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Abstract. The q-convolution is a measure-preserving transformation which originates from
non-commutative probability, but can also be treated as a one-parameter deformation of the
classical convolution. We show that its commutative aspect is further certified by the fact that
the q-convolution satisfies all of the conditions of the generalized convolution (in the sense of
Urbanik). The last condition of Urbanik’s definition, the law of large numbers, is the crucial part
to be proved and the non-commutative probability techniques are used.

1. Introduction. The classical convolution, expressed in terms of moment sequences,
mimics the binomial formula for two commuting variables: if ab = ba, then

(a+ b)n =
n∑
k=0

(
n

k

)
bn−kak

and, analogously

mn(µ ∗ ν) =
n∑
k=0

(
n

k

)
mn−k(ν)mk(µ)

where µ, ν denote two measures, µ ∗ ν is the classical convolution of µ and ν, and mn(µ)
denotes the n-th moment of µ.

If we consider two q-commuting variables, i.e. we assume that ab = qba for some
parameter q > 0, then the q-binomial formula appears:

(a+ b)n =
n∑
k=0

[
n

k

]
q

bn−kak,

where
[
n
k

]
q
is the q-deformation of the usual binomial symbol (see Notation). So in parallel
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to the classical case, we can try to define the operation

mn(µ ?q ν) =
n∑
k=0

[
n

k

]
q

mn−k(ν)mk(µ) (1)

and ask about its properties.

Such an operation, called the q-convolution, was introduced and studied by G. Carno-
vale and T. H. Koornwinder in 2001, [3]. It appeared as a (formal) one-parameter de-
formation of the classical convolution of functions on R which is associative and com-
mutative (at least for some special class of measures) and which has a nice analogue
of the Fourier transform. But from the very beginning the q-convolution had a ‘flavour
of non-commutativity’, not only because it involved the q-calculus formulas (q-numbers,
q-binomial formula, q-Jackson integral, etc.) which—as we saw in the example above—
fit to the q-commuting variable setting. A more convincing argument is that the
q-convolution was invented as a deformation of a convolution of functionals on a braided
∗-bialgebra, introduced by A. Kempf and S. Majid in [5].

In [8], we set (1) as the definition of an operation which transforms the sequences and
we were wondering whether it really is a transformation that preserves moment sequences
(measures), as it is in the classical case. This turned out to be the case if

• q ∈ (0, 1),
• one takes the q-moment sequences (µn)n instead of the usual moment sequences

(mn(µ))n (the relation is µn = qn(n−1)/2mn(µ), see Section 2.1),
• (µn)n and (νn)n correspond to measures supported on [0,+∞).

Note that the q-moment sequences are related to the notion of q-normality: aa∗ = qa∗a

(studied by Ôta and Szafraniec in the papers [10, 11], for instance), so once again the
non-commutative nature of the q-convolution is revealed.

However, recently, with B. Jasiulis-Gołdyn [4], we observed that the q-convolution
resembles a lot the so-called generalized convolution, defined by K. Urbanik in [13]. This
is a transformation of measures on [0,+∞), which satisfies the algebraic properties of
the classical convolution: it is linear (with respect to convex combinations), dilation-
invariant and weak-continuous and has a neutral element (Dirac delta at 0). This object
has been studied quite intensively in the classical probability. When the definition of the
generalized convolution is interpreted on the set of q-moment sequences, then it is easy
to check that all but one of the conditions are satisfied. The aim of this note is to show
that the q-convolution satisfies also the last condition of Urbanik’s definition, called the
law of large numbers.

The paper is organized as follows. In Section 2 we recall the definitions and some facts
which we will need in the sequel (q-moment sequence, the q-convolution). Next section is
devoted to the notion of a generalized convolution on the set of q-moment sequences. It
also contains an easy proof of the fact that the q-convolution satisfies four (out of five)
properties of the generalized convolution. The main result (Theorem 5) and its proof is
the content of Section 4. More precisely, we show there that for each n ∈ N there exists
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the limit
lim

N→+∞
(T1/Nδ

?qN
1 )n,

where δ1 denotes the Dirac delta at 1, ?q is the q-convolution and Ta is the dilation of
measure (see Notation). The crucial step in the proof is the definition of an appropriate
unital algebra A and a functional ϕ on it, which allows us to describe the q-moments
of the measure T1/Nδ

?qN
1 , for any fixed N . The second step is the explicit calculation of

the q-moments, where we use similar techniques as in the proof of the limit theorem for
(p, q)-convolution (Theorem 6.1 from [8]), including standard quantitative arguments. In
the last section (Section 5) we describe a measure which corresponds to the q-moment
sequence

( [n]q !
n!

)
n
from Theorem 5. It is related to a generalized Gamma convolution,

studied by Berg in [1]. We shortly discuss the problem of whether the measure is unique.

Notation. All sequences appearing in the paper are indexed by N = {0, 1, 2, . . . }, the
set of non-negative integers. We denote by P+ the set of all probability measures sup-
ported on the non-negative half-line [0,+∞) and by P+

fm the set of probability measures
from P+, having all moments mn(µ) =

∫ +∞
0

tnµ(dt) finite. By δx we always denote the
Dirac delta at point x.

For a probability measure µ ∈ P+ and a ≥ 0, we denote by Taµ the dilation of µ,
defined for a µ-measurable set A ⊂ [0,+∞) by the formula (Taµ)(A) = µ(A/a) when
a > 0 and T0µ = δ0. The dilation Taµ can also be interpreted as the distribution of the
random variable aX provided µ is the distribution of X.

For µ, ν ∈ P+, we denote by µ ◦ ν the multiplicative convolution of µ and ν (called
also the scale mixture in classical probability), which is by definition

(µ ◦ ν)(A) =
∫ +∞

0

(Tsµ)(A) ν(ds).

An alternative definition is given in terms of probability distribution: if X,Y are two
independent random variables with distributions µX and µY respectively, then the mul-
tiplicative convolution µX ◦ µY is the distribution of the random variable XY .

It follows directly from the definition that

δa ◦ δb = δab and δa ◦ µ = Taµ (2)

for a, b ≥ 0 and µ ∈ P+. Moreover, the multiplicative convolution reflects the pointwise
multiplication of the moment sequences: for measures µ and ν in P+

fm we have

mn(µ ◦ ν) = mn(µ) ·mn(ν), n ∈ N. (3)

Throughout the whole paper we assume that 0 < q < 1. For such q we adopt the
standard notation of the q-calculus (cf. [6]). For every n ∈ N, we write

(a; q)n =
n−1∏
k=0

(1− qka), (a; q)∞ = lim
n→+∞

(a; q)n,

[n]q =
1− qn

1− q
, [n]q! =

(q; q)n
(1− q)n

,

[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.
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For q = 1 these last three values are identified with the corresponding limits when q ↗ 1,
thus [n]1 = n, [n]1! = n!.

2. Preliminaries. In this section we collect basic information about the q-convolution
and q-moment sequences.

2.1. q-moment sequences. The following generalization of the notion of moments will
be useful in the sequel: a sequence (µn)n is called a q-moment sequence if there exists a
(positive Borel) measure µ on R such that

µn = µ(q)
n = qn(n−1)/2

∫
R
tn dµ(t), n ∈ N. (4)

Note that if q = 1, what we get is the standard notion of moment sequence.
As for the notation, since the parameter q is fixed, we waive the superscript (q) in µ(q)

n .
Confusion could only appear when dealing simultaneously with moments and q-moments
of a measure. To avoid it, we will always denote by µn the q-moments of a measure µ
whereas for the standard moments of µ we reserve the notation mn(µ). In particular,
µ

(1)
n = mn(µ) for n ∈ N.
The definition of q-moment sequence is motivated by the following fact, which is a

q-analogue of the classical Hamburger theorem (see [7] for details).

Proposition 1. A sequence (µn)n is a q-moment sequence for the measure µ on R if
and only if for all n ∈ N and all scalars α1, . . . , αn ∈ C the following inequality holds

n∑
i,j=0

q−ijαiᾱjµi+j ≥ 0. (qPD)

We will denote by M+
q the set of all q-moment sequences (µn)n corresponding to

measures from P+
fm. It can be described in the following way (cf. [7]).

Proposition 2. For a sequence (µn)n with µ0 = 1 the following conditions are equiva-
lent :

1. (µn)n ∈ M+
q , i.e. (µn)n is a q-moment sequence corresponding to a probability

measure µ on [0,+∞),
2. both sequences (µn)n and (µn+1)n satisfy the condition (qPD),
3.
(
qn(n−1)/2µn

)
n
is a moment sequence corresponding to a probability measure µ on

[0,+∞).

2.2. q-convolution. The q-convolution was originally defined by Carnovale and Koorn-
winder in [3] in the following way:

Definition 1. Let f be a function on R such that all its weighted moments

µn(f) := qn(n+1)/2

∫
tnf(t) dq(t)

are finite and let g be a function on some subset of the complex plane C. Then the
q-convolution f ?q g is defined by

(f ?q g)(z) =
∞∑
n=0

(−1)nµn(f)
[n]q!

(∂nq g)(z)
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(for z ∈ C such that the formula makes sense). Here ∂nq g denotes the n-th q-derivative
of a function g, where ∂q is defined as (∂qg)(x) = g(x)−g(qx)

(1−q)x and
∫
f(t) dq(t) denotes the

Jackson integral (cf. [6]).

The weighted moments µn(f) should not be confused with q-moments. Indeed, if we
denote by µ the measure dµ(t) = f(t)dq(t), then

µn(f) = qn(n+1)/2

∫
tnf(t) dq(t) = qn · qn(n−1)/2

∫
R
tn dµ(t) = qnµn.

The q-convolution appeared as a deformation of a convolution in braided covector
algebras, introduced by Kempf and Majid [5], adopted to the case of braided line Cq[x].
Carnovale and Koornwinder showed in [3] that if f and g satisfy some analyticity con-
ditions, then the convolution is well-defined, associative and commutative (see [3] for
further details). For such functions we also have a nice formula

µn(f ?q g) =
n∑
k=0

[
n

k

]
q

µk(f)µn−k(g),

where µk(f) is the k-th weighted moment from Definition 1.
It is easy to check that the same formula holds if we replace the weighted moments

by q-moments of the measure dµ(t) = f(t) dq(t). This formula is now taken as a general
definition of an operation on q-moment sequences.

Definition 2. Let 0 < q < 1 and let (µn)n, (νn)n belong to M+
q . Then their

q-convolution is the sequence

(µ ?q ν)n =
n∑
k=0

[
n

k

]
q

µkνn−k, n ∈ N.

What can we say about such an operation? The crucial fact concerning the behaviour
of the q-convolution is Proposition 3.3 from [8].

Proposition 3. If 0 < q < 1, then the q-convolution preserves the sequences from M+
q

in the sense that if (µn)n, (νn)n belong to M+
q , then their q-convolution ((µ ?q ν)n)n

belongs toM+
q too.

It is worth noting that the result is no longer true if we change the range of the
parameter q or if we enlarge the set of moment sequences. Indeed, it was shown in [8]
that the q-convolution preserves neither the set M+

q when q > 1 nor the set of the
q-moment sequences corresponding to measures on the whole real line R when q ∈ (0, 1).

One can verify by direct calculations that the operation ?q is associative and commu-
tative, that is (µ ?q ν) ?q ρ = µ ?q (µ ?q ρ) and µ ?q ν = ν ?q µ for any µ, ν, ρ ∈M+

q .
If q ↗ 1, then q-moments become the (classical) moments of measures and[

n

k

]
q

−→
(
n

k

)
,

so the 1-convolution coincides with the classical convolution of sequences. That is why
the q-convolution can be called a q-deformation of the classical convolution.
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3. Generalized convolution. The notion of the generalized convolution was intro-
duced by K. Urbanik in [13] and studied in a series of papers published since 1964.

Definition 3. An associative and commutative binary operation ~ on P+ is called a
generalized convolution on P+ if it satisfies the following conditions:

(i) δ0 ~ µ = µ for all µ ∈ P+ (δ0 is the unit element),
(ii) (cµ1 + (1 − c)µ2) ~ ν = c(µ1 ~ ν) + (1 − c)(µ2 ~ ν) whenever µ1, µ2, ν ∈ P+ and

c ∈ (0, 1),
(iii) Ta(µ~ ν) = (Taµ) ~ (Taν) for any µ, ν ∈ P+ and a ≥ 0,
(iv) if µ(n) w→ µ with µ(n), µ ∈ P+ (n ∈ N), then µ(n) ~ ν

w→ µ~ ν for all ν ∈ P+, (“ w→”
denotes the weak convergence of probability measures),

(v) there exists a sequence (cn)n of positive numbers such that the sequence Tcnδ
~n
1

converges weakly to a measure different from δ0 (law of large numbers).

Even though the q-convolution is an associative and commutative operation which
“preserves measures” from P+ (in the sense of Proposition 3), there is little hope it
could satisfy directly Urbanik’s definition. The point is that it is well defined not on the
whole P+, but only on M+

q . However, one can notice that M+
q
∼= P+

fm/ ∼, where ∼ is
the equivalence relation defined in the following way. Given two measures µ, ν ∈ P+

fm, µ
is equivalent to ν (µ ∼ ν) if they have all q-moments equal (µn = νn for all n ∈ N). This
suggests the following interpretation of Urbanik’s definition onM+

q :

1. all equalities for measures should be changed into equalities for respective cosets,
that is, the equalities of all terms of q-moment sequences (or moment sequences,
equivalently),

2. the weak convergence should be replaced by the convergence of all q-moments (or
moments, equivalently); this will be denoted by “m-convergence”,

Hence we arrive at the following definition.

Definition 4. An associative and commutative binary operation ~ onM+
q is called a

generalized convolution onM+
q if it satisfies the following conditions:

(i) δ0 ~ µ = µ for any µ ∈M+
q ,

(ii) (cµ1 +(1−c)µ2)~ν = c(µ1 ~ν)+(1−c)(µ2 ~ν) for any µ1, µ2, ν ∈M+
q , c ∈ (0, 1),

(iii) Ta(µ~ ν) = (Taµ) ~ (Taν) for any µ, ν ∈M+
q , a ≥ 0,

(iv) ∀µ(n), µ, ν ∈M+
q : µ(n) m→ µ =⇒ µ(n) ~ ν

m→ µ~ ν,
(v) there exists a sequence (cn)n of positive numbers such that the sequence Tcnδ

~n
1

m-converges to a measure different from δ0.

We will show (by direct calculations) that the q-convolution satisfies the first four con-
ditions of the reformulated definition of the generalized convolution for moment sequences
(see also [4]).

Theorem 4. The q-convolution satisfies the conditions (i)–(iv) of the generalized convo-
lution onM+

q (Definition 4).
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Proof. As for (i), let us note that the q-moment sequence corresponding to δ0 is (δn,0)n =
(1, 0, 0, . . . ) and thus obviously

(µ ?q δ0)n =
n∑
k=0

[
n

k

]
q

µkδn−k,0 = µn.

To show (ii), we just need to observe that for q-moment sequences one has (αµ+ βν)k =
αµk + βνk for any k ∈ N. Using this we get

[(cµ1 + (1− c)µ2) ?q ν]n =
n∑
k=0

[
n

k

]
q

(cµ1 + (1− c)µ2)kνn−k

= c

n∑
k=0

[
n

k

]
q

(µ1)kνn−k + (1− c)
n∑
k=0

[
n

k

]
q

(µ2)kνn−k

= c(µ1 ?q ν)n + (1− c)(µ2 ?q ν)n

Condition (iii) follows from the fact that (Taµ)n = anµn. This implies that

[Ta(µ ?q ν)]n = an(µ ?q ν)n =
n∑
k=0

[
n

k

]
q

(akµk)(an−kνn−k) = [(Taµ) ?q (Taν)]n.

Finally, given a sequence (µ(n))n of elements from M+
q , converging in q-moments to

µ ∈ M+
q , we observe that the formula for (µ(n) ~ ν)k is a finite linear combination of

q-moments µ(n)
l and νl (0 ≤ l ≤ k), so the convergence of q-moments is preserved for the

convolution. This proves condition (iv).

4. Law of large number for the q-convolution. Our aim in this section is to show
that the q-convolution satisfies also the condition (v) of Definition 4 and thus that all the
conditions of the generalized convolution onM+

q hold. More precisely, we shall prove the
following:

Theorem 5 (law of large number for the q-convolution). For every n ∈ N the following
limit exists

lim
N→+∞

(T1/Nδ
?qN
1 )n = lim

N→+∞

[
T1/N (δ1 ?q . . . ?q δ1)︸ ︷︷ ︸

N times

]
n

(5)

and equals [n]q !
n! . Moreover, the sequence

( [n]q !
n!

)
n
belongs toM+

q .

Before starting the proof we first define a unital algebra and A and a functional ϕ
on A, which allow us to describe the q-moments of the measure T1/Nδ

?qN
1 for fixed N .

We would emphasize that the functional ϕ plays only the role of a tool for performing
the combinatorial calculations and its positivity is not considered (neither the ∗-structure
on A, nor the positivity of the functional ϕ is necessary for that). The fact that the limit
sequence corresponds to a positive measure on [0,+∞) follows (independently of the
definition of ϕ) from the fact that the q-convolution preservesM+

q (cf. Proposition 3).

Let us consider the simplest case N = 2. Let A be the unital ∗-algebra generated
by two elements a and b which q-commute (that is, ab = qba). Given two sequences
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(µn)n, (νn)n ∈M+
q , we define the functional ϕ : A → C by the formula

ϕ(ambn) = qmnµmνn, m, n ∈ N.

Note that this is the same as to say that ϕ(bnam) = νnµm for m,n ∈ N and, in
particular, ϕ(an) = µn and ϕ(bn) = νn. Observe also that then

ϕ((a+ b)n) =
n∑
k=0

[
n

k

]
q

ϕ(bkan−k) =
n∑
k=0

[
n

k

]
q

µkνn−k = (µ ?q ν)n.

Similarly, we can take an N -tuple of q-moment sequences (µ(n))Nn=1, corresponding to
measures supported in [0,+∞) and the N -tuple of elements a1, . . . , aN , which q-commute
in monotonical order, that is

aiaj = qajai whenever 1 ≤ i < j ≤ N, (6)

and which generate a unital algebra A. Then, if we put

ϕ(amN

N · · · am1
1 ) = µ(1)

m1
· . . . · µ(N)

mN
(7)

and extend it to a linear function on A, we can show that

ϕ((a1 + . . .+ aN )n) =
(
µ(1) ?q µ

(2) ?q . . . ?q µ
(N)
)
n
.

(Note that the elements ai in the definition of ϕ (Eq. 7) are in decreasing order of indices.)
Indeed, for 1 ≤ j ≤ N − 1, we have (a1 + . . .+ aj)aj+1 = qaj+1(a1 + . . .+ aj) and we can
proceed by induction. The j-th step is the following

ϕ((a1 + . . .+ aj)n) =
n∑
k=0

[
n

k

]
q

ϕ
(
akj (a1 + . . .+ aj−1)n−k

)
=

n∑
k=0

[
n

k

]
q

µ
(j)
k

(
µ(1) ?q . . . ?q µ

(j−1)
)
n−k

=
(
µ(j) ?q µ

(1) ?q . . . ?q µ
(j−1)

)
n

=
(
µ(1) ?q . . . ?q µ

(j−1) ?q µ
(j)
)
n
.

The last equality follows from the commutativity of the q-convolution.

Now we are ready to prove the main theorem.

Proof of Theorem 5. We consider the functional ϕ defined by formula (7) with all se-
quences µ(1), . . . , µ(N) being equal to the sequence (q(

n
2))n. The latter is the q-moment

sequence corresponding to the Dirac measure at 1, and by a little abuse of notation
we shall denote this sequence as δ1. Since the dilation transforms the q-moments like
moments, that is (Taµ)n = anµn, hence for a fixed n ∈ N we have(

T1/N (δ1 ?q . . . ?q δ1)
)
n

=
1
Nn

ϕ
(
(a1 + . . .+ aN )n

)
=

1
Nn

∑
1≤ji≤N

ϕ(aj1 · · · ajn).

To compute the value of the functional ϕ on the element aj1 · · · ajn we need to have
the ai’s in decreasing order. For this purpose, we use the q-commutation (6): aiaj = qajai
whenever 1 ≤ i < j ≤ N , and we observe that each time we take an element ajk to the
left of an element which has a lower index, we get a factor q. Of course, the number of
different elements in aj1 · · · ajn can be smaller than n.
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For the element aj1 · · · ajn there exist a non-negative integer l and sequences ξ =
(ξ1, . . . , ξl) and k = (k1, . . . , kl) such that 1 ≤ l ≤ n, 1 ≤ ξl < . . . < ξ1 ≤ N , ki ≥ 1,
k1 + . . .+ kl = n, and

aj1 · · · ajn = qα(j1,...,jn)ak1ξ1 · · · a
kl

ξl
.

Note that the exponent α(j1, . . . , jn) is a non-negative integer and qα(j1,...,jn) ∈ (0, 1).
Of course, there are several sequences aj1 · · · ajn which, after reordering, give the same
sequence ak1ξ1 · · · a

kl

ξl
, but with different exponents α. That is why, for l, k = (k1, . . . , kl)

and ξ = (ξ1, . . . , ξl) as above, we define the set J(l; k, ξ) as the set of all sequences
(j1, . . . , jn) such that {j1, . . . , jn} = {ξ1, . . . , ξl} and ki = |{s : js = ξi}| for i = 1, . . . , l.

This allows us to change the summation in the following way

1
Nn

∑
1≤ji≤N

ϕ(aj1 · · · ajn) =
1
Nn

n∑
l=1

∑
k

∑
ξ

cl;k,ξϕ(ak1ξ1 · · · a
kl

ξl
),

where the constant cl;k,ξ is to be computed as the sum of all qα(j1,...,jn) over J(l; k, ξ).
This means that it can be estimated as follows

cl;k,ξ =
∑

J(l;k,ξ)

qα(j1,...,jn) ≤
∑

J(l;k,ξ)

1 =
n!

k1! · · · kl!
=: Cl,k

and the estimation no longer depends on ξ.
Next, we show that the part of the sum with l < n can be neglected in the limit

(as N → +∞). Indeed, take l < n and fix some k = (k1, . . . , kl) such that ki ≥ 1 and
k1 + . . . + kl = n. In this case there exists some i0 such that ki0 ≥ 2 and there are at
most n− 1 different elements ξk in ξ. So we have the following estimate:∣∣∣ 1

Nn

∑
ξ

cl;k,ξϕ(ak1ξ1 · · · a
kl

ξl
)
∣∣∣ ≤ Cl,k

Nn

∑
ξ

|ϕ(ak1ξ1 · · · a
kl

ξl
)| = Cl,k

Nn

∑
ξ

q(
k1
2 ) . . . q(

kl
2 )

≤ Cl,k
Nn
·
∣∣{ξ = (ξ1, . . . , ξl) : 1 ≤ ξl < . . . < ξ1 ≤ N}

∣∣ ≤ Cl,k
Nn
·
(

N

n− 1

)
≤ Cl,k,n

N
,

with a constant Cl,k,n independent of N .
We showed that, indeed, each term under the sum over l, such that l < n, is of order

at most 1
N and thus vanishes in the limit. Therefore, only this part of the sum where

j1, . . . , jn are all different, and where ξ = (ξ1 > . . . > ξn), remains in the limit:

1
Nn

∑
1≤ji≤N

ϕ(aj1 · · · ajn) ≈ 1
Nn

∑
ξ=(ξ1>...>ξn)

cn;k,ξϕ(aξ1 · · · aξn).

Here, the sign ≈ means that both sides have the same limit as N → +∞.
Let us now focus on the constants (for l = n)

cn;k,ξ =
∑

J(n;k,ξ)

qα(j1,...,jn).

In this case J(n; k, ξ) is just the set of all permutations of the set {ξ1, . . . , ξn}, which can
be parametrized by all permutations of n-elements: σ is such that σ(ξi) = ji. Moreover,
α(j1, . . . , jn) = |σ| is the number of inversions in the permutation. So finally we have
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(cf. [8])
cn;k,ξ =

∑
σ∈Sn

q|σ| = [n]q!

and (
T1/Nδ

?qN
1

)
n
≈ 1
Nn

∑
ξ=(ξ1>...>ξn)

cn;k,ξϕ(aξ1 · · · aξn
)

=
1
Nn

∑
ξ

∑
σ∈Sn

q|σ|ϕ(aξ1 · · · aξl
) =

1
Nn

∑
σ∈Sn

q|σ|
∑
ξ

µn1

=
1
Nn

[n]q!
(
N

n

)
−→ [n]q!

n!
as N → +∞.

This way we showed that the limit (5) exists. Since, according to Proposition 3, the
q-convolution preservesM+

q , the limit sequence also belongs toM+
q .

5. Limit measure. We showed that the limit sequence described in Theorem 5 belongs
toM+

q , so it is a q-moment sequence corresponding to some (possibly not unique) measure
λ on [0,+∞). By Proposition 2, the moments of λ are

mn(λ) = q−(n
2) [n]q!

n!
=

[n]1/q!
n!

.

The next theorem presents a measure λ corresponding to this sequence. It is based on
the results due to Berg ([1]).

Theorem 6 (a limit measure for q-convolution). The measure Tq/(1−q)J̌q, with J̌q de-
scribed below, corresponds to the moment sequence

mn(λ) = q−(n
2) [n]q!

n!
, n ∈ N.

Proof. If we denote by Iq the generalized Gamma convolution, which is the measure on
(0,+∞) with the density function

iq(x) =
1

(q; q)∞

∞∑
n=0

(−1)nqn(n−1)/2

(q; q)n
exp(−xq−n)χ(0,+∞)(x),

then the moments of Iq are

mn(Iq) =
n!

(q, q)n
.

Defining

J̌q =
iq(1/y)dy
y log(1/q)

,

Berg [1] showed that this is a probability measure and its moments are

mn(J̌q) =
(q, q)n
n!

q−(n+1)n/2.

In our case, using formulae (2) and (3), we have

mn(λ) = q−(n
2) [n]q!

n!
=
(

q

1− q

)n
· q−(n+1

2 ) (q; q)n
n!

= mn(δq/(1−q)) ·mn(J̌q) = mn(δq/(1−q) ◦ J̌q) = mn(Tq/(1−q)J̌q).
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To the best of our knowledge, it is still an open question whether the moment sequence
{mn(λ)}n determines the measure in a unique way. Since the limit measure described in
the previous theorem has unbounded support, this need to be the case for all measures
(if more than one) related to the limit sequence in question. Using the Stirling formula,
one easily checks that ∑

n

1
2n
√
mn(λ)

<∞,

so the Carleman criterion does not give a decisive answer in this case. A discussion in [1]
on the application of the Krein criterion to the measure J̌q reveals that none of the two
possibilities (determined or indeterminate) is excluded.
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