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Abstract. We classify generators of quantum Markov semigroups T on B(h), with h finite-
dimensional and with a faithful normal invariant state ρ satisfying the standard quantum
detailed balance condition with an anti-unitary time reversal θ commuting with ρ, namely
tr(ρ1/2xρ1/2Tt(y)) = tr(ρ1/2θy∗θρ1/2Tt(θx

∗θ)) for all x, y ∈ B(h) and t ≥ 0.
Our results also show that it is possible to find a standard form for the operators in the

Lindblad representation of the generators extending the standard form of generators of quantum
Markov semigroups satisfying the usual quantum detailed balance condition with non-symmetric
multiplications x 7→ ρsxρ1−s (s ∈ [0, 1], s 6= 1/2) whose generators must commute with the
modular group associated with ρ. This supports our conclusion that the most appropriate non-
commutative version of the classical detailed balance condition is the above standard quantum
detailed balance condition with an anti-unitary time reversal.

1. Introduction. A Markov semigroup on a commutative algebra satisfies the classical
detailed balance condition, also called reversibility, when it is symmetric in the L2 space
of an invariant measure.

Several non-commutative versions have been proposed. The best known one, for a
norm continuous Quantum Markov Semigroup (QMS) T on the algebra B(h) of linear
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bounded operators on a complex separable Hilbert space h, with a faithful normal in-
variant state ρ, was introduced by Alicki [3] (see also Frigerio, Gorini, Kossakowski, and
Verri [12]): a QMS T generated by L satisfies the quantum detailed balance condition
(QDB) if

tr(ρxL(y))− tr(ρL(x)y) = 2i tr(ρ [K,x]y), (1)

for some self-adjoint operator K ∈ B(h) and all x, y ∈ B(h).
This implies that the conditionally completely positive map L̃ defined by L̃(x) =

L(x) − 2i[K,x] coincides with the adjoint of L with respect to the pre-scalar product
〈x, y〉0 := tr(ρx∗y) on B(h). As a consequence, both L and L̃ commute with the modular
group (σt)t∈R associated with ρ given by σt(a) = ρitaρ−it ([12], Proposition 2.1), which
is quite a restrictive condition (see e.g. [9], Theorems 3, 4 and 8, and also [14]). Moreover,
the norm continuous semigroup T̃ = (T̃t)t≥0 generated by L̃, called the dual semigroup
of T , satisfies the corresponding equation tr(ρxTt(y)) = tr(ρT̃t(x)y) for all t ≥ 0. The
picture does not change if we consider pre-scalar products 〈x, y〉s := tr(ρ1−sx∗ρsy) with
s ∈ [0, 1], s 6= 1/2, as shown in [7], Section 8.

Complete positivity of the maps T̃t of the dual semigroup follows immediately without
any additional condition if we consider the dual semigroup with respect to the above pre-
scalar product on B(h) with s = 1/2 as in [4, 11]. The QDB condition obtained with the
dual quantum Markov semigroup T̃ defined with respect to this scalar product is called
standard detailed balance condition (SQDB) (see [5]).

Agarwal’s original definition of quantum detailed balance [2], however, as well as
its generalisations studied by Majewski [13], also keeps into account the parity of the
observables x, y. This goal is achieved in physical applications by introducing an anti-
unitary time reversal θ and considering time-reversed observables θx∗θ. It is reasonable
to assume that θ commutes with ρ because ρ is typically a function of the energy of the
system and thus it is invariant under time reversal (see [16]), i.e. θρ∗θ = θρθ = ρ. The
quantum detailed balance condition with time reversal θ (QDB-θ) is then defined by

tr(ρxTt(y)) = tr(ρθy∗θTt(θx∗θ)) (2)

for all x, y ∈ B(h) and t ≥ 0. This, however, implies again commutation with the modular
group that can be avoided by considering, as we proposed in [9, 10], the standard quantum
detailed balance condition with time reversal θ (SQDB-θ) defined by

tr(ρ1/2xρ1/2Tt(y)) = tr(ρ1/2θy∗θρ1/2Tt(θx∗θ)) (3)

for all x, y ∈ B(h) and t ≥ 0.
There are then essentially four types of quantum detailed balance conditions depend-

ing on the choice of the pre-scalar product with s 6= 1/2 or s = 1/2 and on the inclusion
or exclusion of an anti-unitary time reversal θ in the definition. In a series of papers
(see e.g. [7, 9, 10]) we studied the structure of generators satisfying these four types of
quantum detailed balance conditions. The results give several reasons to think that the
best non-commutative version is obtained by considering the standard quantum detailed
balance condition with an anti-unitary time reversal.

This paper brings another argument to support this conclusion. Indeed, we give a full
classification and representation in a standard form of generators of quantum Markov
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semigroups on B(h), with h n-dimensional, satisfying the standard quantum detailed
balance condition with an anti-unitary time reversal, which generalises similar results for
generators, commuting with the modular group, of QMSs satisfying the QDB-θ condition
(see e.g. [9], Theorem 8).

The paper is organised as follows. In Section 2 we review our results on the structure of
generators of QMSs satisfying one of the above quantum versions of the detailed balance
condition. Standard forms of their generators, when the Hilbert space is finite-dimensional
and the invariant state ρ is generic (in a sense that will be clarified later), are given in
Section 3, Theorem 10 and Section 4, Theorem 14.

As a consequence, we show that the convex cone of generators of QMSs satisfying
the SQDB-θ (resp. QDB-θ) condition, when looked at as a real manifold, has dimension
growing as n4/2 (resp. 3n2/2).

We would like to stress here that understanding the quantum versions of the classical
detailed balance conditions is the first step in the study of their generalisations for systems
out of equilibrium like the Accardi-Imafuku dynamical detailed balance condition defined
in [1].

2. Notation and preliminaries. Let h be a complex separable Hilbert space and con-
sider a norm continuous quantum Markov semigroup (QMS) T = (Tt)t≥0 on B(h) with a
faithful normal invariant state ρ with spectral representation

∑
j≥1 ρj |ej〉〈ej | with respect

to an orthonormal basis (ej)j≥1 of h.
We recall (Parthasarathy [15], Theorem 30.10) that the generator L of T admits a

Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) representation with respect to ρ of the
form

L(x) = i[H,x]− 1
2

∑
k

(L∗kLkx− 2L∗kxLk + xL∗kLk) (4)

by means of operators H = H∗ and (Lk)k≥1 in B(h) such that

(i) tr(ρLk) = 0 for each k ≥ 1,
(ii)

∑
k≥1 L

∗
kLk is strongly convergent,

(iii) if
∑

k≥0 |ck|2 <∞ and c0 +
∑

k≥1 ckLk = 0 for complex scalars (ck)k≥0 then ck = 0
for every k ≥ 0.

A GKSL representation with the above properties will be called special.
Another family {H ′, L′k : k ≥ 1} of bounded operators in B(h) with H ′ self-adjoint

satisfies equation (4) and conditions (i)–(iii) if and only if the lengths of the sequences
(Lk)k≥1, (L′k)k≥1 are equal and

H ′ = H + α, L′k =
∑

j

ukjLj

for some real scalar α and a unitary matrix (ukj)kj on a Hilbert space k, called the
multiplicity space of the completely positive part of L.

Introducing the bounded operator

G = −iH − 1
2

∑
k

L∗kLk
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on h, we can also write L as

L(a) = G∗a+
∑

k

L∗kaLk + aG. (5)

We call such a representation special if the operators H = (G∗ −G) /2i and Lk give a
special GKSL representation of L. In this case, G is unique up to a purely imaginary
multiple of the identity operator. Indeed, if G′, {L′k} give another special representation
of L, then G′ = −iH ′ − 1

2

∑
k L
′∗
k L
′
k fulfils

G′ = −iH − iα− 1
2

∑
k,j,m

ūkjukmL
∗
jLm = G− iα

for some α ∈ R, since the matrix (ukj)kj is unitary.
Following the terminology of [7], a special GKSL representation of L is called privileged

if H commutes with ρ and the operators L` satisfy ρL` = λ`L`ρ for some λ` > 0. In
an equivalent way we can say that a special GKSL representation is privileged if its
operator H commutes with ρ and the L` are eigenvectors of the modular group satisfying
σt(L`) = λit

` L`.
A special GKSL representation of the generator L of a norm-continuous QMS with

respect to a given state ρ always exists. This is not the case for privileged representations.
Indeed, we have the following (see [7], Theorem 4.3).

Theorem 1. The following conditions are equivalent :

(1) the generator L commutes with the modular group,
(2) there exists a privileged GKSL representation of L,
(3) the dual semigroup T̃ with respect to pre-scalar products 〈·, ·〉s with s 6= 1/2 is a

QMS.

We now list the characterisations of generators satisfying the QDB, SQDB, QDB-θ
and SQDB-θ conditions referring to [7, 9, 10] for the proofs.

Theorem 2. The QMS T satisfies the QDB condition (1) if and only if there exists a
privileged GKSL representation of L, by means of operators H,Lk, such that

(1) H = K + c for some c ∈ R,
(2) λ−1/2

` L∗` =
∑

j u`jLj for some λ` > 0 and some U = (u`j)`j unitary operator on k

which is also symmetric (i.e. ujk = ukj for all j, k).

It can be shown that all privileged GKSL representations enjoy the above properties.
The proof can be found in [7], Theorem 5.1 and also [9], Theorem 14. The unitary U is
symmetric by the following algebraic argument. Noting that σi/2(L`) = λ

−1/2
` L`, we can

write λ−1/2
` L∗` = ρ1/2L∗`ρ

−1/2 and the identity λ−1/2
` L∗` =

∑
j u`jLj becomes

ρ1/2L∗` =
∑

j

u`jLjρ
1/2. (6)

Taking the adjoint we find L`ρ
1/2 =

∑
j ū`jρ

1/2L∗j , i.e., by a change of indices, Ljρ
1/2 =
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k ūjkρ

1/2L∗k. Replacing this in the right-hand side of (6) we have

ρ1/2L∗` =
∑
j,k

u`j ūjkρ
1/2L∗k

and the linear independence of the operators (ρ1/2L∗` )`≥1 implies that U U is the iden-
tity operator, i.e. U = U∗ because U is unitary. This implies that U coincides with its
transpose.

Theorem 3. The QMS T satisfies the SQDB condition

tr(ρ1/2xρ1/2L(y)) = tr(ρ1/2L̃(x)ρ1/2y) and L(x)− L̃(x) = 2i[K,x] (7)

for some self-adjoint operator K if and only if there exists a special GKSL representation
of the generator L by means of operators G, L` and there exists a unitary (ujk)jk on k

which is also symmetric (i.e. ujk = ukj for all j, k) such that, for all ` ≥ 1, we have
ρ1/2L∗` =

∑
k u`kLkρ

1/2.

We refer to [10], Theorem 5 and Remark 4 for the proof (see also [9], Theorem 19).
We now consider quantum detailed balance conditions with an anti-unitary time re-

versal θ. Recall that it satisfies θθ∗ = θ∗θ = 1l, θ∗ = θ−1 and 〈v, θu〉 = 〈u, θ∗v〉 for all
u, v ∈ h.

Theorem 4. The QMS T satisfies the QDB-θ-condition (2) if and only if there exists a
privileged GKSL representation of the generator L, by means of operators H and L` such
that

(1) H = θ−1Hθ + c for some c ∈ R,
(2) λ−1/2

` θ−1L∗`θ =
∑

j u`jLj for some λ` > 0 and some U = (u`j)`j unitary operator
on k which is also self-adjoint.

The proof is given in [8], Theorem 9. Self-adjointness of U follows from an argument
similar to the above proof of symmetry (Theorem 2) recalling that θ, as an anti-unitary
operator, is anti-linear.

Theorem 5. The QMS T satisfies the SQDB-θ condition (3) if and only if there exists
a special GKSL representation of L, with operators G, L`, such that

(1) ρ1/2θ−1G∗θ = Gρ1/2,
(2) ρ1/2θ−1L∗`θ =

∑
j u`jLjρ

1/2 for a self-adjoint unitary (u`j)`j on k.

We refer to [10], Theorem 8 for the proof.
Standard quantum detailed balance conditions do not imply commutation with the

modular group, which is a purely algebraic constraint on the dynamics. However, when
this algebraic condition holds, the SQDB and QDB, as well as the SQDB-θ and QDB-θ
conditions, coincide (see e.g. [7], Theorem 7.1 and [4], Theorem 6.6).

There are two reasons convincing us that the anti-unitary time reversal θ must play
some role. The first one is the physical motivation exposed in the introduction, namely
keeping into account the parity of the observables ([2], [16]). The second one is the
possibility to define, as discussed in [6], a natural notion of entropy production for QMS
which is zero if and only if the SQDB-θ holds. Moreover, the following remark allows us
to find a simple standard form for generators of QMSs satisfying the SQDB-θ condition.
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Remark 6. Let V = (vjk)jk be a unitary on the multiplicity space k of the com-
pletely positive part of L and define Lj :=

∑
j vjkMk. Then the identity ρ1/2θ−1L∗`θ =∑

j u`jLjρ
1/2 becomes ρ1/2θ−1M∗j θ =

∑
k wjkMkρ

1/2 where W = (wjk)jk is the self-
adjoint unitary W = V ∗UV . In particular, since U = (u`j)`j is unitary and self-adjoint,
for a suitable choice of V , W is a diagonal matrix with eigenvalues +1 and −1 and then
either ρ1/2θ−1M∗j θ = Mjρ

1/2 or ρ1/2θ−1M∗j θ = −Mjρ
1/2 for all j.

Exploiting this simple remark, we shall describe explicitly the structure of generators
L of QMS satisfying the SQDB-θ condition, generalising the analogous result for QMS
satisfying the QDB and QDB-θ condition (see [9], Theorem 8 and Section 4 here).

Throughout the paper, for the sake of simplicity and concreteness, we shall consider
a finite-dimensional Hilbert space Cn and QMS acting on the algebra Mn(C) of n ×
n complex matrices. Ej

k denotes the rank one matrix |ek〉〈ej |. We choose a canonical
orthonormal basis (ek)n

k=1 where ρ =
∑n

j=1 ρjE
j
j is diagonal. Clearly 0 < ρk < 1 for all

k = 1, . . . , n since ρ is faithful.
The anti-unitary time reversal θ will be just conjugation with respect to this basis, i.e.

θ
∑

j zjej =
∑

j z̄jej . As a consequence θ−1X∗θ is the transpose XT and θ−1X∗θ = X,
the matrix obtained by X complex conjugating its entries.

3. SQDB-θ condition. In this section, we find a standard form of a special GKSL
representation of the generator L of a QMS T satisfying the SQDB-θ. Since θ and ρ

commute, Theorem 5 says that this property holds if and only if the operators G,Lk

satisfy

(i) G = ρ1/2GT ρ−1/2,
(ii) Lk =

∑
j∈J ukjρ

1/2LT
j ρ
−1/2 for some unitary self-adjoint U = (ukj)k,j∈J .

In order to determine the structure of the operators G and Lk fulfilling (i) and (ii),
we choose the basis {El

l , X
j
i , Y

j
i : l, i, j = 1, . . . , n, i < j} of eigenvectors of the linear

map on Mn(C)

R(X) = ρ1/2XT ρ−1/2, (8)

given by
Xj

h := ρ1/2
(
Ej

h + Eh
j

)
, Y j

h = iρ1/2
(
Eh

j − E
j
h

)
for h < j. In fact

R(El
l) = El

l , R(Xj
h) = Xj

h, R(Y j
h ) = −Y j

h (9)

for all l, h, j = 1, . . . , n, h < j.
With respect to this basis we can write

H =
n∑

l=1

hlE
l
l +

∑
1≤k<j≤n

(
mkjX

j
k + wkjY

j
k

)
(10)

for some hl,mkj , wkj ∈ C.
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Lemma 7. The operator H given by (10) is self-adjoint if and only if hl ∈ R and

=mkj =
ρ
1/2
k − ρ1/2

j

ρ
1/2
k + ρ

1/2
j

<wkj , =wkj =
ρ
1/2
j − ρ1/2

k

ρ
1/2
k + ρ

1/2
j

<mkj (11)

for all l, j, k = 1, . . . , n with k < j.

Proof. Set Zj
k := mkjX

j
k + wkjY

j
k = ρ

1/2
k (mkj − iwkj)Ej

k + ρ
1/2
j (mkj + iwkj)Ek

j for
k < j. Since H =

∑n
l=1 hlE

l
l +

∑
k<j Z

j
k and

(Zj
k)∗ = ρ

1/2
k (mkj + iwkj)Ek

j + ρ
1/2
j (mkj − iwkj)Ej

k,

H is self-adjoint if and only if every hl is real and{
ρ
1/2
k (mkj − iwkj) = ρ

1/2
j (mkj − iwkj)

ρ
1/2
j (mkj + iwkj) = ρ

1/2
k (mkj + iwkj)

for all k < j. This system is easily solvable giving the equations (11) as unique solution.

Definition 8. Let {Lk}k∈J be in a special representation of L. We say that the operators
Lk are expressed in a standard form with respect to ρ if R(Lk) = εkLk with εk ∈ {−1, 1}
for all k ∈ J . In this case, the special representation of L is called standard.

Clearly every family of operators {Lk}k∈J expressed in a standard form satisfies con-
dition (ii) with U = diag(ε1, . . . , ε|J |), where |J | denotes the cardinality of J . Conversely,
if Lk’s fulfil condition (ii) for some unitary self-adjoint matrix U , then we can suppose
that they are expressed in a standard form. Indeed, by Remark 6, we have U = V ∗DV

for some unitary matrix V = (vij)i,j∈J and some diagonal matrix D of the form

diag(ε1, . . . , ε|J |), εi ∈ {−1, 1}. (12)

Thus, replacing the Lk’s by operators L′k :=
∑

j∈J vkjLj if necessary, we can take U as
in (12).

Remark 9. Let {Lk}k∈J and {L′k}k∈J ′ be operators giving the same special standard
representation of L such that

L′k =
∑
j∈J

wkjLj (13)

for some unitary matrix W = (wkj)k∈J ′,j∈J . If R(L′k) = ε′kL
′
k and R(Lj) = εjLj with

εj , ε
′
k ∈ {−1, 1} for all k, j, then

wkj(ε′k − εj) = 0 for all j ∈ J , k ∈ J ′. (14)

Indeed, applying the operator R to both sides of equation (13), we get

ε′k
∑
j∈J

wkjLj = ε′kL
′
k =

∑
j∈J

wkjεjLj ,

which clearly gives condition (14) by the linear independence of Lj ’s.

We can now characterise the Hamiltonian H and the standard form of operators Lk

in a special GKSL representation of the generator under the SQDB-θ.
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Theorem 10. The QMS T satisfies the SQDB-θ with respect to ρ if and only if there
exists a special standard GKSL representation of L given by operators

H =
n∑

l=1

hlE
l
l +

∑
h<j

(
mhjX

j
h + whjY

j
h

)
(15)

Lk =
n∑

l=1

v
(k)
l El

l +
∑
h<j

ξ
(k)
hj X

j
h for k ∈ J + ⊆ {1, . . . , n(n+1)

2 − 1} (16)

Lk =
∑
h<j

ζ
(k)
hj Y

j
h for k ∈ J− ⊆ {n(n+1)

2 , . . . , n2 − 1}, (17)

with
{(v(k)

1 , . . . , v
(k)
n−1, ξ

(k)
12 , . . . , ξ

(k)
1n , . . . , ξ

(k)
n−2 n−1, ξ

(k)
n−2 n, ξ

(k)
n−1 n) : k ∈ J +}

{(ζ(k)
12 , . . . , ζ

(k)
1n , . . . , ζ

(k)
n−2 n−1, ζ

(k)
n−2 n, ζ

(k)
n−1 n) : k ∈ J−}

sets of linearly independent vectors in Cn(n+1)/2−1 and Cn(n−1)/2 respectively,

v(k)
n = −

n−1∑
l=1

v
(k)
l ρlρ

−1
n for k ∈ J +, (18)

hl ∈ R, mhj given by (11) for all h < j, and

whj =
1
2

tr
(
ρ
−1/2
h (G0)hj − ρ−1/2

j (G0)jh

)
=
i

2
tr
(
Y j

h ρ
−1/2G0ρ

−1/2
)
, (19)

where G0 := −2−1
∑

k∈J+∪J− L
∗
kLk.

Proof. Assume that SQDB-θ holds and let {Lk, H : k ∈ J } be in a special GKSL
representation of L, with Lk’s expressed in a standard form. The Hamiltonian H is clearly
given by (15) with hl ∈ R and mhj , whj satisfying equations (11) thanks to Lemma 7.

Since condition (ii) gives either Lk = ρ1/2LT
k ρ
−1/2 = R(Lk) or Lk = −ρ1/2LT

k ρ
−1/2 =

−R(Lk), expanding Lk on the basis {El
l , X

j
i , Y

j
i : l, i, j = 1, . . . , n, i < j} and recalling

equation (9), we get

Lk = ρ1/2LT
k ρ
−1/2 ⇔ Lk =

n∑
l=1

v
(k)
l El

l +
∑
h<j

ξ
(k)
hj X

j
h, (20)

Lk = −ρ1/2LT
k ρ
−1/2 ⇔ Lk =

∑
h<j

ζ
(k)
hj Y

j
h (21)

for some v(k)
l , ξ

(k)
hj , ζ

(k)
hj ∈ C, with l, h, j = 1, . . . , n and h < j. Assume that (20) and

(21) hold for k ∈ J + and k ∈ J−, respectively, with J + and J− disjoint subsets of J
such that J + ∪ J− = J . Therefore, condition tr(ρLk) = 0 is clearly always satisfied if
k ∈ J−, while it means

n∑
l=1

ρlv
(k)
l = 0, i.e. v(k)

n = −
n−1∑
l=1

v
(k)
l ρlρ

−1
n

for each k ∈ J +. Finally, by the linear independence of {1l, Lk : k ∈ J }, the inequalities

|J | ≤ n2 − 1, |J +| ≤ n− 1 + n(n− 1)/2 = n(n+ 1)/2− 1, |J−| ≤ n(n− 1)/2,
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hold and the vectors in Cn(n+1)/2−1 and Cn(n−1)/2 respectively

{(v(k)
1 , . . . , v

(k)
n−1, ξ

(k)
12 , . . . , ξ

(k)
1n , . . . , ξ

(k)
n−2 n−1, ξ

(k)
n−2 n, ξ

(k)
n−1 n) : k ∈ J +}

{(ζ(k)
12 , . . . , ζ

(k)
1n , . . . , ζ

(k)
n−2 n−1, ζ

(k)
n−2 n, ζ

(k)
n−1 n) : k ∈ J−}

must be linearly independent.
Now, since

G = −iH − 2−1
∑

k

L∗kLk = −i
[ n∑

l=1

hlE
l
l +

∑
h<j

(
mhjX

j
h + whjY

j
h

)]
+G0,

in view of (9), condition (i), i.e. G = R(G), reads −2i
(∑

h<j whjY
j
h

)
+ G0 = R(G0),

that is
2i
∑
h<j

whjY
j
h = G0 − ρ1/2GT

0 ρ
−1/2. (22)

Note that
tr
(
(Em

l − El
m)(Eh

j − E
j
h)
)

= 2δmjδlh − 2δmhδlj

and so, left multiplying both sides of equation (22) by
(
Em

l −El
m

)
ρ−1/2 with m < l and

tracing, we get
−4i wml = tr

(
(Em

l − El
m)(ρ−1/2G0 −GT

0 ρ
−1/2)

)
.

Now, since tr(Em
l ρ
−1/2G0) = tr(GT

0 ρ
−1/2El

m) = tr(El
mG

T
0 ρ
−1/2), we can write the pre-

vious relation as

wml =
i

2
tr
(
(Em

l − El
m)ρ−1/2G0

)
=

1
2

tr
(
Y l

mρ
−1/2G0ρ

−1/2
)

=
i

2
(
ρ−1/2

m (G0)ml − ρ−1/2
l (G0)lm

)
.

Corollary 11. If T satisfies the SQDB-θ, then every special standard representation
of L is of the form given in Theorem 10.

Proof. Let {H,Lk, Ll : k ∈ J +, l ∈ J−} be a special standard representation of L defined
as in (15)–(17) with hl ∈ R, mhj , whj given for all h < j by (11) and (19) respectively,

{(v(k)
1 , . . . , v

(k)
n−1, ξ

(k)
12 , . . . , ξ

(k)
1n , . . . , ξ

(k)
n−2 n−1, ξ

(k)
n−2 n, ξ

(k)
n−1 n) : k ∈ J +}

{(ζ(k)
12 , . . . , ζ

(k)
1n , . . . , ζ

(k)
n−2 n−1, ζ

(k)
n−2 n, ζ

(k)
n−1 n) : k ∈ J−}

sets of linearly independent vectors in Cn(n+1)/2−1 and Cn(n−1)/2 respectively and let
v
(k)
n for k ∈ J + be as in (18).

If we consider {H̃, L̃k}k∈J̃ another special standard representation of L, then we have
|J +|+ |J−| = |J̃ | and

L̃k =
∑

j∈J+

ukjLj +
∑

j∈J−
ukjLj , H̃ = H + α

for some unitary matrix U = (ukj)k∈J̃ ,j∈J and real constant α. Since R(L̃k) = ε̃kL̃k

with ε̃k ∈ {−1, 1}, and

R(Lj) =

{
Lj if j ∈ J +

−Lj if j ∈ J−,
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defining J̃ + := {k ∈ J̃ : ε̃k = 1} and J̃− := {k ∈ J̃ : ε̃k = −1} we get ukj = 0 for all
(k, j) ∈

(
J̃ + × J̃−

)
∪
(
J̃− × J̃ +

)
thanks to Remark 9. This means that

L̃k =


∑

j∈J+

ukjLj if k ∈ J̃ +

∑
j∈J−

ukjLj if k ∈ J̃−,

i.e.

L̃k =
n∑

l=1

( ∑
j∈J+

ukjv
(j)
l

)
El

l +
∑
h<l

( ∑
j∈J+

ukjξ
(j)
hl

)
Xj

h if k ∈ J̃ +,

L̃k =
∑
h<l

( ∑
j∈J+

ukjζ
(j)
hl

)
Y l

h if k ∈ J̃−,

with J̃ + ⊆ {1, . . . , n(n+1)
2 − 1} and J̃− ⊆ {n(n+1)

2 , . . . , n2 − 1} by linear independence
of L̃k. Set now

ṽ
(k)
l :=

∑
j∈J+

ukjv
(j)
l , ξ̃

(k)
hl :=

∑
j∈J+

ukjξ
(j)
hl for k ∈ J̃ +,

ζ̃
(k)
hl :=

∑
j∈J+

ukjζ
(j)
hl for k ∈ J̃−.

Therefore, by equation (18) we have

ṽ
(k)
l = −

∑
j∈J+

ukj

n−1∑
l=1

v
(j)
l ρlρ

−1
n = −

n−1∑
l=1

ṽ
(k)
l ρlρ

−1
n .

Moreover, by the invertibility of U ,

{(ṽ(k)
1 , . . . , ṽ

(k)
n−1, ξ̃

(k)
12 , . . . , ξ̃

(k)
1n , . . . , ξ̃

(k)
n−2 n−1, ξ̃

(k)
n−2 n, ξ̃

(k)
n−1 n) : k ∈ J̃ +}

{(ζ̃(k)
12 , . . . , ζ̃

(k)
1n , . . . , ζ̃

(k)
n−2 n−1, ζ̃

(k)
n−2 n, ζ̃

(k)
n−1 n) : k ∈ J̃−}

are sets of linearly independent vectors in Cn(n+1)/2−1 and Cn(n−1)/2, respectively.
Finally, since H̃ = H+α, it clearly has the form of equation (15) with real coefficients

h̃l = hl + α for all l = 1, . . . , n and m̃hj = mhj , w̃hj = whj for all h < j.

Remark 12. Theorem 10 shows that, in the generic case when the ρi’s are all different,
generators of QMSs with a faithful invariant state ρ satisfying the SQDB-θ condition are
parametrised by

(a) a set of n(n+1)
2 − 1 = (n−1)(n+2)

2 linearly independent vectors in C(n−1)(n+1)/2,
(b) a set of n(n− 1)/2 linearly independent vectors in Cn(n−1)/2,
(c) n−1 real parameters hl for the HamiltonianH, since one of the hl can be eliminated

by adding a constant multiple of the identity operator without changing L, constants
mhj are completely determined by whj through (11) (for the eigenvalues of ρ are
all different) and any whj is given by G0 through (19).

Two sets of linearly independent vectors u = (u1, . . . , ud), u′ = (u′1, . . . , u
′
d) in Cd (with

d = (n − 1)(n + 2)/2 or d = n(n − 1)/2) lead to the same generator if there exists a
unitary operator U on Cd such that Uu = u′. Therefore the Lk’s with k ∈ J + (resp.
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k ∈ J−) are parametrized by the linear manifold GL(d,C)/U(d) of invertible matrices
modulo unitary matrices with d = (n− 1)(n+ 2)/2 (resp. d = n(n− 1)/2).

The real dimension GL(d,C) is clearly 2d2. Moreover, norm preservation of d vectors
and scalar products preservation of pairs of d(d− 1) pairs of vectors give d and d(d− 1)
respectively identities involving the real and imaginary parts of these vectors. Thus we
remain with 2d2 − d(d− 1)− d = d2 free real parameters.

It follows then that the convex cone of generators of QMSs satisfying the SQDB-θ
condition, when the invariant state ρ is non-degenerate, is a manifold with real dimension( (n+ 2)(n− 1)

2

)2

+
(n(n− 1)

2

)2

+ (n− 1) =
n2(n2 − 1)

2
.

4. QDB-θ condition in the generic case. In this section we analyse the QDB-θ
condition for T under the hypothesis that the faithful invariant density ρ is generic, i.e.
its eigenvalues are all different and so are their ratios ρj/ρk for j 6= k. The time reversal
θ is still the usual conjugation on Cn.

We recall that, by Theorem 4, the QDB-θ condition holds if and only if there exists
a special GKSL representation of L, by operators H,Lk such that

(i) [H, ρ] = 0,
(ii) ρLk = λkLkρ for some λk ∈ R,
(iii) H = H,
(iv) λ−1/2

k Lk =
∑

j ukjL
T
j for some λk > 0 and some unitary self-adjoint matrix U =

(ukj)k,j∈J .

A special representation satisfying (i) and (ii) is called privileged ; moreover, see e.g. [7],
the existence of a privileged representation of L is equivalent to the commutation of every
Tt with the modular automorphism σ−i defined by ρ, σ−i(x) = ρxρ−1 for x ∈Mn(C). In
particular, condition (ii) means that each Lk is an eigenvector of the modular automor-
phism with eigenvalue λk = ρjρ

−1
l for each j, l ∈ {1, . . . , n} for which 〈ej , Lkel〉 6= 0; it

follows that, in the generic case, there can exist a unique pair (j, l) with j 6= l such that
〈ej , Lkel〉 6= 0.

This remark allows us to characterise privileged GKSL representations of L.

Proposition 13. Every privileged GKSL representation of L with respect to the generic
and faithful state ρ is of the form

L(a) = i[H, a]− 1
2

∑
k∈J+

(
L∗kLka− 2L∗kaLk + aL∗kLk

)
− 1

2

∑
j<l

γ+
jl

(
Ej

ja− 2El
jaE

j
l + aEj

j

)
− 1

2

∑
j<l

γ−lj
(
El

la− 2Ej
l aE

l
j + aEl

l

)
,

with γ+
jl , γ

−
lj ≥ 0 for all j < l,

H =
n∑

i=1

hiE
i
i , hi ∈ R for all i = 1, . . . , n,

Lk =
n∑

j=1

zkjE
j
j for k ∈ J1 ⊆ {1, . . . , n− 1},
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where

zkn = −
n−1∑
i=1

zkiρiρ
−1
n

and {zk : k ∈ J1} (zk := (zk1, . . . , zk n−1)) is a set of linearly independent vectors in Cn−1.
Moreover, the state ρ is invariant if and only if the constants γ±jl satisfy

n∑
l=2

(
ρlγ
−
l1 − ρ1γ

+
1l

)
= 0

i−1∑
j=1

(
ρiγ
−
ij − ρjγ

+
ji

)
=

n∑
l=i+1

(
ρlγ
−
li − ρiγ

+
il

) (23)

for i = 2, . . . , n− 1.

Proof. Let {H,Lk : k ∈ J } be operators of a special GKSL representation of L; the linear
independence of {1l, Lk : k ∈ J } immediately gives card(J ) ≤ n2 − 1. Moreover, if we
write H with respect to the basis {Ej

l }nl,j=1, its commutation with ρ is clearly equivalent
to having H =

∑n
j=1 hjE

j
j , with hj ∈ R for H = H∗.

We fix now k ∈ J and suppose ρLk = λkLkρ for some λk ∈ R; this means

ρj〈ej , Lkel〉 = λkρl〈ej , Lkel〉 for all j, l = 1, . . . , n.

Since Lk 6= 0, there exists at least a pair (j, l) such that 〈ej , Lkel〉 6= 0, and so λk = ρjρ
−1
l .

If j = l (i.e. λk = 1), Lk must be diagonal with respect to the basis {Ej
i }i,j , since the

eigenvalues of ρ are all distinct; therefore, we get

Lk =
n∑

j=1

zkjE
j
j , zkj ∈ C, (24)

with 0 = tr(ρLk) =
∑n

j=1 ρjzkj , namely

zkn = −
n−1∑
j=1

ρj

ρn
zkj .

We denote by J1 the set of indexes k ∈ J such that the corresponding Lk has the form
(24); the linear independence condition gives then card(J1) ≤ n − 1 with {zk : k ∈ J1}
linearly independent vectors in Cn−1, where we defined zk := (zk1, . . . , zk n−1).

If, otherwise, j 6= l, as already mentioned before, the assumption on ρi’s forces to
have a unique pair (j, l) satisfying λk = ρjρ

−1
l , so that Lk is a multiple of El

j . We set

Lk =

{
α+

ljE
l
j =: L+

lj if j > l

α−jlE
l
j =: L−jl if j < l,

(25)

with α±jl ∈ C. Note that the operators L+
jl, L

−
jl are linearly independent for all j < l, and

they satisfy tr(ρL+
jl) = 0 = tr(ρL−jl). Moreover, up to a suitable choice of the phase factor

for each L±jl, we can suppose α±jl ∈ R. We define

γ+
jl := (α+

jl)
2, γ−lj := (α−jl)

2 for all j < l. (26)



QUANTUM DETAILED BALANCE CONDITIONS WITH TIME REVERSAL 171

Conversely, it can easily be shown that the representation given by the operators
H =

∑n
j=1 hjE

j
j with hj ∈ R, Lk and L±jl defined as in (24), (25) respectively, with

zkn = −
∑n−1

j=1 ρjρ
−1
n zkj , α±jl ∈ R and γ±jl satisfying (26), is a privileged representation of

L with respect to ρ.
Finally, we analyse the condition of the invariance of ρ. Since ρ is faithful and the

equalities [H, ρ] = 0, ρL∗kLk = L∗kLkρ, LkρL
∗
k = λ−1

k LkL
∗
kρ hold for every privileged

representation, it follows that ρ is an invariant state if and only if∑
k∈J

(
L∗kLk − λ−1

k LkL
∗
k

)
= 0.

Since λk = 1 for all k ∈ J1, this gives

0 =
∑
j<l

(
(L+

jl)
∗L+

jl −
ρj

ρl
L+

jl(L
+
jl)
∗ + (L−jl)

∗L−jl −
ρl

ρj
L−jl(L

−
jl)
∗
)

=
∑
j<l

{
γ+

jl

(
Ej

j −
ρj

ρl
El

l

)
+ γ−lj

(
El

l −
ρl

ρj
Ej

j

)}

=
∑
j<l

{(
γ+

jl −
ρl

ρj
γ−lj

)
Ej

j +
(
γ−lj −

ρj

ρl
γ+

jl

)
El

l

}
,

i.e. 

n∑
l=2

(
γ+
1l −

ρl

ρ1
γ−l1

)
= 0

n∑
l=i+1

(
γ+

il −
ρl

ρi
γ−li

)
+

i−1∑
j=1

(
γ−ij −

ρj

ρi
γ+

ji

)
= 0 for i = 2, . . . , n− 1

n−1∑
j=1

(
γ−nj −

ρj

ρn
γ+

jn

)
= 0.

(27)

Denoting by Ri for i = 1, . . . , n the left-hand side of the i-th equation in the above
system, we can easily see that Rn = −ρ1ρ

−1
n

(
R1 +

∑n−1
i=2 Ri

)
, and so the last equation

in (27) is superfluous. Therefore, the condition of invariance can be read as

n∑
l=2

(
γ+
1l −

ρl

ρ1
γ−l1

)
= 0

i−1∑
j=1

(
γ−ij −

ρj

ρi
γ+

ji

)
=

n∑
l=i+1

(ρl

ρi
γ−li − γ

+
il

)
for i = 2, . . . , n− 1.

We can now characterise generators of QMSs satisfying the QDB-θ. Recall that, by
Theorem 4, this condition is fulfilled if and only if there exists a privileged GKSL repre-
sentation of L, by means of operators H and Lk, such that: (1) H = H, (2) λ−1/2

k Lk =∑
j ukjL

T
j for some λk > 0 and some unitary self-adjoint matrix U = (ukj)k,j∈J .
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Theorem 14. The QMS T satisfies the QDB-θ with respect to the generic, faithful and
invariant state ρ if and only if there exists a privileged GKSL representation of L given
as in Proposition 13 with positive constants γ±jl fulfilling

ρj γ
+
jl = ρl γ

−
lj for all 1 ≤ j < l ≤ n− 1. (28)

Proof. Consider a privileged representation

L(a) = i[H, a]− 1
2

∑
k∈J1

(
L∗kLka− 2L∗kaLk + aL∗kLk

)
− 1

2

∑
j<l

γ+
jl

(
Ej

ja− 2El
jaE

j
l + aEj

j

)
− 1

2

∑
j<l

γ−lj
(
El

la− 2Ej
l aE

l
j + aEl

l

)
,

given as in Proposition 13, with γ±jl satisfying (23). Clearly we have H = H. We recall
that, by setting

L+
jl =

√
γ+

jl E
j
l , L−jl =

√
γ−lj E

l
j , λjl = ρlρ

−1
j for all j < l,

there holds
ρLk = Lkρ for all k ∈ J1

ρL+
jl = λjlL

+
jlρ, ρL−jl = λ−1

jl L
−
jlρ for all j < l.

Therefore, condition (2) of Theorem 4 can be rewritten as 1l|J1| 0 0
0 Λ 0
0 0 Λ−1

 L·
L+
·

L−·

 = U

 LT
·

(L+
· )T

(L−· )T

 (29)

for some unitary self-adjoint matrix U = (ukj)k,j∈J , where 1l|J1| denotes the |J1| × |J1|-
identity matrix and we define

Λ = diag(λ−1/2
12 , . . . , λ

−1/2
1n , λ

−1/2
23 , . . . , λ

−1/2
2n , . . . , λ

−1/2
n−1 n)

L· =
(
L1, . . . , L|J1|

)T
,

L±· =
(
L±12, . . . , L

±
1n, L

±
23, . . . , L

±
2n, . . . , L

±
n−1 n

)T
.

Since (L+
jl)

T =
√
γ+

jl E
l
j and (L−jl)

T =
√
γ−lj E

j
l for every j < l, condition (29) implies

γ+
jl = 0 if and only if γ−lj = 0; otherwise we have

λ
−1/2
jl L+

jl =

√√√√ρj γ
+
jl

ρl γ
−
lj

(L−jl)
T , λ

1/2
jl L−jl =

√√√√ ρl γ
−
lj

ρj γ
+
jl

(L+
jl)

T

for all (j, l) ∈ N := {(h, k) : 1 ≤ h < k ≤ n such that γ+
hk 6= 0}.

As a consequence, since LT
k = Lk for all k ∈ J1, equation (29) holds if and only if

U =

 1l|J1| 0 0
0 0 U0

0 U−1
0 0


where

U0 := diag

(√
ρ1 γ

+
12

ρ2 γ
−
21

, . . . ,

√
ρ1 γ

+
1n

ρn γ
−
n1

, . . . ,

√
ρn−1 γ

+
n−1 n

ρn γ
−
n n−1

)
, (30)
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with the convention that terms corresponding to (j, l) 6∈ N are set equal to 1. Hence, U
is unitary and self-adjoint if and only if U0 is unitary, i.e.

ρj

ρl

γ+
jl

γ−lj
= 1 for all (j, l) ∈ N.

Finally, by condition (23) it is enough to have the previous equality only for (j, l) ∈ N
with 1 ≤ j < l ≤ n− 1. This is clearly equivalent to (28).

Analysing the proof of the previous theorem, we can immediately see that under the
QDB-θ condition the matrix U0 given by (30) is the identity matrix, since the constants
γ+

jl and γ
−
lj satisfy ρjγ

+
jl = ρlγ

−
lj for all j < l (by (28) and (23)). Therefore, we can rewrite

Theorem 14 in the following way.

Corollary 15. The QMS T satisfies the QDB-θ if and only if there exists a privileged
representation of L given by operators

H =
n∑

j=1

hjE
j
j , hj ∈ R for all j = 1, . . . , n,

Lk =
n∑

j=1

zkjE
j
j for k ∈ J1 ⊆ {1, . . . , n− 1},

L+
jl =

√
γ+

jlE
j
l , L−jl =

√
ρjρ
−1
l (L+

jl)
T for all (j, l) ∈ N,

where γ+
jl are positive constants for all j < l, N = {(j, l) : j < l, γ+

jl 6= 0},

zkn = −
n−1∑
i=1

zkiρiρ
−1
n

and {(zk1, . . . , zk n−1) : k ∈ J1} is a set of linearly independent vectors in Cn−1.

Remark 16. Corollary 15 shows that the generator of a QMS satisfying the QDB-θ
condition admits a privileged GKSL representation determined by

(a) n − 1 real parameters hj for the Hamiltonian H, since H is uniquely determined
up to a real multiple of the identity operator;

(b) n−1 complex parameters zk1, . . . , zk n−1 for each Lk with k ∈ J1, and |J1| ≤ n−1;
(c) n(n− 1)/2 positive parameters {γ+

lj : j < l}.

Moreover, two sets {zk = (zk1, . . . , zk n−1) : k ∈ J1} and {z′k = (z′k1, . . . , z
′
k n−1) : k ∈ J1}

of vectors in Cn−1 lead to a privileged GKSL representation of the same generator if and
only if there exists a unitary U on Cn−1 such that Uzk = z′k for all k = 1, . . . , n− 1. By
the arguments of Remark 12 we remain then with (n− 1)2 free real parameters.

Thus the convex cone of generators of QMS satisfying the QDB-θ condition is a
manifold with real dimension

(n− 1) + (n− 1)2 +
n(n− 1)

2
=

3n(n− 1)
2

.

This, compared with the computation of Remark 12, shows that the QMS satisfying the
SQDB-θ condition are much more numerous.
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