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Abstract. We study optimal stopping problems for some functionals of Brownian motion in

the case when the decision whether or not to stop before (or at) time t is allowed to be based

on the δ-advanced information Ft+δ, where Fs is the σ-algebra generated by Brownian motion

up to time s, s ≥ −δ, δ > 0 being a fixed constant. Our approach involves the forward integral

and the Malliavin calculus for Brownian motion.

1. Introduction. The purpose of this paper is to study optimal stopping problems
where the stopping time is allowed to depend on a larger filtration than the filtration of
the underlying process. For example, the person who decides when to stop the system can
base her decision on some future event, in addition to the history so far of the system.

More precisely, fix δ > 0 and let Bt = Bt(ω), t ∈ [−δ,∞), ω ∈ Ω be a standard
Brownian motion on a probability space (Ω,F , P ), with B−δ = 0. Define, for t > −δ,
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(1.1) Ft = σ(Bs,−δ ≤ s ≤ t),

i.e. Ft is the σ-algebra generated by the random variables Bs(·), −δ ≤ s ≤ t. Let Yt be
an Itô diffusion in Rk given by

(1.2)

{
dYt = b(Yt)dt+ σ(Yt)dBt, t ≥ −δ,
Y−δ = y ∈ Rk

where b : Rk → R and σ : Rk → R are given functions such that (1.2) has a unique strong
solution. Let H = {Ht}t≥−δ be another filtration such that

(1.3) Ft ⊂ Ht for all t ≥ −δ,

We say that a function β : Ω→ [−δ,∞) is a stopping time with respect to {Ht} if

(1.4) {ω;β(ω) ≤ t} ∈ Ht for all t ≥ −δ.

Let B0 denote a given subset of the set B of all H-stopping times β. Let f : Rk → R,
g : Rk → R be given functions such that

(1.5) Ey
[∫ ∞
−δ
|f(Y (t))|dt+ |g(Y (β))|

]
<∞ for all β ∈ B0,

where Ey denotes expectation with respect to P when Y (0) = y. In this paper we study
special cases of the following performance functional:

(1.6) J(β) = Ey
[∫ β

−δ
f(Y (t))dt+ g(Y (β))

]
, y ∈ Rk, β ∈ B0

(where we put g(Y (β)) = 0 if β =∞).
The problem we are studying in this paper is of the following form:

Problem. Find β∗ ∈ B0 such that

(1.7) sup
β∈B0

J(β) = J(β∗).

We call this an anticipative optimal stopping problem, because the decision whether or
not to stop at or before time t might depend on future events. Such a problem is motivated
by examples of insider trading in finance. See e.g. [10], [1], [3] and the references therein.

Remark 1.1. Since an Ht-stopping time β is not necessarily an Ft-stopping time (we
may have Ft 6= Ht), we need to explain what we mean by Yβ(ω)(ω), ω ∈ Ω, i.e. the
evaluation of Yt at t = β. In view of the use of forward integrals in the study of insider
trading in finance (see e.g. [1]), we choose to use the definition

(1.8) Yβ := y +
∫ β

−δ
b(Yt)dt+

∫ ∞
−δ

χ[0,β](t)σ(Yt)d−Bt,

where d−Bt indicates that the integral is interpreted as a forward integral.

Definition 1.2 ([11]). The forward integral of an F-measurable process φ(t, ω) with
respect to B is defined by

(1.9)
∫ T

−δ
φ(t)d−B(t) = lim

ε→0

∫ T

−δ
φ(t)

B(t+ ε)−B(t)
ε

dt

provided that the limit (in probability) exists.
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The reason for the usefulness of the forward integral in applied anticipating stochastic
calculus is the following result:

Lemma 1.3 ([1]). Suppose φ is forward integrable and càglàd (left continuous with right
limits). Then

(1.10)
∫ T

−δ
φ(t)d−B(t) = lim

max |∆ti|→0

∑
i

φ(ti)(B(ti+1)−B(ti))

(limit in probability) where 0 = t0 < t1 < · · · < tN = T denotes partitions of [−δ, T ].

In other words, the forward integral is the limit of Riemann sums where the integrand
is evaluated at the left end points of the subintervals.

An Itô formula for forward integrals was established in [12]. See also [13].
The following definition will be useful (see [3], Definition 9.14). Here, and in the rest

of the paper, DtF will denote the Malliavin derivative at t of a random variable F . (See
e.g. [3] for more information.)

Definition 1.4. Let D0 consist of all measurable processes φ such that

(i) φ is càglàd.
(ii) φ(t) is Malliavin differentiable for each t ∈ [−δ, T ].
(iii) The paths t→ Dsφ(t) are càglàd for almost all s ∈ [−δ, T ] and ω ∈ Ω.
(iv) The limit Dt+φ(t) = lims→t+ Dsφ(t) exists with convergence in L2(P ).
(v) φ is Skorohod integrable.

In our paper we will need the following result, the first version of which was proved
in [11].

Lemma 1.5 ([11]). Let φ ∈ D0. Then

(1.11) E
[∫ T

−δ
φ(t)d−B(t)

]
= E

[∫ T

−δ
Dt+φ(t)d(t)

]
.

The solution of Problem A appears to be very difficult, even in the simplest cases. In
this paper we will restrict ourselves to the following special cases:

Ht = Ft+δ, t ≥ −δ,(1.12)

Yt = (t, Bt), where Bt is a 1-dimensional Brownian motion,(1.13)

B0 = B0(δ)(1.14)

where B0(δ) is the set of Ft+δ-stopping times β which are of the first exit type, i.e. of
the form β = βa = inf{t ≥ −δ;Bt+δ ≥ a} ∧ T for some constants a ∈ R, T ∈ (0,∞].
Similarly we let B(δ) denote the set of all Ft+δ-stopping times β : Ω→ [−δ,∞].

We call such stopping times δ-advanced, or stopping times with δ-advanced informa-
tion.

Remark 1.6. Note that for any random time β : Ω → [−δ,∞] we have that {ω;β(ω)
≤ t} ∈ Ft+δ for all t ≥ 0 if and only if {ω;β(ω) + δ ≤ t} ∈ Ft for all t ≥ 0. Hence β is an
Ft+δ-stopping time if and only if τ := β + δ is an Ft-stopping time.
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Equivalently, all Ft+δ-stopping times β may be written β = τ−δ, where τ : Ω→ [0,∞]
is an Ft-stopping time.

In Section 3 we will study the anticipative optimal stopping problem where

(1.15) J(β) = J1(β) = E[e−ρβ(Bβ − c)], β ∈ B0(δ).

where ρ > 0, c ≥ 0 are constants.
In Section 4 we want to minimize

(1.16) J(β) = J2(β) = E
[∫ β

−δ
e−ρtBtdt

]
, β ∈ B0(δ).

We give an implicit solution for the case (1.15) and an explicit solution for the case
(1.16). In particular, our solution of case (1.16) implies that

(1.17) inf
β∈B(δ)

J2(β) < inf
β∈B0(δ)

J2(β).

Thus (δ-advanced) first exit times βa are not always optimal for δ-advanced optimal
stopping problems. This is in contrast to generic classical optimal stopping problems for
Itô diffusions. (See e.g. [7], Chapter 10.)

2. The case when there is no cost and no discount. In this section we shall
compute E(Bβ) for some particular F·+δ-stopping time β defined by the first hitting
time to a half line and we also introduce some notations and methods.

As before let (Bt, t ≥ 0) be a Brownian motion on a probability space (Ω,F , P ) and
let Ft, t ≥ 0, be the natural filtration associated with this Brownian motion. Fix T > 0.

Let β be an F·+δ-stopping time. More specifically we consider

β = inf{t > −δ;Bt+δ ≥ a} ∧ T

for some fixed a ∈ R. We first compute E[Bβ ] in this section and E[e−ρβ(Bβ − c)] will be
computed in the next section.

Denote
Mt = max

0≤s≤t
Bs and θt = arg max

0≤s≤t
Bs,

the unique time such that Bθt = max0≤s≤tBs.
Since β > s is equivalent to Ms+δ < a, we have χ[0,β)(s) = χ(−∞,a)(Ms+δ). Thus

Ds+χ[0,β)(s) = Ds+χ(−∞,a)(Ms+δ) = −δa(Ms+δ)Ds+Ms+δ = −δa(Ms+δ)χ[0,θs+δ](s).

Thus we have, by Lemma 1.5,

(2.1) E
∫ β

−δ
φ(s)d−Bs = −

∫ T

0

E[φ(s)δa(Ms+δ)χ[0,θs+δ](s)]ds.

In the case that φ(s) = 1, that is, we compute E(Bβ), we have

E(Bβ) = −
∫ T

0

E{δa(Ms+δ)χ[0,θs+δ](s)}ds.(2.2)

Now the joint pdf of Mt and θt is (see [2], p. 209, Formula 1.13.4)

P (Mt ∈ dy, θt ∈ dv) =
ye−

y2

2v

π
√

(t− v)v3
dvdy.
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Thus, the joint pdf of Ms+δ and θs+δ is

qs,δ(v, y) =
ye−

y2

2v

π
√

(s+ δ − v)v3
.

Therefore we have

E(Bβ) =
∫ T

0

∫
R

∫ s+δ

0

δ(y − a)χ[s,s+δ](v)qs,δ(v, y)dydvds

=
∫ T

0

∫ s+δ

0

χ[s,s+δ](v)qs,δ(v, a)dvds =
∫ T

0

∫ v

v−δ
qs,δ(v, a)dsdv =

√
δ

π

∫ ∞
a2
2T

e−u√
u
du.

Theorem 2.1. Let β̃ = inf{t > 0; Bt+δ ≥ a} and β = β̃ ∧ T . Then for any δ > 0 and
a > 0, we have

E(Bβ) =

√
δ

π

∫ ∞
a2
2T

e−u√
u
du.

It is clear from this computation that when δ = 0, E(Bβ) = 0 and for fixed δ > 0, the
maximum is attained when a = 0.

3. Optimal stopping for E[e−ρβ(Bβ − c)]. The computation of E[e−ρβ(Bβ − c)] is
slightly more complicated. First we compute E[e−ρβ ]. We need to know the distribution
of β. From [2], p. 197, Formula (1.1.4),

P (β > ξ) = P (Mξ+δ < a) = 1− P ( sup
0≤s≤ξ+δ

Bs ≥ a) = 1− q1,s,µ,δ,a(ξ)

where

q1,s,µ,δ,a(ξ) =
1
2

Erfc
(

a√
2(ξ + δ)

− µ
√
ξ + δ√
2

)
+

1
2
e2µaErfc

(
a√

2(ξ + δ)
+
µ
√
ξ + δ)√

2

)
with Erfc (x) = 1√

2π

∫ x
−∞ e−t

2/2dt being the error function. Now µ = 0. Hence

P (β > ξ) =
∫ ∞

a√
2(ξ+δ)

e−
x2
2 dx.

Therefore

1− E[e−ρβ ] = ρ

∫ β

0

e−ρξdξ = ρE
∫ T

0

e−ρξEχ{β>ξ}dξ = ρ

∫ T

0

e−ρξ
∫ ∞

a√
2(ξ+δ)

e−
x2
2 dxdξ

= ρ

∫ ∞
a√

2(T+δ)

∫ T

a2

2x2
−δ
e−ρξdξ e−

x2
2 dx =

∫ ∞
a√

2(T+δ)

[eρδ−
ρa2

2x2 − e−ρT ]e−
x2
2 dx.

This is summarized in

Proposition 3.1. Let ρ be a given real number. Let β be an F·+δ-stopping time. More
specifically we consider

β = inf{t > −δ;Bt+δ ≥ a} ∧ T
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for some fixed a ∈ R. Then

E[e−ρβ ] = 1−
∫ ∞

a√
2(T+δ)

[eρδ−
ρa2

2x2 − e−ρT ]e−
x2
2 dx.(3.1)

Letting T →∞, we have

Corollary 3.2. Let ρ > 0 be a given positive real number. Let β be an F·+δ-stopping
time. More specifically we consider

β = inf{t > −δ;Bt+δ ≥ a}

for some fixed a ∈ R. Then

E[e−ρβ ] = 1−
∫ ∞

0

eρδ−
ρa2

2x2
− x22 dx.(3.2)

The computation of E[e−ρβBβ ] is more sophisticated and a more clever technique is
needed. We have

1− E[e−ρβBβ ] = ρE
[∫ T

0

e−ρuχ{u≤β}duBβ

]
= ρE

[∫ T

−δ

∫ T

0

e−ρuχ{u≤β}χ{s≤β}dudBs

]
= ρE

[∫ T

−δ

∫ T

0

e−ρuχ{β≥u∨s}dudBs

]
= ρE

[∫ T

0

∫ T

0

e−ρuχ(−∞,a)(Mu∨s+δ)dudBs

]
= ρ

∫ T

0

∫ T

0

e−ρuE[Ds+χ(−∞,a)(Mu∨s+δ)]duds

= ρ

∫ T

0

∫ T

0

e−ρuE[δa (Mu∨s+δ)χ[0,θu∨s+δ]]duds.

The joint pdf of Mu∨s+δ and θu∨s+δ is

q̃s,u,δ(v, y) =
ye−

y2

2v

π
√

(u ∨ s+ δ − v)v3
, v < u ∨ s+ δ.

Therefore

1− E[e−ρβBβ ] = ρ

∫ T

0

∫ T

0

∫ T

0

∫ T

0

e−ρuδa (y)χ[0,v](s)q̃s,u,δ(v, y)dydvduds

= ρ

∫ T

0

∫ T

0

∫ T

0

e−ρuχ[0,v](s)q̃s,u,δ(v, a)dvduds

= ρ

∫ ∫ ∫
{s<u, s<u, v<u+δ}

e−ρu
ae−

a2
2v

π
√

(u+ δ − v)v3
dsdvdu

+ρ
∫ ∫ ∫

{s<u, s>u, v<u+δ}
e−ρu

ae−
a2
2v

π
√

(s+ δ − v)v3
dsdvdu
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=
aρ

π

∫ ∫
{ v<u+δ}

e−ρu−
a2
2v√

(u+ δ − v)v3
dvdu

+
2aρ
π

∫ ∫
{u<v}

[√
δ −

√
u ∨ (v − δ) + δ − v

]
e−ρu−

a2
2v dvdu.

Thus we have

Theorem 3.3. Let δ > 0, ρ, and c, be given real numbers. Let β be an F·+δ-stopping
time. More specifically we consider

β = inf{t > −δ;Bt+δ ≥ a}

for some fixed a ∈ R. Then

E[e−ρβ(Bβ − c)] = 1 + c− aρ

π

∫ ∫
{ v<u+δ}

e−ρu−
a2
2v√

(u+ δ − v)v3
dvdu(3.3)

−2aρ
π

∫ ∫
{u<v}

[√
δ −

√
u ∨ (v − δ) + δ − v

]
e−ρu−

a2
2v dvdu

−c
∫ ∞

a√
2(T+δ)

[eρδ−
ρa2

2x2 − e−ρT ]e−
x2
2 dx.

It is clear from the above theorem that E[e−ρβ(Bβ − c)] is a continuous function of a
for on any compact set of a. Thus it has maximum on any compact set of a. Numerical
computation is needed to find the maximum.

4. Optimal stopping for E[
∫ β

0
e−ρtBtdt]. Now consider the problem to find an F·+δ-

stopping time τ which maximizes

(4.1) E
[∫ τ

0

e−ρtBtdt

]
.

We consider stopping times of the form

(4.2) β = inf{t > −δ, Bt ≥ a}

where a > 0. We use

(4.3) E
[∫ β

−δ
e−ρtBtdt

]
=
∫ ∞
−δ

e−ρtE[χ{β>t}Bt]dt.

Denote again Mt = sup0≤r≤tBr. Now

E[χ{β>t}Bt] =
∫ t

0

E[Dsχ{β>t}]ds =
∫ t

0

E[Dsχ{Mt<a}]ds = −
∫ t

0

E[δa(Mt)χ{s<θt}]ds.

Since the joint pdf of Mt and θt is

(4.4) q̃t(v, y) =
ye−

y2

2v

π
√

(t+ δ − v)v3
, v < t+ δ
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we have

E[χ{β>t}Bt] = −
∫ t

0

∫ ∫
δa(y)χ{s<v}

ye−
y2

2v

π
√

(t+ δ − v)v3
dsdvdy(4.5)

= −
∫ ∫

0<s<v<t+δ

ae−
a2
2v

π
√

(t+ δ − v)v3
dsdv

= −
∫ ∫

0<s<v<t+δ

ae−
a2
2v

π
√
v
√
t+ δ − v

dv.

Thus

E
[∫ β

−δ
e−ρtBtdt

]
= −

∫ ∫
0<v<t+δ<∞

e−ρt
ae−

a2
2v

π
√
v
√
t+ δ − v

dsdv(4.6)

= −ag(ρ, δ)
π

∫ ∞
0

e−ρv−
a2
2v v−1/2dv

where

(4.7) g(ρ, δ) =
∫ ∞

0

e−ρs+ρδ√
s

ds = Γ
(

1
2

)
eρδρ−

1
2 =
√
πeρδρ−

1
2 .

By [4], Formula 3.471 (9) we have∫ ∞
0

e−ρv−
a2
2v v−1/2dv = 2

(
a2

2ρ

)1/4

K1/2

(
2

√
a2ρ

2

)
and again by [4], Formula 8.469 (3) we have

K1/2

(
2

√
a2ρ

2

)
=

√√√√ π

2 · 2
√

a2ρ
2

e−2

q
a2ρ
2 .

Therefore ∫ ∞
0

e−ρv−
a2
2v v−1/2dv =

√
π
√
ρ
e−
√

2a2ρ.

Then

E
[∫ β

−δ
e−ρtBtdt

]
= −ag(ρ, δ)

π

√
π
√
ρ
e−
√

2a2ρ = −ae
ρδe−a

√
2ρ

ρ
.(4.8)

From this, the minimum is easily seen to be attained at a = 1√
2ρ

.
We have proved:

Theorem 4.1.

(4.9) inf
β∈B0(δ)

E
[∫ β

−δ
e−ρtBtdt

]
= −e

ρδ−1

ρ
√

2ρ
,

and the minimum is attained at

β = β0 = inf{t > −δ;Bt+δ ≥ a} = inf{s > 0;Bs ≥ a} − δ(4.10)

where

(4.11) a =
1√
2ρ
.
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Remark 4.2.

(i) Note that this threshold a = 1√
2ρ

does not depend on δ. In fact, we get the same
threshold for stopping when δ = 0, and even when there is a delay from the time
when decision to stop is taken and the time when the system actually stops. See [8].

(ii) If δ = 0 the problem can be solved easily using variational inequalities, and this
gives the value

− e−1

ρ
√

2ρ
(when B0 = 0)

Comparing with (4.9) we see that the optimal B0(δ) performance improves by factor
eρδ when we go from δ = 0 to δ > 0. This ratio eρδ is a measure of the value of the
δ-advanced information flow.

Next we show that the optimal δ-advanced stopping of first exit type, β0 ∈ B0(δ)
given by (4.10)-(4.11) cannot be optimal among all β ∈ B(δ).

Theorem 4.3. Let δ > 0. Then

(4.12) inf
β∈B(δ)

J2(β) < inf
β∈B0(δ)

J2(β).

Proof. Put
τ0 = inf{s > 0;Bs ≥ 1/

√
2ρ}.

Then
β0 = τ0 − δ and B(τ0) ≥ 1√

2ρ
.

Define
Ω0 = {ω ∈ Ω;Bβ0 < 0}

Then by basic properties of Brownian motion we have P (Ω0) > 0. Define another Ft+δ-
stopping time β̃ as follows:

(4.13) β̃(ω) = inf{s ∈ [τ0− δ, τ0]; s is a minimum point of s→
∫ s
τ0−δe

−ρtBtdt}, ω ∈ Ω.

Then β0 ≤ β̃ a.s. and P [β0 < β̃] = P (Ω0) > 0. Moreover,
∫ β̃
β0
e−ρtBtdt < 0 if ω ∈ Ω0.

Therefore

E
[∫ β̃

−δ
e−ρtBtdt

]
< E

[∫ β0

−δ
e−ρtBtdt

]
,

which proves Theorem 4.3.

Remark 4.4. We conjecture that β̃ defined in (4.13) is an optimal Ft+δ-stopping time
in B(δ).
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