SYMMETRIZATION OF PROBABILITY MEASURES, PUSHFORWARD OF ORDER 2 AND THE BOOLEAN CONVOLUTION

WOJCIECH MŁOTKOWSKI
Mathematical Institute, University of Wrocław Pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland
E-mail: mlotkow@math.uni.wroc.pl
NORIYOSHI SAKUMA
Department of Mathematics, Aichi University of Education
1 Hirosawa, Igaya-cho, Kariya-shi, 448-8542, Japan
E-mail: sakuma@auecc.aichi-edu.ac.jp

Abstract

We study relations between the Boolean convolution and the symmetrization and the pushforward of order 2 . In particular we prove that if μ_{1}, μ_{2} are probability measures on $[0, \infty)$ then $\left(\mu_{1} \uplus \mu_{2}\right)^{\mathbf{s}}=\mu_{1}^{\mathbf{s}} \uplus \mu_{2}^{\mathbf{s}}$ and if ν_{1}, ν_{2} are symmetric then $\left(\nu_{1} \uplus \nu_{2}\right)^{(2)}=\nu_{1}^{(2)} \uplus \nu_{2}^{(2)}$. Finally we investigate necessary and sufficient conditions under which the latter equality holds.

1. Pushforward of order 2 versus symmetrization. Let \mathcal{M} denote the class of probability measures on the real line \mathbb{R}. We will distinguish two subclasses of \mathcal{M}, namely $\mathcal{M}^{\text {s }}$ consisting of symmetric measures (i.e. such that $\mu(-B)=\mu(B)$ for every Borel subset of \mathbb{R}) and \mathcal{M}^{+}consisting of those measures which have support contained in the positive halfline $[0,+\infty)$.

For $\mu \in \mathcal{M}$ we define its two transforms:

$$
\begin{equation*}
G_{\mu}(z):=\int_{\mathbb{R}} \frac{d \mu(t)}{z-t}, \quad M_{\mu}(z):=\frac{1}{z} G_{\mu}\left(\frac{1}{z}\right) \tag{1}
\end{equation*}
$$

which are analytic functions on $\mathbb{C} \backslash \mathbb{R}$ (the former is called the Cauchy transform of μ). If μ has compact support then M_{μ} is well defined in a neighborhood of 0 and is the

2010 Mathematics Subject Classification: 46L53, 60E10.
Key words and phrases: symmetrization, pushforward of order 2, Boolean convolution.
W. Młotkowski is supported by MNiSW: N N201 364436, N. Sakuma is supported by Grant-inAid for JSPS fellows.
The paper is in final form and no version of it will be published elsewhere.
generating function for the moment sequence $\int_{\mathbb{R}} x^{m} d \mu(x), m \geq 0$, of μ. Note that $\mu \in \mathcal{M}$ is symmetric if and only if its Cauchy transform is odd: $G_{\mu}(-z)=-G_{\mu}(z)$ and M_{μ} is even: $M_{\mu}(-z)=M_{\mu}(z)$.

For $\mu \in \mathcal{M}$ we define $\mu^{(2)}$ as the pushforward of μ by the function $x \mapsto x^{2}$, i.e.

$$
\begin{equation*}
\mu^{(2)}(B):=\mu\left(\left\{x: x^{2} \in B\right\}\right) . \tag{2}
\end{equation*}
$$

For example, if μ is a convex combination $\sum_{i=1}^{N} p_{i} \delta_{x_{i}}$, then $\mu^{(2)}=\sum_{i=1}^{N} p_{i} \delta_{x_{i}^{2}}$.
For $\mu \in \mathcal{M}^{+}$we define its symmetrization as the measure $\mu^{\mathbf{s}} \in \mathcal{M}^{\mathbf{s}}$ satisfying

$$
\begin{equation*}
\mu^{\mathbf{s}}(B):=\mu\left(\left\{x^{2}: x \in B\right\}\right) \tag{3}
\end{equation*}
$$

for every symmetric Borel set B. For example, if $\mu=\sum_{i=1}^{N} p_{i} \delta_{x_{i}}$, with $x_{i} \geq 0$, then $\mu^{\mathbf{s}}=\frac{1}{2} \sum_{i=1}^{N} p_{i}\left(\delta_{-\sqrt{x_{i}}}+\delta_{\sqrt{x_{i}}}\right)$. It was observed in [2] that

$$
\begin{equation*}
\mu^{\mathbf{s}}=\frac{1}{2}\left(\delta_{-1}+\delta_{1}\right) \boxtimes \mu^{\boxtimes \frac{1}{2}} \tag{4}
\end{equation*}
$$

(where \boxtimes denotes the multiplicative free convolution), whenever $\mu^{\boxtimes \frac{1}{2}}$ exists.
The map $\mu \mapsto \mu^{\mathbf{s}}$ is a bijection $\mathcal{M}^{+} \rightarrow \mathcal{M}^{\mathbf{s}}$ and the map $\nu \mapsto \nu^{(2)}$ restricted to $\mathcal{M}^{\mathbf{s}}$ is its inverse. For $\mu \in \mathcal{M}^{+}$we have

$$
\begin{equation*}
G_{\mu^{\mathrm{s}}}(z)=z G_{\mu}\left(z^{2}\right), \quad M_{\mu^{\mathrm{s}}}(z)=M_{\mu}\left(z^{2}\right) \tag{5}
\end{equation*}
$$

while for $\nu \in \mathcal{M}$

$$
\begin{equation*}
2 z G_{\nu^{(2)}}\left(z^{2}\right)=G_{\nu}(z)-G_{\nu}(-z), \quad 2 M_{\nu^{(2)}}\left(z^{2}\right)=M_{\nu}(z)+M_{\nu}(-z) \tag{6}
\end{equation*}
$$

The Boolean convolution is a binary operation on \mathcal{M} which can be defined as: $\mu:=\mu_{1} \uplus \mu_{2}$ if and only if

$$
\begin{equation*}
\frac{1}{G_{\mu}(z)}=\frac{1}{G_{\mu_{1}}(z)}+\frac{1}{G_{\mu_{2}}(z)}-z \tag{7}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\frac{1}{M_{\mu}(z)}=\frac{1}{M_{\mu_{1}}(z)}+\frac{1}{M_{\mu_{2}}(z)}-1 \tag{8}
\end{equation*}
$$

For $\mu \in \mathcal{M}, t>0$ we define Boolean power $\mu^{\uplus t}$ by

$$
\begin{equation*}
\frac{1}{G_{\mu^{\uplus t}}(z)}:=\frac{t}{G_{\mu}(z)}-(t-1) z \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
M_{\mu^{\uplus t}}(z):=\frac{M_{\mu}(z)}{(1-t) M_{\mu}(z)+t} . \tag{10}
\end{equation*}
$$

It is clear that the class $\mathcal{M}^{\mathbf{s}}$ is closed under the Boolean convolutions and powers. The same is true for the class \mathcal{M}^{+}(see Remark 2.7 and Theorem 6.2 in [1]).

Theorem 1.1. For $\mu_{1}, \mu_{2}, \mu \in \mathcal{M}^{+}, \nu_{1}, \nu_{2}, \nu \in \mathcal{M}^{\mathbf{s}}$ and $t>0$ we have

$$
\begin{equation*}
\left(\mu_{1} \uplus \mu_{2}\right)^{\mathbf{s}}=\mu_{1}^{\mathbf{s}} \uplus \mu_{2}^{\mathbf{s}}, \quad\left(\mu^{\uplus t}\right)^{\mathbf{s}}=\left(\mu^{\mathbf{s}}\right)^{\uplus t} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nu_{1} \uplus \nu_{2}\right)^{(2)}=\nu_{1}^{(2)} \uplus \nu_{2}^{(2)}, \quad\left(\nu^{\uplus t}\right)^{(2)}=\left(\nu^{(2)}\right)^{\uplus t} . \tag{12}
\end{equation*}
$$

Proof. Putting $\mu:=\mu_{1} \uplus \mu_{2}$ we have

$$
\frac{1}{G_{\mu^{\mathrm{s}}}(z)}=\frac{1}{z}\left(\frac{1}{G_{\mu_{1}}\left(z^{2}\right)}+\frac{1}{G_{\mu_{2}}\left(z^{2}\right)}-z^{2}\right)=\frac{1}{z G_{\mu_{1}}\left(z^{2}\right)}+\frac{1}{z G_{\mu_{2}}\left(z^{2}\right)}-z,
$$

which is the reciprocal of the Cauchy transform of $\mu_{1}^{\mathbf{s}} \uplus \mu_{2}^{\mathbf{s}}$. Similarly, putting $\mu_{t}:=\mu^{\uplus t}$ we have

$$
\frac{1}{G_{\mu_{t}^{\mathrm{s}}}(z)}=\frac{1}{z}\left(\frac{t}{G_{\mu}\left(z^{2}\right)}-(t-1) z^{2}\right)=\frac{t}{z G_{\mu}\left(z^{2}\right)}-(t-1) z
$$

which is the reciprocal of the Cauchy transform of $\left(\mu^{\mathbf{s}}\right)^{\uplus t}$.
To prove the second part one can put $\nu_{1}:=\mu_{1}^{\mathrm{s}}, \nu_{2}:=\mu_{2}^{\mathrm{s}}$.
Example. Define

$$
\begin{array}{rlll}
\mathbf{m} & :=\frac{1}{2 \pi} \sqrt{\frac{4-x}{x}} d x & \text { on }[0,4] & \text { (the Marchenko-Pastur law), } \\
\mathbf{w} & :=\frac{1}{2 \pi} \sqrt{4-x^{2}} d x & \text { on }[-2,2] & \text { (the Wigner law), } \\
\mathbf{a}_{+} & :=\frac{1}{\pi \sqrt{x(4-x)}} d x & \text { on }[0,4] & \text { (the positive arcsine law), } \\
\mathbf{a} & :=\frac{1}{\pi \sqrt{4-x^{2}}} d x & \text { on }[-2,2] & \text { (the symmetric arcsine law). }
\end{array}
$$

Then

$$
\begin{aligned}
M_{\mathbf{m}}(z) & =\frac{2}{1+\sqrt{1-4 z}}, & M_{\mathbf{w}}(z) & =\frac{2}{1+\sqrt{1-4 z^{2}}} \\
M_{\mathbf{a}_{+}}(z) & =\frac{1}{\sqrt{1-4 z}}, & M_{\mathbf{a}}(z) & =\frac{1}{\sqrt{1-4 z^{2}}}
\end{aligned}
$$

which leads to the relations: $\mathbf{m}^{\mathbf{s}}=\mathbf{w}, \mathbf{a}_{+}^{\mathbf{s}}=\mathbf{a}, \mathbf{m}^{\uplus 2}=\mathbf{a}_{+}$and $\mathbf{w}^{\uplus 2}=\mathbf{a}$. Hence

$$
\left(\mathbf{m}^{\mathbf{s}}\right)^{\uplus 2}=\left(\mathbf{m}^{\uplus 2}\right)^{\mathbf{s}}=\mathbf{a} \quad \text { and } \quad\left(\mathbf{w}^{\uplus 2}\right)^{(2)}=\left(\mathbf{w}^{(2)}\right)^{\uplus 2}=\mathbf{a}_{+} .
$$

Remark. Note that in Theorem 1.1 we cannot replace \uplus by the classical or free convolution. For example, if $\mu_{1}:=\frac{1}{2}\left(\delta_{-a}+\delta_{a}\right)$ and $\mu_{2}:=\frac{1}{2}\left(\delta_{-b}+\delta_{b}\right)$ then

$$
\mu_{1}^{(2)} * \mu_{2}^{(2)}=\delta_{a^{2}+b^{2}} \quad \text { while } \quad\left(\mu_{1} * \mu_{2}\right)^{(2)}=\frac{1}{2}\left(\delta_{(a+b)^{2}}+\delta_{(a-b)^{2}}\right)
$$

For the free convolution let $\mathbf{m}_{t}:=\mathbf{m}^{\boxplus t}$ and $\mathbf{w}_{t}:=\mathbf{w}^{\boxplus t}$. These measures exist for all $t>0$ (see [5, 3]) and

$$
\mathbf{m}_{t}=\max \{1-t, 0\} \delta_{0}+\frac{\sqrt{4 t-(x-1-t)^{2}}}{2 \pi x} d x
$$

with the absolutely continuous part supported on $\left[(1-\sqrt{t})^{2},(1+\sqrt{t})^{2}\right]$,

$$
\mathbf{w}_{t}=\frac{1}{2 \pi t} \sqrt{4 t-x^{2}} d x
$$

on $[-2 \sqrt{t}, 2 \sqrt{t}]$. The moment generating functions are

$$
M_{\mathbf{m}_{t}}(z)=\frac{2}{1+(1-t) z+\sqrt{(1-(1+t) z)^{2}-4 t z^{2}}}
$$

and

$$
M_{\mathbf{w}_{t}}(z)=\frac{2}{1+\sqrt{1-4 t z^{2}}}
$$

Therefore if $0<t \neq 1$ then the measure $\left(\mathbf{m}^{\boxplus t}\right)^{\mathbf{s}}=\mathbf{m}_{t}^{\mathbf{s}}$ is different from $\left(\mathbf{m}^{\mathbf{s}}\right)^{\boxplus t}=\mathbf{w}_{t}$.
Note however that formulae (11) would be true if we replaced the Boolean convolution \uplus by $*$ (resp. by \boxplus) and the map $\mu \mapsto \mu^{\mathbf{s}}$ by the map $\mu \mapsto \mu * \widehat{\mu}$, with $t \in \mathbb{N}$ (resp. $\mu \mapsto \mu \boxplus \widehat{\mu}$, with $t \geq 1$), where $\widehat{\mu}$ denotes the reflection of μ, i.e. $\widehat{\mu}(B):=\mu(-B)$.
Theorem 1.2. Let $\nu \in \mathcal{M}$ and $0<t \neq 1$. Then the equality

$$
\left(\nu^{\uplus t}\right)^{(2)}=\left(\nu^{(2)}\right)^{\uplus t}
$$

holds if and only if ν is symmetric.
Proof. Put $\nu_{1}:=\left(\nu^{\uplus t}\right)^{(2)}, \nu_{2}:=\left(\nu^{(2)}\right)^{\uplus t}, M:=M_{\nu}(z)$ and $N:=M_{\nu}(-z)$. Then

$$
\begin{aligned}
M_{\nu_{1}}\left(z^{2}\right) & =\frac{M}{2[(1-t) M+t]}+\frac{N}{2[(1-t) N+t]} \\
& =\frac{2(1-t) M N+t(M+N)}{2[(1-t) M+t][(1-t) N+t]} \\
& =\frac{2(1-t)^{2} M N(M+N)+4 t(1-t) M N+t(1-t)(M+N)^{2}+2 t^{2}(M+N)}{2[(1-t) M+t][(1-t) N+t][(1-t)(M+N)+2 t]},
\end{aligned}
$$

while

$$
\begin{aligned}
M_{\nu_{2}}\left(z^{2}\right) & =\frac{M+N}{(1-t)(M+N)+2 t} \\
& =\frac{2(1-t)^{2} M N(M+N)+2 t(1-t)(M+N)^{2}+2 t^{2}(M+N)}{2[(1-t) M+t][(1-t) N+t][(1-t)(M+N)+2 t]} .
\end{aligned}
$$

Therefore

$$
M_{\nu_{2}}\left(z^{2}\right)-M_{\nu_{1}}\left(z^{2}\right)=\frac{t(1-t)(M-N)^{2}}{2[(1-t) M+t][(1-t) N+t][(1-t)(M+N)+2 t]}
$$

which proves our statement.
2. The case of nonsymmetric measures. In this part we are going to study circumstances in which the equality

$$
\begin{equation*}
\mu_{1}^{(2)} \uplus \mu_{2}^{(2)}=\left(\mu_{1} \uplus \mu_{2}\right)^{(2)} \tag{13}
\end{equation*}
$$

holds. Putting $\eta_{1}:=\left(\mu_{1} \uplus \mu_{2}\right)^{(2)}, \eta_{2}:=\mu_{1}^{(2)} \uplus \mu_{2}^{(2)}, M_{1}:=M_{\mu_{1}}(z), N_{1}:=M_{\mu_{1}}(-z)$, $M_{2}:=M_{\mu_{2}}(z)$ and $N_{2}:=M_{\mu_{2}}(-z)$ we have

$$
\begin{align*}
M_{\eta_{1}}\left(z^{2}\right) & =\frac{M_{1} M_{2}}{2\left(M_{1}+M_{2}-M_{1} M_{2}\right)}+\frac{N_{1} N_{2}}{2\left(N_{1}+N_{2}-N_{1} N_{2}\right)} \tag{14}\\
M_{\eta_{2}}\left(z^{2}\right) & =\frac{\left(M_{1}+N_{1}\right)\left(M_{2}+N_{2}\right)}{2\left(M_{1}+N_{1}+M_{2}+N_{2}\right)-\left(M_{1}+N_{1}\right)\left(M_{2}+N_{2}\right)} \tag{15}
\end{align*}
$$

Theorem 2.1. Assume that $\mu_{1} \in \mathcal{M}^{\mathrm{s}}, \mu_{2} \in \mathcal{M}$ and that 13) holds. Then either $\mu_{2} \in \mathcal{M}^{\mathrm{s}}$ or $\mu_{1}=\delta_{0}$.

Proof. Putting $M:=M_{1}=N_{1}$ we have

$$
\begin{aligned}
& M_{\eta_{1}}\left(z^{2}\right)-M_{\eta_{2}}\left(z^{2}\right) \\
& \quad=\frac{M^{2}(M-1)\left(M_{2}-N_{2}\right)^{2}}{2\left(M+M_{2}-M M_{2}\right)\left(M+N_{2}-M N_{2}\right)\left(2 M+M_{2}+N_{2}-M M_{2}-M N_{2}\right)},
\end{aligned}
$$

which yields our statement.
From now on we assume that $\mu_{1}=\delta_{x_{0}}$, with $x_{0} \neq 0$. Then $M_{1}(z)=1 /\left(1-x_{0} z\right)$, $N_{1}(z)=M_{1}(-z)=1 /\left(1+x_{0} z\right)$ and

$$
M_{\eta_{1}}\left(z^{2}\right)-M_{\eta_{2}}\left(z^{2}\right)=\frac{x_{0} z\left(M_{2}+N_{2}\right)\left[2 M_{2}-2 N_{2}-x_{0} z\left(M_{2}+N_{2}-2 M_{2} N_{2}\right)\right]}{2\left(1-x_{0} z M_{2}\right)\left(1+x_{0} z N_{2}\right)\left[2-x_{0}^{2} z^{2}\left(M_{2}+N_{2}\right)\right]} .
$$

Therefore we have
Theorem 2.2. Assume that $\mu_{1}=\delta_{x_{0}}$ with $x_{0} \neq 0$. Then 13 holds if and only if

$$
\begin{equation*}
2 M-2 N-x_{0} z(M+N-2 M N)=0 \tag{16}
\end{equation*}
$$

where $M:=M_{\mu_{2}}(z), N:=M_{\mu_{2}}(-z)$.
Corollary 2.3. If $\mu_{1}=\delta_{x_{0}}, x_{0} \neq 0, \mu_{2}$ has compact support and if (13) holds then the mean of μ_{2} is 0 .
Proof. Since μ_{2} has compact support, $M_{\mu_{2}}$ is well defined as an analytic function in a neighborhood of 0 , with $M_{\mu_{2}}(0)=1$. It is sufficient to differentiate both sides of (16) at $z=0$ to see that $M_{\mu_{2}}^{\prime}(0)=0$.

Finally, we confine ourselves to a very particular case.
Theorem 2.4. Assume that $\mu_{1}=\delta_{x_{0}}, \mu_{2}=p \delta_{x_{1}}+(1-p) \delta_{x_{2}}$, with $x_{0} \neq 0, x_{1} \neq x_{2}$, $0<p<1$. Then 13) holds if and only if

$$
\begin{equation*}
p x_{1}+(1-p) x_{2}=0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{0}+2 x_{1}+2 x_{2}=0 \tag{18}
\end{equation*}
$$

Note that (17) is a consequence of Corollary 2.3 .
Proof. Since

$$
M_{2}:=M_{\mu_{2}}(z)=\frac{p}{1-x_{1} z}+\frac{1-p}{1-x_{2} z}, \quad N_{2}:=M_{\mu_{2}}(-z)=\frac{p}{1+x_{1} z}+\frac{1-p}{1+x_{2} z}
$$

we have

$$
\begin{aligned}
& 2 M_{2}-2 N_{2}-x_{0} z\left(M_{2}+N_{2}-2 M_{2} N_{2}\right) \\
& =\frac{2 z\left[2 p x_{1}+2(1-p) x_{2}+x_{0} z^{2} p(1-p)\left(x_{1}-x_{2}\right)^{2}-2 z^{2} x_{1} x_{2}\left((1-p) x_{1}+p x_{2}\right)\right]}{\left(1-x_{1} z\right)\left(1+x_{1} z\right)\left(1-x_{2} z\right)\left(1+x_{2} z\right)} \\
& =\frac{4 z\left[p x_{1}+(1-p) x_{2}\right]+2 z^{3}\left[x_{0} p(1-p)\left(x_{1}-x_{2}\right)^{2}-2 x_{1} x_{2}\left((1-p) x_{1}+p x_{2}\right)\right]}{\left(1-x_{1} z\right)\left(1+x_{1} z\right)\left(1-x_{2} z\right)\left(1+x_{2} z\right)}
\end{aligned}
$$

This rational function is equal to 0 if and only if $p x_{1}+(1-p) x_{2}=0$ (which implies, in particular, that $\left.x_{1} \cdot x_{2}<0\right)$ and

$$
\begin{equation*}
x_{0} p(1-p)\left(x_{1}-x_{2}\right)^{2}-2 x_{1} x_{2}\left((1-p) x_{1}+p x_{2}\right)=0 \tag{19}
\end{equation*}
$$

By (17) we have $p\left(x_{1}-x_{2}\right)=-x_{2}$ and $(1-p)\left(x_{1}-x_{2}\right)=x_{1}$ so the left hand side of 19 can be written as

$$
-x_{1} x_{2}\left(x_{0}+2(1-p) x_{1}+2 p x_{2}\right)=-x_{1} x_{2}\left(x_{0}+2 x_{1}+2 x_{2}\right),
$$

which concludes the proof.

References

[1] T. Hasebe, Monotone convolution semigroups, Studia Math. 200 (2010), 175-199.
[2] M. Hinz, W. Młotkowski, Multiplicative free square of the free Poisson measure and examples of free symmetrization, Colloq. Math. 119 (2010), 127-136.
[3] A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, London Math. Soc. Lecture Note Ser. 335, Cambridge Univ. Press, Cambridge, 2006.
[4] R. Speicher, R. Woroudi, Boolean convolution, in: Free Probability Theory (Waterloo, 1995), Fields Inst. Commun. 12, Amer. Math. Soc., Providence, RI, 1997, 267-279.
[5] D. V. Voiculescu, K. J. Dykema, A. Nica, Free Random Variables. A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups, CRM Monogr. Ser. 1, Amer. Math. Soc., Providence, RI, 1992.

