel [16].

Let us consider the following linear functional differential equation of mixed type:

ẋ(t) =
∫ 1

−1

x(t+ θ)dη(θ) (6.1)

where dη(θ) is a finite Lebesgue-Stieltjes measure on [−1, 1].
Replacing x(t) = eλt, λ ∈ C in (6.1), we can define the characteristic function as:

∆(λ) = λ−
∫ 1

−1

eλθdη(θ). (6.2)

In their paper, Mallet-Paret and Verduyn Lunel obtain a factorization of the characteristic
function (6.2):

Ψ(λ)∆(λ) = ∆−(λ)∆+(λ) (6.3)

where ∆− and ∆+ are the characteristic functions of certain retarded and advanced
equations, namely

∆−(λ) = λ−
∫ 0

−1

eλθdη−(θ) and ∆+(λ) = λ−
∫ 1

0

eλθdη+(θ)

and where Ψ is a polynomial of degree 1 which is needed as a correction factor to balance
the growth rates on both sides of equation (6.3). By means of this result, we can obtain
a solution of (6.1) by solving the retarded functional differential equation (RFDE):

ẋ(t) =
∫ 0

−1

x(t+ θ)dη−(θ). (6.4)

The theory of RFDE gives the following result:
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Proposition 6.1. If ∆−(λ) has no zeros in the right half plane {λ|Re(λ) ≥ 0}, all
solutions of the RFDE (6.4) converge to zero exponentially as t→ +∞.

For more information on RFDE, we refer the reader to Bellman and Cooke [1], Hale
[7] and Hale and Verduyn Lunel [8].
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Zürich). We also thank the European Social Funds (ESF) and the Advanced Mathematical
Methods for Finance (AMaMeF) programme of the European Science Foundation (ESF)
for financial support during this work.

References

[1] R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New

York, 1963.

[2] J. M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal.

Appl. 44 (1973), 384–404.

[3] J. M. Bismut, Growth and optimal intertemporal allocations of risks, J. Economic Theory,

10 (1975), 239–287.

[4] R. Boucekkine, M. Germain, and O. Licandro, Replacement echoes in the vintage capital

growth model, J. Economic Theory 74 (1997), 333–348.

[5] J. C. Cox and C. F. Huang, Optimal consumption and portfolio policies when asset prices

follow a diffusion process, J. Economic Theory 49 (1989), 33–83.
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