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Abstract. The purpose of this paper is to introduce a new noise denoted by P ′(u). It has

the space parameter u, being compared with the usual noise depending on the time t. We first

explain why such a noise arises naturally. Then, we come to the analysis of functionals of this

new noise. We shall emphasize the significance of generalized functionals of P ′(u), in particular,

linear and quadratic.

1. Preliminaries. The main purpose of this report is to introduce a new noise depend-
ing on the space parameter. For this purpose we shall follow the following steps.

1. We first give a clear interpretation on the notion of noise.
2. Then, we remind the well-known noises. They depend on the time parameter t.
3. There arises a question if there exists any noise depending on other parameter, say

the space parameter. We shall show that a new noise with space parameter does
exist.

4. Then, we shall come to the analysis of functionals of new noise. There we can see
the significant difference from the time dependent noises.

Before coming to these steps, we have to explain what a noise means.
Given a random complex phenomenon, we wish to find a system of idealized elemental

random variables (abbr. i.e.r.v.) which are independent, atomic, infinitesimal random vari-
ables such that the system has the same information as the given random phenomenon.
In addition, the members of the system are parametrized by a certain ordered set. We
often call such a system a noise.

Once the phenomenon in question is expressed as a function of a noise (which is a
variable system), then we understand that synthesis is done. Having done so, the function
is ready to be analyzed. We thus follow the standard steps of stochastic analysis:
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Reduction Synthesis Analysis
The setup of the analysis involves the choice of the class of functionals. In fact, we

propose to take a class of generalized functionals of a noise and come to the discussion of
operators acting on them.

2. Noise

2.1. Two classes of noise. We classify the well-known noises according to the choice
of parameter. A noise usually consists of continuously many idealized random variables,
and they are parametrized by an ordered set.

Remark. We say idealized random variables, because if they were ordinary random vari-
ables as many as continuum, then the probability distribution of the system in question
could not be an abstract Lebesgue space; that is, it is impossible to carry on the calculus
with the help of the Lebesgue type integral. It is therefore necessary and natural to have
idealized (generalized) random variables.

a) Time dependent noise
(Gaussian) White Noise: Ḃ(t), Poisson Noise: Ṗ (t).
They are so popular, so that there is no need to explain.
b) Space dependent noise
P ′(u), u > 0.
This is the system exactly what we are going to discuss in this report.

2.2. The birth of noises. Consider a linear parameter. To fix the idea we take the unit
interval I = [0, 1]. In case the reduction is successful, we are given a noise with parameter
set I.

Case I. Let ∆n = {∆n
j : 1 ≤ j ≤ 2n} be the partition of I. To fix the idea, we assume

that |∆n
j | = 2−n.

To each subinterval ∆n
j we associate a random variable Xn

j . Assume that {Xn
j } are

i.i.d. (independent identically distributed) with mean 0 and finite variance v.
Let n be larger. Then, we can appeal to the central limit theorem to have a standard

Gaussian distribution N(0, 1) as the limit of the distribution of

Sn =
( 2n∑

1

Xn
j

)
/
√

2nv.

If we take a subinterval [a, b] of I, then the same trick gives us a Gaussian distribution
N(0, b− a).

We may therefore consider Sn as an approximation of a Brownian motion and each
Xn
j approximates an elemental infinitesimal random variable. This means that we are

given a (Gaussian) white noise.

Case II. The interval I and its partition ∆n are the same as in the case I. The independent
random variables Xn

j are i.i.d., but all are subject to a simple probability distribution
such that

P (Xn
j = 1) = pn, P (Xn

j = 0) = 1− pn.
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Let pn be smaller as n is getting larger keeping the relation

2npn = λ

for some positive constant λ > 0. Then, by the law of small probabilities of Poisson (this
term comes from [7]) we are given the Poisson distribution P (λ) with intensity λ.

Here are important notes.
1) We have a freedom to choose the constant λ whatever we wish, so far as it is

positive.
2) The positive constant λ is the expectation of a random variable P (λ) to which the

sum converges in law. It can be viewed as scale or space variable.
We now understand that a noise, which is taken to be a realization of the randomness

due to reduction, can eventually create a space variable.
Next step of our study is concerned with a general new noise depending on a space

parameter.
Keep random variables Xn

j as above and divide the sum Sn into partial sums:

Sn =
∑
p

Spn, where Spn =
k(p+1)∑
k(p)+1

Xn
j ,

with
1 = k(0) < k(1) < k(2) < . . . < k(m) = 2n.

We assume that k(p + 1) − k(p) → ∞ as n → ∞ and that each ratio k(p+1)−k(p)
2n

converges to λj

λ , respectively.

Theorem 2.1. Let Sn, Skn and λ be as above. Let P (λk), 1 ≤ k ≤ m, be mutually
independent Poisson random variables with intensity λk, respectively. Then,

i) Sn and Skn converge to P (λ) and P (λk) in law, respectively.
ii) P (λk) is a realization, in terms of distribution, of the limit (in law) of the Skn. Let

the uk’s be linearly independent real numbers over Z, and let P =
∑
k ukP (λk).

Then, if we know the values of P , we can determine the values of each P (λk) which
can be approximated in law by Skn.

Proof. i) is easy to observe the characteristic function ϕkn(z) of Skn:

ϕkn(z) =
(

1 +
λ

2n
(eiz − 1)

)nk

which tends to
ϕk(z) = eλk(eiz−1).

This proves the assertion.
ii) comes from the fact that the value

∑
ukxk determines all the values xk.

Corollary 2.1. The characteristic function ϕ(z) of P given by the above theorem is
expressed in the form

ϕ(z) = exp
(∑

k

λk(eiukz − 1)
)
.

Before we come to the next topic, we pause to see the following facts.
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Remark. The type of probability distributions.
All the Gaussian distributions are the same type. (A constant, the exceptional Gaus-

sian variable is excluded. It is just excluded in Case I.)
On the other hand, Poisson type distributions with different intensities are not the

same type. This can be proved by the formula of characteristic function. Poisson type
distribution means a distribution of uP (λ)+c, c may be ignored. Namely, we can compare
two characteristic functions:

ϕ1(z) = eλ1(e
iz−1),

ϕ2(z) = eλ2(e
iz−1).

These two functions of z cannot be exchanged by any affine transformation of z if λ1 6= λ2.
We can say that
1) We have a freedom to choose intensity arbitrarily. Hence we can form, by the sum of

i.i.d. random variables, continuously many Poisson type random variables with different
type.

2) The intensity is a parameter, different from the time, which is viewed as a space
parameter, The above construction shows it is additive in λ.

3) Multiplication by a constant to Poisson type variable, where the constant can be
a label. So, take a constant u = u(λ) as a label of the intensity. The function u(λ) is
therefore univalent. In view of this fact, we can form an inverse function λ = λ(u) which
is to be monotone.

With the remark made above, we change our eyes towards multi-dimensional view.
We consider

P (λ) = (P (λk)),

and its characteristic function

ϕ(z) =
∏
k

eλk(eizk−1),

where z = (zk).
We now wish to identify every component P (λk), so that we give a label to each

P (λk), say different real number uk. Now let us have passage from digital {k} to real
u > 0. The characteristic function ϕ(z) turns into a functional of ξ in some function
space E, expressed in the form

C(ξ) = exp
[∫

λ(u)(eiuξ(u) − 1) du
]
.

What we have done is that starting from a higher dimensional characteristic function of
Poisson type distribution, we have its limit C(ξ).

We now claim

Theorem 2.2. Take a nuclear space E which is a dense subspace of L2([0,∞)). Then,
C(ξ) obtained above is a characteristic functional of a generalized stochastic process with
parameter set [0,∞).

The proof comes from [1], Chapter III, §4.
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3. A new noise. We have found a new noise (in [6]). Here we shall not mention the
results. But, we have explained why and how we are led to the new noise depending on
the space variable u.

Having been motivated by the result in the literature [4] we start out with a functional
CP (ξ), where the variable ξ runs through a certain nuclear space E. More precisely, E is
a subspace of the Schwartz space S consisting of ξ’s such that ξ(u) = 0 for u ≤ 0. In fact
such an E is defined as a factor space of S, so that the topology is naturally introduced.

CP (ξ) = exp
[∫

(eiuξ(u) − 1) dn(u)
]
, (3.1)

where dn(u) is a measure on (0,∞), which is specified later.
To fix the idea, we assume that the measure dn(u) is equivalent to the Lebesgue

measure, i.e. it is of the form dn(u) = λ(u) du with λ(u) positive a.e. and the integral
defining CP is integrable.

Theorem 3.1. Under these assumptions, the functional CP (ξ) is a characteristic func-
tional.

Proof. i) CP (ξ) is continuous in ξ. Details of the proof has been given in [6]. The topology
introduced to E is slightly stronger than that in the case of white noise.

ii) CP (0) = 1.
iii) Positive definiteness is shown by noting the fact that

exp[(eizu − 1)λ]

is a characteristic function.

Hence, by the Bochner–Minlos theorem, there exists a probability measure νP on E∗

such that
CP (ξ) =

∫
E∗
ei〈x,ξ〉 dνP (x). (3.2)

We introduce a notation P ′(u, λ(u)) or write it simply P ′(u). With this notation we
understand that νP -almost all x ∈ E∗ is a sample function of P ′(u).

Theorem 3.2. P ′(u) has independent value at every point u.

Proof. The proof is easy if the integral in (3.1) is understood to be extended over the
support of ξ. Hence, if the supports of ξ1 and ξ2 are disjoint, then we have

CP (ξ1 + ξ2) = CP (ξ1)CP (ξ2).

Hence the assertion follows.

The bilinear form 〈P ′, ξ〉 is a random variable with mean∫
uξ(u)λ(u) du

and variance ∫
u2ξ(u)2λ(u) du.

Hence 〈P ′, ξ〉 extends to 〈P ′, f〉 with f ∈ L2((0,∞), λ du). If uf and ug are orthogonal in
L2(λ du), then 〈P ′, f〉 and 〈P ′, g〉 are uncorrelated. Thus, we can form a random measure
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and hence, we can define the space H1(P ) like H1 in the case of Gaussian white noise.
The spaceH1(P ) can also be extended to a spaceH1%(P ) of generalized linear functionals
of P ′(u)’s. Note that there we can give an identity to P ′(u) for any u.

Our conclusion is that the single noise P ′(u) of Poisson type with the parameter u
can be found, cf. [6].

Remark. The case where the parameter u runs through the negative interval (−∞, 0)
can be discussed in a similar manner. It is, however, noted that the single point mass at
u = 0 is omitted.

4. Representation of generalized functionals of P ′(u)’s. We now come back to
the discussion in §3, where we introduced the notation P ′(u) and the space H(−1)

1 (P ) of
the generalized linear functionals. (For P ′(u) the symbol Pdu was used in [2]).

We note that the generalized stochastic process P ′(u) has independent values at every
point u.

With this note we come to a representation of linear functionals.
Compute

1
i

d

dt
CP (ξ + tη)|t=0 =

∫
eiuξ(u)η(u)λ(u) du · CP (ξ).

Up to the common factor CP (ξ), we are given a linear function of Poisson noise
expressed in the form ∫

eiuξ(u)uη(u)λ(u) du.

By subtracting off the constant (expectation) we have∫
(eiuξ(u) − 1)uη(u)λ(u) du.

This is linear in η. We are, therefore, given a linear space

F1 = span
{∫

(eiuξ(u) − 1)uη(u)λ(u) du : η ∈ E
}
,

which is isomorphic to H1(P ).
We know that 〈x, ξ〉, ξ ∈ E, is viewed as a sample of a random variable 〈P ′, ξ〉, the

characteristic function of which is given by ϕP
′
(z) = CP (zξ). Hence its mean value is∫

uξ(u)λ(u) du and its variance is
∫
u2ξ(u)2λ(u) du.

There is a bijection:
ξ ⇐⇒ 〈P ′, ξ〉, ξ ∈ E.

This can be extended to

f ⇐⇒ 〈P ′, f〉, uf ∈ L2((0,∞), λ) du.

To establish a general theory of representation of random functions, we can appeal to
the theory of Reproducing Kernel Hilbert Space with kernel CP (ξ−η), or the T -transform,
which is an analogue of the Fourier transform. See [4].

By using the representation, we can now rigorously define the random measure p(du)
(which was briefly mentioned before) such that for any Borel subset B ⊂ (0,∞) with
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finite dλ measure
p(B) = 〈P ′, IB〉,

is defined, where IB is the indicator function of a Borel set B.
Stochastic integrals based on p(du) are defined in the usual manner, and the collections

of the stochastic integrals form a Hilbert space which is in agreement with H1(P ).
Also, as in the Gaussian case, we can define the extended space H(−1)

1 (P ), where each
P ′(u) is a member of the total system of H(−1)

1 (P ). Again, we note that P ′(u) corresponds
to the kernel which is the δ-function, except u = 0. There the P ′(u) has rigorous, definite
identity.

We can also consider multi-linear case in a similar manner, and the spaces Fn with
n ≥ 2 can be defined similarly, and of course, there is no need to have functionals
renormalized.

5. Generalized functionals. Like Gaussian case, we can define spaces of generalized
functionals of degree n(≥ 2): F(−n)

n and discuss their representations.
As soon as we come to nonlinear functionals of the P ′(u), we generally need renor-

malizations as in the case of Ḃ(t). There is one aspect to understand the necessity of
renormalization as follows.

If we consider the second variation of general functionals, we are given similar expres-
sions of normal functionals in the Lévy’s sense [9]. Again, we use the expression in terms
of Reproducing Kernel Hilbert Space defined by CP (ξ),∫

f(u)(eiξ(u)u − 1)2u2η(u)2λ(u)2 du

+
∫ ∫

F (u, v)(eiη(u)u − 1)(eiη(v)v − 1)uvη(u)η(v)λ(u)λ(v) du dv,

where f and F satisfy integrability conditions, and where F (u, v) is symmetric. Such an
expression comes from “passage from digital to an analogue”. The idea is the same as in
the Gaussian case, so the details are omitted. See [4]. Usually (i.e. we often meet in the
applications) quadratic functionals of Poisson noise are normal.

The most important fact is that the first term of the above equation is obtained after
renormalization is applied.

There are normal functionals of higher degree that are significant and can be defined
similarly but in somewhat complicated manner.

6. Applications
(1) We can now speak of the decomposition of a compound Poisson process, that is

the jump finding problem. We have discussed it in [6], so we just note the problem to be
applied and do not repeat the details here. See [6].

(2) Applications of our theory to statistics. In particular, we are interested in the
study of statistical data that are subject to a stable distribution.

We can estimate the exponent α of the stable distribution. It is recommended to use
the method explained in [11].
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An important assumption is that this stable distribution can be embedded in a stable
stochastic process with the same exponent α. We should carefully examine the environ-
ment and/or history so that this assumption is acceptable.

The Lévy measure for a stable process is of the form

dn(u) = c|u|−α−1 du,

so that the theory stated in (1) above is acceptable.
Then, statistical theory follows.
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éd. 1954.
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