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Abstract. We use generalized beta integrals to construct examples of Markov processes with
linear regressions, and quadratic second conditional moments.

1. Introduction

1.1. Quadratic harnesses. In [3] the authors consider square-integrable stochastic pro-
cesses on (0,∞) such that for all t, s > 0,

E(Xt) = 0, E(XsXt) = min{t, s}, (1)

E(Xt|Fs,u) is a linear function of Xs, Xu, and Var[Xt|Fs,u] is a quadratic function of
Xs, Xu. Here, Fs,u is the two-sided σ-field generated by {Xr : r ∈ (0, s] ∪ [u,∞)}. Then
for all s < t < u, (1) implies that

E(Xt|Fs,u) =
u− t
u− s

Xs +
t− s
u− s

Xu, (2)

which is sometimes referred to as a harness condition, see [11]. While there are nu-
merous examples of harnesses that include all integrable Lévy processes ([7, (2.8)]), the
assumption of quadratic conditional variance is more restrictive, see [13]. Under appro-
priate assumptions, [3, Theorem 2.2] asserts that there exist numerical constants η, θ ∈ R
σ, τ ≥ 0 and γ ≤ 1 + 2

√
στ such that for all s < t < u,

Var[Xt|Fs,u] =
(u− t)(t− s)

u(1 + σs) + τ − γs

(
1 + η

uXs − sXu

u− s
+ θ

Xu −Xs

u− s

+ σ
(uXs − sXu)2

(u− s)2
+ τ

(Xu −Xs)2

(u− s)2
− (1− γ)

(Xu −Xs)(uXs − sXu)
(u− s)2

)
. (3)
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We will say that a square-integrable stochastic process (Xt)t∈T is a quadratic harness
on T with parameters (η, θ, σ, τ, γ), if it satisfies (1), (2) and (3) on an open interval
T ⊂ (0,∞). (In [5] we called such processes “quadratic harnesses in standard form”, with
“standard” referring to moments (1).)

Our goal is to construct examples of Markov quadratic harnesses with γ = 1− 2
√
στ .

In [3, Proposition 4.4], these were called “classical” quadratic harnesses. In [4, Section 2]
the authors construct quadratic harnesses with γ < 1 − 2

√
στ from the Askey–Wilson

integral. Here we use instead some of the generalized beta integrals from [1].
The paper is organized into sections based on the number of parameters in the gener-

alized beta integrals. In particular, in Section 4 we exhibit explicit transition probabilities
for the bridges of the hyperbolic secant process, and for completeness in Section 5 we
re-analyze the Dirichlet process.

1.2. Conversion to the standard form. In this section we recall a procedure that
we use to transform Markov processes with linear regressions and quadratic conditional
variances into the quadratic harnesses. The following is a specification of [5, Theorem
3.1] that fits our needs.

Proposition 1.1. Suppose (Yt) is a (real-valued) Markov process on an open interval
T ⊂ R such that

1. E(Yt) = α+ βt for some real α, β.
2. For s < t in T , Cov(Ys, Yt) = M2(ψ + s)(δ + εt), where M2(ψ + t)(δ + εt) > 0 on

the entire interval T , and δ − εψ > 0.
3. For s < t < u,

Var(Yt|Ys, Yu) = Ft,s,u

(
χ0 + η0

uYs − sYu
u− s

+ θ0
Yu − Ys
u− s

+
(Yu − Ys)2

(u− s)2

)
, (4)

where Ft,s,u is non-random and χ0, θ0, η0 ∈ R are such that χ := χ0 + αη0 + βθ0 +
β2 > 0.

Let Ỹt = Yt − E(Yt). Then there are two affine functions `(t) = tδ−ψ
M(δ−εψ) and m(t) =

1−tε
M(δ−εψ) and an open interval T ′ ⊂ (0,∞) such that Xt := m(t)Ỹ`(t)/m(t) defines a
process (Xt) on T ′ such that (1) holds and (3) is satisfied with parameters

η = M(δη0 + ε(2β + θ0))/χ, (5)

θ = M(2β + ψη0 + θ0)/χ, (6)

σ = M2ε2/χ, (7)

τ = M2/χ, (8)

γ = 1 + 2ε
√
στ . (9)

Proof. This is [5, Theorem 3.1] specialized to χ = χ0, η = η0, θ = θ0, σ = 0, τ = 1,
ρ = 0, a = M , b = Mψ, c = Mε, d = Mδ.

Remark 1.1. We will apply this only to ε = 0,±1, and χ0, θ0, η0 ∈ {0, 1}.

Remark 1.2. For ε ≤ 0, we see that γ ≤ 1 and that η
√
τ + θ

√
σ = M2(δ− εψ)η0/χ

2 has
the same sign as η0.
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Remark 1.3. The time domain T ′ is the image of T under the Möbius transformation
t 7→ (t+ ψ)/(εt+ δ).

Two related transformations are sometimes useful to keep in mind, as they take care of
some additional non-uniqueness in the final form of (3). Firstly, if (Xt) is a quadratic har-
ness with parameters (η, θ, σ, τ, γ) then (aXt/a2) is a quadratic harness with parameters
(η/a, aθ, σ/a2, a2τ, γ). In particular, if σ = 0 and τ > 0, then without loss of generality
we may take τ = 1. And if σ, τ > 0 then without loss of generality we may take σ = τ .
(So our constructions will lead to these two cases only.)

Secondly, time inversion (tX1/t) converts a quadratic harness with parameters
(η, θ, σ, τ, γ) into a quadratic harness with parameters (θ, η, τ, σ, γ), i.e. it swaps the en-
tries within the pairs (η, θ) and (σ, τ). In particular, time inversion maps a quadratic
harness with σ = 0, τ = 1 into a quadratic harness with σ = 1, τ = 0. Similarly, it
maps a quadratic harness with parameters σ = τ and η2 < 4σ, θ2 ≥ 4σ into a quadratic
harness with parameters σ = τ and η2 ≥ 4σ, θ < 4σ.

2. Four-parameter beta integral. This section contains the construction of Markov
processes based on the four-parameter beta integral [1, (8.i)]. After a transformation,
these processes become quadratic harnesses with arbitrary σ = τ ∈ (0, 1), γ = 1− 2

√
στ ,

and with η, θ such that
√
τη +

√
σθ 6= 0; parameters η, θ will be required to satisfy also

some additional restrictions, of which ηθ ≥ 0 suffices for all constructions to go through.
Since the main steps will be repeated several times, first with three parameters to cover
the case σ = 0, and then with two parameters to cover the case

√
τη+

√
σθ = 0, we give

here more details so that we can suppress them in the subsequent iterations.
The construction starts with four complex numbers a1, a2, a3, a4 with strictly positive

real parts. The generalized beta integral [2, 14] after changing the variable to
√
x is∫ ∞

0

∏4
j=1 (Γ(aj + i

√
x)Γ(aj − i

√
x))

√
x
∣∣Γ(2i

√
x)
∣∣2 dx =

4π
∏

1≤k<j≤4 Γ(ak + aj)
Γ(a1 + a2 + a3 + a4)

. (10)

Let

K(a, b, c, d) =
Γ(a+ b+ c+ d)

4πΓ(a+ b)Γ(a+ c)Γ(b+ c)Γ(a+ d)Γ(b+ d)Γ(c+ d)
. (11)

If a, b, c, d are positive real numbers, or come as one or two conjugate pairs with positive
real parts, identity (10) implies that the following function of x > 0 becomes a four-
parameter probability density function on (0,∞):

f(x; a, b, c, d) = K(a, b, c, d)

∣∣Γ(a+ i
√
x)Γ(b+ i

√
x)Γ(c+ i

√
x)Γ(d+ i

√
x)
∣∣2

√
x
∣∣Γ(2i

√
x)
∣∣2 . (12)

Proposition 2.1. If a random variable X has density (12), then

E(X) =
abc+ abd+ acd+ bcd

a+ b+ c+ d
(13)

and

Var(X) =
(a+ b)(a+ c)(b+ c)(a+ d)(b+ d)(c+ d)

(a+ b+ c+ d)2(a+ b+ c+ d+ 1)
. (14)
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Proof. The formulas can be read out from the first two orthogonal polynomials [9, (1.1.4)],
but they also follow easily from the formulas

E(a2 +X) = E
(
(a+ i

√
X)(a− i

√
X)
)

=
K(a, b, c, d)

K(a+ 1, b, c, d)

and

a2b2 + (a2 + b2)E(X) + E(X2) = E
(
(a2 +X)(b2 +X)

)
=

K(a, b, c, d)
K(a+ 1, b+ 1, c, d)

.

Now using (11) and sΓ(s) = Γ(s+ 1), we get (13), and after a calculation we get (14).

Next, we prove a “convolution formula” which will be used to verify the Chapman–
Kolmogorov equations.

Proposition 2.2. If m > 0 then

f(y; a, b, c+m, d+m)

=
∫ ∞

0

f
(
y; a, b,m+ i

√
x,m− i

√
x
)
f(x; a+m, b+m, c, d) dx. (15)

Proof. Re-arranging the factors in (12), we have

f(x; a+m, b+m, c, d)f
(
y; a, b,m+ i

√
x,m− i

√
x
)

f(y; a, b, c+m, d+m)
= f(x;m+i

√
y,m−i√y, c, d). (16)

Formula (15) now follows, as
∫∞

0
f
(
x;µ+ i

√
y, µ− i√y, c, d

)
dx = 1.

We remark that (16) is an analog of [8, (b2)] and will serve similar purposes. Related
formulas will appear again as (39), (45), (54), and (58).

2.1. The auxiliary Markov process. We now define a family of Markov processes
(Yt)t∈T , parameterized by A,B,C,D that are either all real and positive or come as one
or two complex conjugate pairs A = B̄ or C = D̄, with positive real parts. Without loss
of generality we may assume that <(A) ≤ <(B) and <(C) ≤ <(D).

As the time domain T for Markov process (Yt) we take open interval (−<(C),<(A)).
As the state space we take (0,∞). We define the univariate distribution of Yt by the
density

ft(x) = f(x;A− t, B − t, C + t,D + t), x > 0. (17)

For s < t, we define the transition probability L(Yt|Ys = x) by the density

fs,t(y|x) = f
(
y;A− t, B − t, t− s+ i

√
x, t− s− i

√
x
)
, x, y > 0. (18)

It remains to verify that the above definitions are consistent.

Proposition 2.3. Formulas (17) and (18) determine a Markov process (Yt)t∈T . Fur-
thermore, E(Y0) = (ABC +ABD +ACD +BCD)/(A+B + C +D) by (13) and

E(Yt) = E(Y0) + 2t
AB − CD

A+B + C +D
− t2. (19)

For s ≤ t in T ,
Cov(Ys, Yt) = M2(C +D + 2s)(A+B − 2t), (20)
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where

M2 =
(A+ C)(B + C)(A+D)(B +D)

(A+B + C +D)2(A+B + C +D + 1)
> 0. (21)

In view of (19), the conditional moments simplify when we express them in terms of

Ỹt = Yt/2 + t2/4, −2<(C) < t < 2<(A), (22)

with linear mean E(Ỹt) = α+βt and the covariance Cov(Ỹs, Ỹt) = M2(C+D+s)(A+B−t)
for s ≤ t. The one-sided conditional moments s ≤ t are:

E(Ỹt|Ỹs) =
A+B − t
A+B − s

Ỹs +
AB(t− s)
A+B − s

, (23)

Var(Ỹt|Ỹs) =
(A+B − t)(t− s)(A2 − sA+ Ỹs)(B2 − sB + Ỹs)

(A+B − s)2(A+B − s+ 1)
. (24)

For s < t < u in T ,

E(Ỹt|Ỹs, Ỹu) =
(u− t)Ỹs + (t− s)Ỹu

u− s
, (25)

Var(Ỹt|Ỹs, Ỹu) =
(u− t)(t− s)
u− s+ 1

(
(Ỹu − Ỹs)2

(u− s)2
+
uỸs − sỸu
u− s

)
. (26)

Proof. To verify the Chapman–Kolmogorov equations we first use (15) with m = t − s,
a = A− t, b = B − t, c = C + t, d = D + t. This gives

ft(y) =
∫ ∞

0

fs,t(y|x)fs(x) dx. (27)

Next we use (15) with m = u−t, a = A−u, b = B−u, c = t−s+i
√
x, d = t−s−i

√
x

to verify the Chapman–Kolmogorov equations for the transition probabilities,

fs,u(z|x) =
∫ ∞

0

fs,t(y|x)ft,u(z|y) dy. (28)

Formula (16) can be now reinterpreted as the formula for the conditional distribution
L(Yt|Ys = x, Yu = z), given by the density

g(y|x, z) =
ft,u(z|y)fs,t(y|x)

fs,u(z|x)

= f
(
y;u− t+ i

√
z, u− t− i

√
z, t− s+ i

√
x, t− s− i

√
x
)
. (29)

Since this is again expressed in terms of the same density (12), the formulas for the
conditional mean and conditional variance are recalculated from Proposition 2.1. Finally,
we use (19), and

Var(Yt) = M2(A+B − 2t)(C +D + 2t), (30)

which is calculated from (14), and (23), to compute E(YsYt) and we get (20).
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Corollary 2.4. (Ỹt) can be transformed into a quadratic harness with covariance (1)
and the conditional variance (3) with parameters

η + θ =
(A+B + C +D)2√

(A+ C)(B + C)(A+D)(B +D)(A+B + C +D + 1)
, (31)

θ − η =
(C −D)2 − (A−B)2√

(A+ C)(B + C)(A+D)(B +D)(A+B + C +D + 1)
, (32)

σ = τ =
1

A+B + C +D + 1
, (33)

and γ = 1− 2
√
στ = (A+B + C +D − 1)/(A+B + C +D + 1).

Proof. We apply Proposition 1.1 with parameters

α =
ABC +ADC +BDC +ABD

A+B + C +D
, β =

AB − CD
A+B + C +D

,

ε = −1, ψ = C +D, δ = A+B.

The only non-zero parameters in (4) are η0 = τ0 = 1.

Remark 2.1. (Ỹt) is transformed into a quadratic harness defined on the interval

T ′ =
(C +D − 2<(C)
A+B + 2<(C)

,
C +D + 2<(A)
A+B − 2<(A)

)
.

In particular, T ′ = (0,∞) if A = B̄ and C = D̄. It is plausible that by allowing tran-
sition probabilities and univariate laws with discrete components, this interval could be
extended to (0,∞) in all cases when <(A+B) > 0 and <(C +D) > 0.

2.2. The admissible range of η,θ. In this section we study which collections of
parameters correspond to quadratic harnesses from the previous construction. Given
σ = τ > 0, γ = 1 − 2σ and η, θ such that η + θ 6= 0, without loss of generality we
may assume that η+θ > 0. For if we can find a quadratic harness (Xt) for one such set of
parameters, then (−Xt) is a quadratic harness on the same time domain, with the same
σ, τ, γ, but with −η,−θ instead of η, θ.

Once we restrict ourselves to the case η + θ > 0, we want to know for which η, θ,
σ = τ > 0, γ = 1 − 2σ we can find A,B,C,D that satisfy the equations from Corollary
2.4 and satisfy the constraints for the construction of the Markov process (Yt). We will
see that we can always find such A,B,C,D if either ηθ ≥ 0 (which under the assumption
η + θ > 0, is equivalent to η ≥ 0, θ > 0 or vice versa) or when the sign of ηθ is arbitrary
but η2 < 4σ and θ2 < 4τ .

To proceed, we rewrite the equations from Corollary 2.4 in the equivalent form:

A+B + C +D = (1− σ)/σ , (34)

(A+ C)(B + C)(A+D)(B +D) =
(1− σ)4

(η + θ)2σ3
, (35)

(C −D)2 − (A−B)2 =
(θ − η)(1− σ)2

(η + θ)σ2
. (36)
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2.2.1. Hyperbolic case. We first show that quadratic harnesses exist for all η, θ such that
η + θ > 0, η2 < 4σ and θ2 < 4σ. This is because in this case the system of equations
(34)–(36) is solved by two conjugate pairs A = B̄ and C = D̄ with A,C given by

A = <(A) +
i(1− σ)

√
4σ − η2

2(η + θ)σ
, C =

1− σ
2σ

−<(A) +
i(1− σ)

√
4σ − θ2

2(η + θ)σ

with arbitrary 0 < <(A) < 1−σ
2σ . (The apparent non-uniqueness of this solution, and

of other solutions below, is in fact illusory, as it corresponds to the translation of the
time domain T . This translation does not affect the transition probabilities of the final
quadratic harness, nor the final time domain, which by Remark 2.1 is T ′ = (0,∞).)

2.2.2. Case ηθ ≥ 0. Next we go over the remaining possible choices for pairs (η, θ) and
confirm that in each case we can always find a quadratic harness when ηθ ≥ 0.

We first consider η, θ such that η+θ > 0, η2 < 4σ and θ2 ≥ 4σ. Then the corresponding
quadratic harness exists, since the assumption ηθ ≥ 0 implies that 4σ + η2 + 2ηθ > 0.
Indeed, in this case the system of equations (34)–(36) is solved with one conjugate pair
A = B̄. The solutions are

A = <(A) +
i(1− σ)

√
4σ − η2

2(η + θ)σ
,

C =

(
η + θ −

√
θ2 − 4σ

)
(1− σ)

2(η + θ)σ
−<(A),

D =

(
η + θ +

√
θ2 − 4σ

)
(1− σ)

2(η + θ)σ
−<(A).

Inequality 4σ+η2 + 2ηθ > 0 guarantees that θ2−4σ < (θ+η)2 so one can find <(A) > 0
such that C > 0; then D > 0 follows automatically.

We remark that the left endpoint of the time domain T ′ here is 0, see Remark 2.1. This
is of interest, since for such domains we expect that the one-sided conditional moments
(23) and (24) determine uniquely the law of a quadratic harness. (It is known that
uniqueness fails on finite intervals or if the one-sided conditional means are not linear,
see [5, Example 3.1].)

Finally, if η+θ > 0 are such that η2 ≥ 4σ and θ2 ≥ 4σ, then η, θ > 0, so η >
√
η2 − 4σ

and θ >
√
θ2 − 4σ. Thus η+θ >

√
η2 − 4σ+

√
θ2 − 4σ and one can choose a small enough

A > 0 such that

B = A+

√
η2 − 4σ(1− σ)

(η + θ)σ
,

C =

(
η + θ −

√
η2 − 4σ −

√
θ2 − 4σ

)
(1− σ)

2(η + θ)σ
−A,

D =

(
η + θ −

√
η2 − 4σ +

√
θ2 − 4σ

)
(1− σ)

2(η + θ)σ
−A,

are all positive, so the above solution will indeed give us a quadratic harness on a finite
interval T ′.
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3. Three parameter beta integral. For a > 0 and b, c real positive or a complex
conjugate pair with positive real part, define the following density on (0,∞) (see [1, (7.i)]
or [9, Section 1.3]):

g(x; a, b, c) =

∣∣Γ(a+ i
√
x)Γ(b+ i

√
x)Γ(c+ i

√
x)
∣∣2

4πΓ(a+ b)Γ(a+ c)Γ(b+ c)
√
x
∣∣Γ(2i

√
x)
∣∣2 . (37)

As previously, it is straightforward to use properties of the gamma function to get formulas
for the mean µ and the variance σ2, of a random variable with this density:

µ = ab+ ac+ bc, σ2 = (a+ b)(a+ c)(b+ c). (38)

The relevant version of (16) is

g(x; a+m, b, c)g
(
y; a,m+ i

√
x,m− i

√
x
)

g(y; a, b+m, c+m)
= f

(
x;m+ i

√
y,m− i√y, b, c

)
, (39)

where x, y,m > 0.
Let A ∈ R and let B,C be either real or a complex conjugate pair, and without loss of

generality we assume that in the real case B ≥ C. Suppose in addition that A+<(C) > 0
so that T = (−<(C), A) is non-empty. Then from (39) we get again a Markov process
(Yt)t∈T with univariate distributions on the state space (0,∞) defined by the densities
g(x;A− t, B + t, C + t), with transition probabilities defined for s < t in T and x, y > 0
by the densities g(y;A− t, t−s− i

√
x, t−s+ i

√
x), and whose two-sided conditional laws

are again given by density (12), compare (29). In particular, after we make substitution
(22) formulas (25) and (26) for the two-sided conditional mean and variance hold.

As previously, parameters A,B,C affect only the mean and the covariance of (Yt):

E(Yt) = −t2 + 2At+AB +AC +BC, Var(Yt) = (A+B)(A+ C)(B + C + 2t) . (40)

Passing to the centered process (22), the one-sided conditional moments are:

E(Ỹt|Ỹs) = A(t− s) + Ỹs, Var(Ỹt|Ỹs) = (t− s)
(
A2 − sA+ Ỹs

)
.

In particular, the above formula for E(Ỹt|Ỹs) gives

Cov(Ỹs, Ỹt) = (A+B)(A+ C)(B + C + min{t, s}) .

Then the transformation from Proposition 1.1 takes a particularly simple form. The
Markov process

Xt =
Ỹt−B−C − E(Ỹt−B−C)√

(A+B)(A+ C)

is a quadratic harness with arbitrary positive

η =
1√

(A+B)(A+ C)
, θ =

2A+B + C√
(A+B)(A+ C)

,

and with σ = 0, τ = 1. Other values of parameters are now produced by routine trans-
formations that were mentioned in the introduction. To swap the roles of σ, τ one uses
time inversion (tX1/t). Taking (−Xt) we get arbitrary negative values of η, θ, covering
all possible non-zero values of the same sign (ηθ > 0). Finally, (Xαt/

√
α) is a quadratic

harness arbitrary positive value τ = 1/α.
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Remark 3.1. The above mentioned quadratic harness is defined on

T ′ = (<(C −B),∞).

In particular, T ′ = (0,∞) if B = C̄. It would be interesting to see if the construction
could be modified to yield T ′ = (0,∞) also for real B 6= C.

Remark 3.2. Formula (39) indicates that bridges of the three-parameter quadratic har-
nesses with σ = 0 are the (transformations of) four-parameter quadratic harnesses from
Corollary 2.4. It would be interesting to see if this holds also in the cases without densities.

4. Two-parameter beta integral. According to [1, (5.i)], see also [9, Section 1.4], the
following is a probability density on R when c = ā, d = b̄ have positive real part.

ϕ(x; a, b, c, d) =
Γ(a+ b+ c+ d)Γ(a+ ix)Γ(b+ ix)Γ(c− ix)Γ(d− ix)

2πΓ(a+ c)Γ(b+ c)Γ(a+ d)Γ(b+ d)
. (41)

The analog of Proposition 2.1 is as follows.

Proposition 4.1. If a random variable X ∈ R has density (41), then

E(X) = −<(a)=(b) + <(b)=(a)
<(a+ b)

, (42)

Var(X) =
<(a)<(b)

(
(<(a+ b))2 + (=(a− b))2

)
(<(a+ b))2(2<(a+ b) + 1)

. (43)

Proof. Denote by K(a, b, c, d) = Γ(a+b+c+d)
2πΓ(a+c)Γ(b+c)Γ(a+d)Γ(b+d) the normalizing constant

in (41). Then∫ ∞
−∞

xϕ(x; a, b, c, d) dx

=
1

i(c+ b− a− d)

∫ ∞
−∞

(
(a+ ix)(c− ix)− (b+ ix)(d− ix) + bd− ac

)
ϕ(x; a, b, c, d) dx

=
K(a, b, c, d)

i(c+ b− a− d)

( 1
K(a+ 1, b, c+ 1, d)

− 1
K(a, b+ 1, c, d+ 1)

+ bd− ac
)

=
i(ab− cd)

a+ b+ c+ d
. (44)

Substituting a = <(a) + i=(a), b = <(b) + i=(b), c = <(a)− i=(a), d = <(b)− i=(b) we
get (42).

The variance comes from a similar calculation:

E(X2)− (E(X))2 = K(a+ 1, b, c+ 1, d)− (c− a)E(X)− ac− (E(X))2

=
(a+ c)(b+ c)(a+ d)(b+ d)

(a+ b+ c+ d)2(a+ b+ c+ d+ 1)
.

The analog of Proposition 2.2 is based on the identity

ϕ(y; a,m− ix, ā,m+ ix)ϕ(x; a+m, b, ā+m, b̄)
ϕ(y; a, b+m, ā, b̄+m)

= ϕ(x; b,m− iy, b̄,m+ iy). (45)
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Thus, given complex parameters A,B such that <(A+ B) > 0, let T = (−<(B),<(A)).
For s < t in T , the univariate densities on R

ft(x) = ϕ(x;A− t, B + t, Ā− t, B̄ + t) , (46)

and the transition probabilities

fs,t(y|x) = ϕ(x;A− t, t− s− ix, Ā− t, t− s+ ix) , (47)

satisfy the Chapman–Kolmogorov equations (27) and (28). Let (Yt)t∈T denote the corre-
sponding Markov process. Then from (42) and (43) we get

E(Yt) =
=(B −A)
<(A+B)

t− <(A)=(B) + =(A)<(B)
<(A+B)

,

Var(Yt) = M2(<(A)− t)(<(B) + t),
(48)

where

M2 =
(=(A−B))2 + (<(A+B))2

(<(A+B))2(2<(A+B) + 1)
. (49)

Since (42) also gives

E(Yt|Ys) =
<(A)− t
<(A)− s

Ys −
=(A)(t− s)
<(A)− s

for s < t, from (48) we further calculate

Cov(Ys, Yt) = M2(<(A)− t)(<(B) + s). (50)

Next we compute conditional moments. For s < t < u, the two-sided conditional
density of L(Yt|Ys = x, Yu = z) is given by

g(y|x, z) = ϕ(y; t− s− ix, u− t− iz, t− s+ ix, u− t+ iz) .

So from (42),

E(Yt|Ys, Yu) =
(u− t)Ys + (t− s)Yu

u− s
.

and from (43) we get

Var(Yt|Ys, Yu) =
(t− s)(u− t)
(2u− 2s+ 1)

(
1 +

(Yu − Ys)2

(u− s)2

)
. (51)

From Proposition 1.1 applied with χ0 = 1, α = −=(B)<(A)+=(A)<(B)
<(A+B) , β = =(B−A)

<(A+B) ,

η0 = 0, θ0 = 0, ε = −1, ψ = <(B), δ = <(A), M =
√

(=(A−B))2+(<(A+B))2

<(A+B)
√

2<(A+B)+1
, we get

σ = τ =
1

2<(A+B) + 1
,

η = −θ =
2(=(A−B))√

(2<(A+B) + 1)
(
(=(A−B))2 + (<(A+B))2

) .
From the first equation, we see that <(A + B) = 1−σ

2σ . The second equation determines
=(A−B) as a real number iff θ2 < 4τ . This proves the following.

Proposition 4.2. For every σ ∈ (0, 1) and η ∈ (−2
√
σ, 2
√
σ), there is a quadratic

harness on (0,∞) with parameters η, θ = −η, σ, τ = σ, γ = 1− 2σ.
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4.1. Bridges of the hyperbolic secant process. Informally, a bridge of a Markov
process (Yt) between points (S, YS) and (U, YU ) behaves like (Yt) conditioned to start at
time S at a prescribed point YS and to end at time U at a prescribed point YU . The
construction that covers Meixner processes is given in [6, Proposition 1].

According to [5, Proposition 2.6], bridges of Meixner processes are transformations
of quadratic harnesses in “standard form” with parameters that satisfy η

√
τ + θ

√
σ = 0.

When στ > 0, then depending on the sign of θ2 − 4τ , such processes arise as bridges
of the negative binomial, gamma, or hyperbolic secant processes. In [5], bridges of the
hyperbolic secant process were not described explicitly, so we identify their transition
probabilities here.

The following integral is due to Meixner [12, page 13], and is listed as [1, (4.i)]:∫ ∞
−∞
|Γ(a+ ix)|2eβxdx =

2πΓ(2a)
(2 cos β2 )2a

. (52)

The integral is well defined for real a > 0 and −π < β < π. Denote by f(x; a, β) the
corresponding density, i.e.

f(x; a, β) =
(2 cos β2 )2a

2πΓ(2a)
|Γ(a+ ix)|2eβx , (53)

and by X the corresponding random variable.
Differentiating (53) with respect to β and integrating the answer we get E(X) =

a tan(β2 ) and Var(X) = 1
2a sec2(β2 ). It is known that the corresponding Markov process

(Yt) has independent increments: the univariate law of Yt has density ft(x) = f(x;A−t, β)
and the transition densities are fs,t(y|x) = f(y − x; t − s, β). One can verify also the
Chapman–Kolmogorov equations directly, from the analog of Proposition 2.2 which is
based on the identity

f(y − x;m,β)f(x; a, β)
f(y; a+m,β)

= ϕ(x; a,m− iy, a,m+ iy). (54)

The right hand side of (54) integrates to 1 because (41) is a probability density function.
(This gives an elementary proof of the well known fact established by Laha and Lukacs
[10, Lemma 2] that the hyperbolic secant laws form a convolution semi-group.)

The following proposition describes in more detail bridges of the hyperbolic secant
process.

Proposition 4.3. All bridges of a hyperbolic secant process are transformations of
Markov processes with laws (46) and (47). The admissible ranges of parameters are:
σ, τ > 0, στ < 1, γ = 1− 2

√
στ , θ ∈ (−2

√
τ , 2
√
τ) and η = −θ

√
σ/τ .

Proof. From (54) we see that for a hyperbolic secant process (Yt), the two-sided condi-
tional law of L(Yt|Ys = x, Yu = z) is given by

g(y|x, z) = ϕ(y − x; t− s, u− t− i(z − x), t− s, u− t+ i(z − x)). (55)
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Inspecting formula (41), we see that

ϕ(y − x; t− s, u− t− i(z − x), t− s, u− t+ i(z − x))

= ϕ(y; t− s− ix, u− t− iz, t− s+ ix, u− t+ iz)

= ϕ(y;u− t− iz, t− s− ix, u− t+ iz, t− s+ ix) .

So identifying this with the univariate law of the bridge between (S, YS) and (U, YU ), we
can read out that the bridge corresponds to the Markov process with transition proba-
bilities (47), where A = U − iYU , B = −S − iYS .

5. Standard beta integral. In this section we use the well known beta density

f(x; a, b) =
Γ(a+ b)
Γ(a)Γ(b)

xa−1(1− x)b−1, 0 < x < 1, (56)

to re-derive the quadratic harness properties of the one-parameter family of Dirichlet
processes from [5, Example 2.2]. (Here, a, b > 0.) It is well known that the corresponding
random variable X has moments

E(X) =
a

a+ b
, and Var(X) =

ab

(a+ b)2(a+ b+ 1)
. (57)

The analog of (16) is the algebraic identity
1

1−xf
(
y−x
1−x ;m, b

)
f(x; a, b+m)

f(y; a+m, b)
=

1
y
f
(
x
y ; a,m

)
. (58)

In particular, we have a “convolution formula”,∫ y

0

1
1− x

f
(y − x

1− x
;m, b

)
f(x; a, b+m) dx = f(y; a+m, b). (59)

Given A > 0, we now use (59) to define the Markov process (Yt)0<t<A by specifying its
univariate laws as

ft(x) = f(x; t, A− t), x ∈ [0, 1],

and for s < t, y ≥ x its transition probabilities as

fs,t(y|x) =
1

1− x
f
(y − x

1− x
; t− s,A− t

)
.

A calculation based on (59) shows that these expressions indeed satisfy the Chapman–
Kolmogorov equations, so Markov process (Yt)t∈(0,A) is well defined. (The same conclusion
can be reached via probabilistic arguments, as these processes arise as bridges of the
gamma process.)

From (57), E(Yt) = t/A and Var(Yt) = t(A−t)
A2(A+1) , and with some more work one can

read out that Cov(Ys, Yt) = s(A−t)
A2(A+1) for s ≤ t.

Since (58) shows that two-sided conditional laws are also beta, from (57) we can read
out the conditional moments

E(Yt − Ys|Ys, Yu) =
t− s
u− s

(Yu − Ys),

Var(Yt|Ys, Yu) =
(t− s)(u− t)

(u− s)2((u− s) + 1)
(Yu − Ys)2.
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Applying Proposition 1.1 with M = 1
A
√
A+1

, β = 1/A, δ = A, ε = −1 (the remaining
parameters are 0), we see that (Yt) can be transformed into a quadratic harness on
T ′ = (0,∞) with parameters

η = −θ = −2/
√

1 +A, σ = τ = 1/(1 +A), γ = (A− 1)/(A+ 1).

(This is consistent with [5, Example 2.2].)

Acknowledgements. We would like to thank Arthur Krener and Ofer Zeitouni for
information on reciprocal processes, and to J. Wesołowski for several related discussions.
This research was partially supported by NSF grant #DMS-0904720, and by the Taft
Research Center.

References

[1] R. Askey, Beta integrals and the associated orthogonal polynomials, in: Number Theory
(Madras, 1987), Lecture Notes in Math. 1395, Springer, Berlin, 1989, 84–121.

[2] L. de Branges, Tensor product spaces, J. Math. Anal. Appl. 38 (1972), 109–148.
[3] W. Bryc, W. Matysiak, J. Wesołowski, Quadratic harnesses, q-commutations, and orthog-

onal martingale polynomials, Trans. Amer. Math. Soc. 359 (2007), 5449–5483.
[4] W. Bryc, J. Wesołowski, Askey–Wilson polynomials, quadratic harnesses and martingales,

Ann. Probab. 38 (2010), 1221–1262.
[5] W. Bryc, J. Wesołowski, Bridges of quadratic harnesses, arxiv.org/abs/0903.0150, 2011.
[6] P. Fitzsimmons, J. Pitman, M. Yor, Markovian bridges: construction, Palm interpreta-

tion, and splicing, in: Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), Progr.
Probab. 33, Birkhäuser, Boston, MA, 1993, 101–134.

[7] J. Jacod, P. Protter, Time reversal on Lévy processes, Ann. Probab. 16 (1988), 620–641.
[8] B. Jamison, Reciprocal processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30

(1974), 65–86.
[9] R. Koekoek, R. F. Swarttouw, The Askey scheme of hypergeometric orthogonal polynomials

and its q-analogue, Delft University of Technology Report no. 98-17,
http://fa.its.tudelft.nl/~koekoek/askey.html

[10] R. G. Laha, E. Lukacs, On a problem connected with quadratic regression, Biometrika 47
(1960), 335–343.

[11] R. Mansuy, M. Yor, Harnesses, Lévy bridges and Monsieur Jourdain, Stochastic Process.
Appl. 115 (2005), 329–338.

[12] J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden
Funktion, J. London Math. Soc. 9 (1934), 6–13.

[13] J. Wesołowski, Stochastic processes with linear conditional expectation and quadratic con-
ditional variance, Probab. Math. Statist. 14 (1993), 33–44.

[14] J. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980),
690–701.

http://dx.doi.org/10.1016/0022-247X(72)90122-9
http://dx.doi.org/10.1090/S0002-9947-07-04194-3
http://dx.doi.org/10.1214/09-AOP503
http://arxiv.org/abs/0903.0150
http://dx.doi.org/10.1214/aop/1176991776
http://dx.doi.org/10.1007/BF00532864
http://fa.its.tudelft.nl/~koekoek/askey.html
http://dx.doi.org/10.1016/j.spa.2004.09.001
http://dx.doi.org/10.1112/jlms/s1-9.1.6
http://dx.doi.org/10.1137/0511064



	Introduction
	Quadratic harnesses
	Conversion to the standard form

	Four-parameter beta integral
	The auxiliary Markov process
	The admissible range of eta,theta

	Three parameter beta integral
	Two-parameter beta integral
	Bridges of the hyperbolic secant process

	Standard beta integral

