NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY III BANACH CENTER PUBLICATIONS, VOLUME 96 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2012

SYMMETRIZATION OF PROBABILITY MEASURES, PUSHFORWARD OF ORDER 2 AND THE BOOLEAN CONVOLUTION

WOJCIECH MŁOTKOWSKI

Mathematical Institute, University of Wrocław Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland E-mail: mlotkow@math.uni.wroc.pl

NORIYOSHI SAKUMA

Department of Mathematics, Aichi University of Education 1 Hirosawa, Igaya-cho, Kariya-shi, 448-8542, Japan E-mail: sakuma@auecc.aichi-edu.ac.jp

Abstract. We study relations between the Boolean convolution and the symmetrization and the pushforward of order 2. In particular we prove that if μ_1, μ_2 are probability measures on $[0, \infty)$ then $(\mu_1 \uplus \mu_2)^{\mathbf{s}} = \mu_1^{\mathbf{s}} \uplus \mu_2^{\mathbf{s}}$ and if ν_1, ν_2 are symmetric then $(\nu_1 \uplus \nu_2)^{(2)} = \nu_1^{(2)} \uplus \nu_2^{(2)}$. Finally we investigate necessary and sufficient conditions under which the latter equality holds.

1. Pushforward of order 2 versus symmetrization. Let \mathcal{M} denote the class of probability measures on the real line \mathbb{R} . We will distinguish two subclasses of \mathcal{M} , namely \mathcal{M}^{s} consisting of symmetric measures (i.e. such that $\mu(-B) = \mu(B)$ for every Borel subset of \mathbb{R}) and \mathcal{M}^{+} consisting of those measures which have support contained in the positive halfline $[0, +\infty)$.

For $\mu \in \mathcal{M}$ we define its two transforms:

$$G_{\mu}(z) := \int_{\mathbb{R}} \frac{d\mu(t)}{z-t}, \qquad M_{\mu}(z) := \frac{1}{z} G_{\mu}\left(\frac{1}{z}\right),$$
 (1)

which are analytic functions on $\mathbb{C} \setminus \mathbb{R}$ (the former is called the *Cauchy transform* of μ). If μ has compact support then M_{μ} is well defined in a neighborhood of 0 and is the

²⁰¹⁰ Mathematics Subject Classification: 46L53, 60E10.

Key words and phrases: symmetrization, pushforward of order 2, Boolean convolution.

W. Młotkowski is supported by MNiSW: N N201 364436, N. Sakuma is supported by Grant-in-Aid for JSPS fellows.

The paper is in final form and no version of it will be published elsewhere.

generating function for the moment sequence $\int_{\mathbb{R}} x^m d\mu(x)$, $m \ge 0$, of μ . Note that $\mu \in \mathcal{M}$ is symmetric if and only if its Cauchy transform is odd: $G_{\mu}(-z) = -G_{\mu}(z)$ and M_{μ} is even: $M_{\mu}(-z) = M_{\mu}(z)$.

For $\mu \in \mathcal{M}$ we define $\mu^{(2)}$ as the pushforward of μ by the function $x \mapsto x^2$, i.e.

$$\mu^{(2)}(B) := \mu\left(\{x : x^2 \in B\}\right).$$
(2)

For example, if μ is a convex combination $\sum_{i=1}^{N} p_i \delta_{x_i}$, then $\mu^{(2)} = \sum_{i=1}^{N} p_i \delta_{x_i^2}$. For $\mu \in \mathcal{M}^+$ we define its symmetrization as the measure $\mu^{\mathbf{s}} \in \mathcal{M}^{\mathbf{s}}$ satisfying

$$\mu^{\mathbf{s}}(B) := \mu(\{x^2 : x \in B\})$$
(3)

for every symmetric Borel set *B*. For example, if $\mu = \sum_{i=1}^{N} p_i \delta_{x_i}$, with $x_i \ge 0$, then $\mu^{\mathbf{s}} = \frac{1}{2} \sum_{i=1}^{N} p_i \left(\delta_{-\sqrt{x_i}} + \delta_{\sqrt{x_i}} \right)$. It was observed in [2] that

$$\mu^{\mathbf{s}} = \frac{1}{2} \left(\delta_{-1} + \delta_1 \right) \boxtimes \mu^{\boxtimes \frac{1}{2}} \tag{4}$$

(where \boxtimes denotes the multiplicative free convolution), whenever $\mu^{\boxtimes \frac{1}{2}}$ exists.

The map $\mu \mapsto \mu^{\mathbf{s}}$ is a bijection $\mathcal{M}^+ \to \mathcal{M}^{\mathbf{s}}$ and the map $\nu \mapsto \nu^{(2)}$ restricted to $\mathcal{M}^{\mathbf{s}}$ is its inverse. For $\mu \in \mathcal{M}^+$ we have

$$G_{\mu^{\mathbf{s}}}(z) = zG_{\mu}(z^2), \qquad M_{\mu^{\mathbf{s}}}(z) = M_{\mu}(z^2),$$
(5)

while for $\nu \in \mathcal{M}$

$$2zG_{\nu^{(2)}}(z^2) = G_{\nu}(z) - G_{\nu}(-z), \qquad 2M_{\nu^{(2)}}(z^2) = M_{\nu}(z) + M_{\nu}(-z). \tag{6}$$

The Boolean convolution is a binary operation on \mathcal{M} which can be defined as: $\mu := \mu_1 \uplus \mu_2$ if and only if

$$\frac{1}{G_{\mu}(z)} = \frac{1}{G_{\mu_1}(z)} + \frac{1}{G_{\mu_2}(z)} - z,$$
(7)

or, equivalently,

$$\frac{1}{M_{\mu}(z)} = \frac{1}{M_{\mu_1}(z)} + \frac{1}{M_{\mu_2}(z)} - 1.$$
(8)

For $\mu \in \mathcal{M}, t > 0$ we define Boolean power $\mu^{\uplus t}$ by

$$\frac{1}{G_{\mu^{\uplus t}}(z)} := \frac{t}{G_{\mu}(z)} - (t-1)z \tag{9}$$

or

$$M_{\mu^{\uplus t}}(z) := \frac{M_{\mu}(z)}{(1-t)M_{\mu}(z)+t} \,. \tag{10}$$

It is clear that the class \mathcal{M}^{s} is closed under the Boolean convolutions and powers. The same is true for the class \mathcal{M}^{+} (see Remark 2.7 and Theorem 6.2 in [1]).

THEOREM 1.1. For $\mu_1, \mu_2, \mu \in \mathcal{M}^+$, $\nu_1, \nu_2, \nu \in \mathcal{M}^{\mathbf{s}}$ and t > 0 we have

$$(\mu_1 \uplus \mu_2)^{\mathbf{s}} = \mu_1^{\mathbf{s}} \uplus \mu_2^{\mathbf{s}}, \qquad (\mu^{\uplus t})^{\mathbf{s}} = (\mu^{\mathbf{s}})^{\uplus t}$$
(11)

and

$$(\nu_1 \uplus \nu_2)^{(2)} = \nu_1^{(2)} \uplus \nu_2^{(2)}, \qquad (\nu^{\uplus t})^{(2)} = (\nu^{(2)})^{\uplus t}. \tag{12}$$

Proof. Putting $\mu := \mu_1 \uplus \mu_2$ we have

$$\frac{1}{G_{\mu^{\mathfrak{s}}}(z)} = \frac{1}{z} \left(\frac{1}{G_{\mu_{1}}(z^{2})} + \frac{1}{G_{\mu_{2}}(z^{2})} - z^{2} \right) = \frac{1}{zG_{\mu_{1}}(z^{2})} + \frac{1}{zG_{\mu_{2}}(z^{2})} - z,$$

which is the reciprocal of the Cauchy transform of $\mu_1^{\mathbf{s}} \uplus \mu_2^{\mathbf{s}}$. Similarly, putting $\mu_t := \mu^{\uplus t}$ we have

$$\frac{1}{G_{\mu_t^s}(z)} = \frac{1}{z} \left(\frac{t}{G_{\mu}(z^2)} - (t-1)z^2 \right) = \frac{t}{zG_{\mu}(z^2)} - (t-1)z,$$

which is the reciprocal of the Cauchy transform of $(\mu^{\mathbf{s}})^{\uplus t}$.

To prove the second part one can put $\nu_1 := \mu_1^s, \, \nu_2 := \mu_2^s$.

EXAMPLE. Define

$$\begin{split} \mathbf{m} &:= \frac{1}{2\pi} \sqrt{\frac{4-x}{x}} \, dx \quad \text{on } [0,4] \quad \text{(the Marchenko-Pastur law)}, \\ \mathbf{w} &:= \frac{1}{2\pi} \sqrt{4-x^2} \, dx \quad \text{on } [-2,2] \quad \text{(the Wigner law)}, \\ \mathbf{a}_+ &:= \frac{1}{\pi \sqrt{x(4-x)}} \, dx \quad \text{on } [0,4] \quad \text{(the positive arcsine law)}, \\ \mathbf{a} &:= \frac{1}{\pi \sqrt{4-x^2}} \, dx \quad \text{on } [-2,2] \quad \text{(the symmetric arcsine law)}. \end{split}$$

Then

$$\begin{split} M_{\mathbf{m}}(z) &= \frac{2}{1 + \sqrt{1 - 4z}} \,, \qquad \qquad M_{\mathbf{w}}(z) &= \frac{2}{1 + \sqrt{1 - 4z^2}} \,, \\ M_{\mathbf{a}_+}(z) &= \frac{1}{\sqrt{1 - 4z}} \,, \qquad \qquad M_{\mathbf{a}}(z) &= \frac{1}{\sqrt{1 - 4z^2}} \,, \end{split}$$

which leads to the relations: $\mathbf{m}^{\mathbf{s}} = \mathbf{w}, \, \mathbf{a}^{\mathbf{s}}_{+} = \mathbf{a}, \, \mathbf{m}^{\oplus 2} = \mathbf{a}_{+}$ and $\mathbf{w}^{\oplus 2} = \mathbf{a}$. Hence

$$(\mathbf{m}^{\mathbf{s}})^{\oplus 2} = (\mathbf{m}^{\oplus 2})^{\mathbf{s}} = \mathbf{a}$$
 and $(\mathbf{w}^{\oplus 2})^{(2)} = (\mathbf{w}^{(2)})^{\oplus 2} = \mathbf{a}_+.$

REMARK. Note that in Theorem 1.1 we cannot replace \oplus by the classical or free convolution. For example, if $\mu_1 := \frac{1}{2}(\delta_{-a} + \delta_a)$ and $\mu_2 := \frac{1}{2}(\delta_{-b} + \delta_b)$ then

$$\mu_1^{(2)} * \mu_2^{(2)} = \delta_{a^2+b^2}$$
 while $(\mu_1 * \mu_2)^{(2)} = \frac{1}{2} \left(\delta_{(a+b)^2} + \delta_{(a-b)^2} \right).$

For the free convolution let $\mathbf{m}_t := \mathbf{m}^{\boxplus t}$ and $\mathbf{w}_t := \mathbf{w}^{\boxplus t}$. These measures exist for all t > 0 (see [5, 3]) and

$$\mathbf{m}_t = \max\{1 - t, 0\}\delta_0 + \frac{\sqrt{4t - (x - 1 - t)^2}}{2\pi x} \, dx,$$

with the absolutely continuous part supported on $\left[(1-\sqrt{t})^2,(1+\sqrt{t})^2\right]$,

$$\mathbf{w}_t = \frac{1}{2\pi t} \sqrt{4t - x^2} \, dx$$

on $[-2\sqrt{t}, 2\sqrt{t}]$. The moment generating functions are

$$M_{\mathbf{m}_t}(z) = \frac{2}{1 + (1 - t)z + \sqrt{(1 - (1 + t)z)^2 - 4tz^2}}$$

and

$$M_{\mathbf{w}_{t}}(z) = \frac{2}{1 + \sqrt{1 - 4tz^{2}}}$$

Therefore if $0 < t \neq 1$ then the measure $(\mathbf{m}^{\boxplus t})^{\mathbf{s}} = \mathbf{m}_t^{\mathbf{s}}$ is different from $(\mathbf{m}^{\mathbf{s}})^{\boxplus t} = \mathbf{w}_t$.

Note however that formulae (11) would be true if we replaced the Boolean convolution $\exists \forall by * (resp. by \boxplus)$ and the map $\mu \mapsto \mu^{\mathbf{s}}$ by the map $\mu \mapsto \mu * \hat{\mu}$, with $t \in \mathbb{N}$ (resp. $\mu \mapsto \mu \boxplus \hat{\mu}$, with $t \ge 1$), where $\hat{\mu}$ denotes the *reflection* of μ , i.e. $\hat{\mu}(B) := \mu(-B)$.

THEOREM 1.2. Let $\nu \in \mathcal{M}$ and $0 < t \neq 1$. Then the equality

$$\left(\nu^{\uplus t}\right)^{(2)} = \left(\nu^{(2)}\right)^{\uplus t}$$

holds if and only if ν is symmetric.

Proof. Put
$$\nu_1 := (\nu^{\oplus t})^{(2)}, \nu_2 := (\nu^{(2)})^{\oplus t}, M := M_{\nu}(z) \text{ and } N := M_{\nu}(-z).$$
 Then

$$M_{\nu_1}(z^2) = \frac{M}{2[(1-t)M+t]} + \frac{N}{2[(1-t)N+t]}$$

$$= \frac{2(1-t)MN + t(M+N)}{2[(1-t)M+t][(1-t)N+t]}$$

$$= \frac{2(1-t)^2MN(M+N) + 4t(1-t)MN + t(1-t)(M+N)^2 + 2t^2(M+N)}{2[(1-t)M+t][(1-t)N+t][(1-t)(M+N) + 2t]}$$

while

$$M_{\nu_2}(z^2) = \frac{M+N}{(1-t)(M+N)+2t}$$

= $\frac{2(1-t)^2 M N (M+N) + 2t(1-t)(M+N)^2 + 2t^2 (M+N)}{2[(1-t)M+t][(1-t)N+t][(1-t)(M+N)+2t]}$.

Therefore

$$M_{\nu_2}(z^2) - M_{\nu_1}(z^2) = \frac{t(1-t)(M-N)^2}{2[(1-t)M+t][(1-t)N+t][(1-t)(M+N)+2t]},$$

which proves our statement. \blacksquare

2. The case of nonsymmetric measures. In this part we are going to study circumstances in which the equality

$$\mu_1^{(2)} \uplus \mu_2^{(2)} = (\mu_1 \uplus \mu_2)^{(2)} \tag{13}$$

holds. Putting $\eta_1 := (\mu_1 \uplus \mu_2)^{(2)}, \ \eta_2 := \mu_1^{(2)} \uplus \mu_2^{(2)}, \ M_1 := M_{\mu_1}(z), \ N_1 := M_{\mu_1}(-z), \ M_2 := M_{\mu_2}(z)$ and $N_2 := M_{\mu_2}(-z)$ we have

$$M_{\eta_1}(z^2) = \frac{M_1 M_2}{2(M_1 + M_2 - M_1 M_2)} + \frac{N_1 N_2}{2(N_1 + N_2 - N_1 N_2)},$$
(14)

$$M_{\eta_2}(z^2) = \frac{(M_1 + N_1)(M_2 + N_2)}{2(M_1 + N_1 + M_2 + N_2) - (M_1 + N_1)(M_2 + N_2)}.$$
(15)

THEOREM 2.1. Assume that $\mu_1 \in \mathcal{M}^s$, $\mu_2 \in \mathcal{M}$ and that (13) holds. Then either $\mu_2 \in \mathcal{M}^s$ or $\mu_1 = \delta_0$.

274

Proof. Putting $M := M_1 = N_1$ we have

$$M_{\eta_1}(z^2) - M_{\eta_2}(z^2) = \frac{M^2(M-1)(M_2 - N_2)^2}{2(M+M_2 - MM_2)(M+N_2 - MN_2)(2M+M_2 + N_2 - MM_2 - MN_2)},$$

which yields our statement.

From now on we assume that $\mu_1 = \delta_{x_0}$, with $x_0 \neq 0$. Then $M_1(z) = 1/(1 - x_0 z)$, $N_1(z) = M_1(-z) = 1/(1 + x_0 z)$ and

$$M_{\eta_1}(z^2) - M_{\eta_2}(z^2) = \frac{x_0 z (M_2 + N_2) [2M_2 - 2N_2 - x_0 z (M_2 + N_2 - 2M_2 N_2)]}{2(1 - x_0 z M_2)(1 + x_0 z N_2) [2 - x_0^2 z^2 (M_2 + N_2)]}$$

Therefore we have

THEOREM 2.2. Assume that $\mu_1 = \delta_{x_0}$ with $x_0 \neq 0$. Then (13) holds if and only if

$$2M - 2N - x_0 z(M + N - 2MN) = 0, (16)$$

where $M := M_{\mu_2}(z), N := M_{\mu_2}(-z).$

COROLLARY 2.3. If $\mu_1 = \delta_{x_0}$, $x_0 \neq 0$, μ_2 has compact support and if (13) holds then the mean of μ_2 is 0.

Proof. Since μ_2 has compact support, M_{μ_2} is well defined as an analytic function in a neighborhood of 0, with $M_{\mu_2}(0) = 1$. It is sufficient to differentiate both sides of (16) at z = 0 to see that $M'_{\mu_2}(0) = 0$.

Finally, we confine ourselves to a very particular case.

THEOREM 2.4. Assume that $\mu_1 = \delta_{x_0}$, $\mu_2 = p\delta_{x_1} + (1-p)\delta_{x_2}$, with $x_0 \neq 0$, $x_1 \neq x_2$, 0 . Then (13) holds if and only if

$$px_1 + (1-p)x_2 = 0 \tag{17}$$

and

$$x_0 + 2x_1 + 2x_2 = 0. (18)$$

Note that (17) is a consequence of Corollary 2.3.

Proof. Since

$$M_2 := M_{\mu_2}(z) = \frac{p}{1 - x_1 z} + \frac{1 - p}{1 - x_2 z}, \qquad N_2 := M_{\mu_2}(-z) = \frac{p}{1 + x_1 z} + \frac{1 - p}{1 + x_2 z},$$

we have

$$2M_2 - 2N_2 - x_0 z (M_2 + N_2 - 2M_2N_2)$$

$$= \frac{2z [2px_1 + 2(1-p)x_2 + x_0 z^2 p (1-p)(x_1 - x_2)^2 - 2z^2 x_1 x_2 ((1-p)x_1 + px_2)]}{(1-x_1 z)(1+x_1 z)(1-x_2 z)(1+x_2 z)}$$

$$= \frac{4z [px_1 + (1-p)x_2] + 2z^3 [x_0 p (1-p)(x_1 - x_2)^2 - 2x_1 x_2 ((1-p)x_1 + px_2)]}{(1-x_1 z)(1+x_1 z)(1-x_2 z)(1+x_2 z)}$$

This rational function is equal to 0 if and only if $px_1 + (1-p)x_2 = 0$ (which implies, in particular, that $x_1 \cdot x_2 < 0$) and

$$x_0 p(1-p)(x_1-x_2)^2 - 2x_1 x_2 ((1-p)x_1 + px_2) = 0.$$
⁽¹⁹⁾

By (17) we have $p(x_1 - x_2) = -x_2$ and $(1 - p)(x_1 - x_2) = x_1$ so the left hand side of (19) can be written as

$$-x_1x_2(x_0+2(1-p)x_1+2px_2) = -x_1x_2(x_0+2x_1+2x_2),$$

which concludes the proof. \blacksquare

References

- [1] T. Hasebe, Monotone convolution semigroups, Studia Math. 200 (2010), 175–199.
- M. Hinz, W. Młotkowski, Multiplicative free square of the free Poisson measure and examples of free symmetrization, Colloq. Math. 119 (2010), 127–136.
- [3] A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, London Math. Soc. Lecture Note Ser. 335, Cambridge Univ. Press, Cambridge, 2006.
- [4] R. Speicher, R. Woroudi, Boolean convolution, in: Free Probability Theory (Waterloo, 1995), Fields Inst. Commun. 12, Amer. Math. Soc., Providence, RI, 1997, 267–279.
- [5] D. V. Voiculescu, K. J. Dykema, A. Nica, Free Random Variables. A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups, CRM Monogr. Ser. 1, Amer. Math. Soc., Providence, RI, 1992.