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Abstract. We study relations between the Boolean convolution and the symmetrization and
the pushforward of order 2. In particular we prove that if µ1, µ2 are probability measures on
[0,∞) then (µ1 ] µ2)

s = µs
1 ] µs

2 and if ν1, ν2 are symmetric then (ν1 ] ν2)(2) = ν
(2)
1 ] ν(2)

2 .
Finally we investigate necessary and sufficient conditions under which the latter equality holds.

1. Pushforward of order 2 versus symmetrization. Let M denote the class of
probability measures on the real line R. We will distinguish two subclasses ofM, namely
Ms consisting of symmetric measures (i.e. such that µ(−B) = µ(B) for every Borel
subset of R) andM+ consisting of those measures which have support contained in the
positive halfline [0,+∞).

For µ ∈M we define its two transforms:

Gµ(z) :=
∫

R

dµ(t)
z − t

, Mµ(z) :=
1
z
Gµ

(1
z

)
, (1)

which are analytic functions on C \ R (the former is called the Cauchy transform of µ).
If µ has compact support then Mµ is well defined in a neighborhood of 0 and is the
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generating function for the moment sequence
∫

R x
m dµ(x), m ≥ 0, of µ. Note that µ ∈M

is symmetric if and only if its Cauchy transform is odd: Gµ(−z) = −Gµ(z) and Mµ is
even: Mµ(−z) = Mµ(z).

For µ ∈M we define µ(2) as the pushforward of µ by the function x 7→ x2, i.e.

µ(2)(B) := µ
(
{x : x2 ∈ B}

)
. (2)

For example, if µ is a convex combination
∑N
i=1 piδxi , then µ(2) =

∑N
i=1 piδx2

i
.

For µ ∈M+ we define its symmetrization as the measure µs ∈Ms satisfying

µs(B) := µ({x2 : x ∈ B}) (3)

for every symmetric Borel set B. For example, if µ =
∑N
i=1 piδxi

, with xi ≥ 0, then
µs = 1

2

∑N
i=1 pi

(
δ−√xi

+ δ√xi

)
. It was observed in [2] that

µs =
1
2

(δ−1 + δ1) � µ� 1
2 (4)

(where � denotes the multiplicative free convolution), whenever µ� 1
2 exists.

The map µ 7→ µs is a bijectionM+ →Ms and the map ν 7→ ν(2) restricted toMs is
its inverse. For µ ∈M+ we have

Gµs(z) = zGµ(z2), Mµs(z) = Mµ(z2), (5)

while for ν ∈M

2zGν(2)(z2) = Gν(z)−Gν(−z), 2Mν(2)(z2) = Mν(z) +Mν(−z). (6)

The Boolean convolution is a binary operation on M which can be defined as:
µ := µ1 ] µ2 if and only if

1
Gµ(z)

=
1

Gµ1(z)
+

1
Gµ2(z)

− z, (7)

or, equivalently,
1

Mµ(z)
=

1
Mµ1(z)

+
1

Mµ2(z)
− 1. (8)

For µ ∈M, t > 0 we define Boolean power µ]t by
1

Gµ]t(z)
:=

t

Gµ(z)
− (t− 1)z (9)

or

Mµ]t(z) :=
Mµ(z)

(1− t)Mµ(z) + t
. (10)

It is clear that the class Ms is closed under the Boolean convolutions and powers.
The same is true for the classM+ (see Remark 2.7 and Theorem 6.2 in [1]).

Theorem 1.1. For µ1, µ2, µ ∈M+, ν1, ν2, ν ∈Ms and t > 0 we have

(µ1 ] µ2)s = µs
1 ] µs

2, (µ]t)s = (µs)]t (11)

and

(ν1 ] ν2)(2) = ν
(2)
1 ] ν(2)

2 ,
(
ν]t
)(2) =

(
ν(2)

)]t
. (12)



THE SYMMETRIZATION AND THE BOOLEAN CONVOLUTION 273

Proof. Putting µ := µ1 ] µ2 we have
1

Gµs(z)
=

1
z

(
1

Gµ1(z2)
+

1
Gµ2(z2)

− z2

)
=

1
zGµ1(z2)

+
1

zGµ2(z2)
− z,

which is the reciprocal of the Cauchy transform of µs
1 ] µs

2. Similarly, putting µt := µ]t

we have
1

Gµs
t
(z)

=
1
z

(
t

Gµ(z2)
− (t− 1)z2

)
=

t

zGµ(z2)
− (t− 1)z,

which is the reciprocal of the Cauchy transform of (µs)]t.
To prove the second part one can put ν1 := µs

1, ν2 := µs
2.

Example. Define

m :=
1
2π

√
4− x
x

dx on [0, 4] (the Marchenko-Pastur law),

w :=
1
2π

√
4− x2 dx on [−2, 2] (the Wigner law),

a+ :=
1

π
√
x(4− x)

dx on [0, 4] (the positive arcsine law),

a :=
1

π
√

4− x2
dx on [−2, 2] (the symmetric arcsine law).

Then

Mm(z) =
2

1 +
√

1− 4z
, Mw(z) =

2
1 +
√

1− 4z2
,

Ma+(z) =
1√

1− 4z
, Ma(z) =

1√
1− 4z2

,

which leads to the relations: ms = w, as
+ = a, m]2 = a+ and w]2 = a. Hence

(ms)]2 = (m]2)s = a and
(
w]2

)(2) =
(
w(2)

)]2 = a+.

Remark. Note that in Theorem 1.1 we cannot replace ] by the classical or free convo-
lution. For example, if µ1 := 1

2 (δ−a + δa) and µ2 := 1
2 (δ−b + δb) then

µ
(2)
1 ∗ µ

(2)
2 = δa2+b2 while (µ1 ∗ µ2)(2) =

1
2
(
δ(a+b)2 + δ(a−b)2

)
.

For the free convolution let mt := m�t and wt := w�t. These measures exist for all
t > 0 (see [5, 3]) and

mt = max{1− t, 0}δ0 +

√
4t− (x− 1− t)2

2πx
dx,

with the absolutely continuous part supported on
[
(1−

√
t)2, (1 +

√
t)2
]
,

wt =
1

2πt

√
4t− x2 dx

on [−2
√
t, 2
√
t]. The moment generating functions are

Mmt
(z) =

2
1 + (1− t)z +

√
(1− (1 + t)z)2 − 4tz2
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and

Mwt
(z) =

2
1 +
√

1− 4tz2
.

Therefore if 0 < t 6= 1 then the measure
(
m�t

)s
= ms

t is different from (ms)�t = wt.
Note however that formulae (11) would be true if we replaced the Boolean convolution

] by ∗ (resp. by �) and the map µ 7→ µs by the map µ 7→ µ∗µ̂, with t ∈ N (resp. µ 7→ µ�µ̂,
with t ≥ 1), where µ̂ denotes the reflection of µ, i.e. µ̂(B) := µ(−B).

Theorem 1.2. Let ν ∈M and 0 < t 6= 1. Then the equality(
ν]t
)(2) =

(
ν(2)

)]t
holds if and only if ν is symmetric.

Proof. Put ν1 := (ν]t)(2), ν2 :=
(
ν(2)

)]t
, M := Mν(z) and N := Mν(−z). Then

Mν1(z
2) =

M

2[(1− t)M + t]
+

N

2[(1− t)N + t]

=
2(1− t)MN + t(M +N)

2[(1− t)M + t][(1− t)N + t]

=
2(1− t)2MN(M +N) + 4t(1− t)MN + t(1− t)(M +N)2 + 2t2(M +N)

2[(1− t)M + t][(1− t)N + t][(1− t)(M +N) + 2t]
,

while

Mν2(z
2) =

M +N

(1− t)(M +N) + 2t

=
2(1− t)2MN(M +N) + 2t(1− t)(M +N)2 + 2t2(M +N)

2[(1− t)M + t][(1− t)N + t][(1− t)(M +N) + 2t]
.

Therefore

Mν2(z
2)−Mν1(z

2) =
t(1− t)(M −N)2

2[(1− t)M + t][(1− t)N + t][(1− t)(M +N) + 2t]
,

which proves our statement.

2. The case of nonsymmetric measures. In this part we are going to study circum-
stances in which the equality

µ
(2)
1 ] µ

(2)
2 = (µ1 ] µ2)(2) (13)

holds. Putting η1 := (µ1 ] µ2)(2), η2 := µ
(2)
1 ] µ(2)

2 , M1 := Mµ1(z), N1 := Mµ1(−z),
M2 := Mµ2(z) and N2 := Mµ2(−z) we have

Mη1(z
2) =

M1M2

2 (M1 +M2 −M1M2)
+

N1N2

2 (N1 +N2 −N1N2)
, (14)

Mη2(z
2) =

(M1 +N1)(M2 +N2)
2(M1 +N1 +M2 +N2)− (M1 +N1)(M2 +N2)

. (15)

Theorem 2.1. Assume that µ1 ∈Ms, µ2 ∈M and that (13) holds. Then either µ2 ∈Ms

or µ1 = δ0.
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Proof. Putting M := M1 = N1 we have

Mη1(z
2)−Mη2(z

2)

=
M2(M − 1)(M2 −N2)2

2(M +M2 −MM2)(M +N2 −MN2) (2M +M2 +N2 −MM2 −MN2)
,

which yields our statement.

From now on we assume that µ1 = δx0 , with x0 6= 0. Then M1(z) = 1/(1 − x0z),
N1(z) = M1(−z) = 1/(1 + x0z) and

Mη1(z
2)−Mη2(z

2) =
x0z(M2 +N2)[2M2 − 2N2 − x0z(M2 +N2 − 2M2N2)]

2(1− x0zM2)(1 + x0zN2)[2− x2
0z

2(M2 +N2)]
.

Therefore we have

Theorem 2.2. Assume that µ1 = δx0 with x0 6= 0. Then (13) holds if and only if

2M − 2N − x0z(M +N − 2MN) = 0, (16)

where M := Mµ2(z), N := Mµ2(−z).

Corollary 2.3. If µ1 = δx0 , x0 6= 0, µ2 has compact support and if (13) holds then the
mean of µ2 is 0.

Proof. Since µ2 has compact support, Mµ2 is well defined as an analytic function in a
neighborhood of 0, with Mµ2(0) = 1. It is sufficient to differentiate both sides of (16) at
z = 0 to see that M ′µ2

(0) = 0.

Finally, we confine ourselves to a very particular case.

Theorem 2.4. Assume that µ1 = δx0 , µ2 = pδx1 + (1 − p)δx2 , with x0 6= 0, x1 6= x2,
0 < p < 1. Then (13) holds if and only if

px1 + (1− p)x2 = 0 (17)

and
x0 + 2x1 + 2x2 = 0. (18)

Note that (17) is a consequence of Corollary 2.3.

Proof. Since

M2 := Mµ2(z) =
p

1− x1z
+

1− p
1− x2z

, N2 := Mµ2(−z) =
p

1 + x1z
+

1− p
1 + x2z

,

we have

2M2 − 2N2 − x0z(M2 +N2 − 2M2N2)

=
2z
[
2px1 + 2(1− p)x2 + x0z

2p(1− p)(x1 − x2)2 − 2z2x1x2

(
(1− p)x1 + px2

)]
(1− x1z)(1 + x1z)(1− x2z)(1 + x2z)

=
4z
[
px1 + (1− p)x2

]
+ 2z3

[
x0p(1− p)(x1 − x2)2 − 2x1x2

(
(1− p)x1 + px2

)]
(1− x1z)(1 + x1z)(1− x2z)(1 + x2z)

This rational function is equal to 0 if and only if px1 + (1− p)x2 = 0 (which implies, in
particular, that x1 · x2 < 0) and

x0p(1− p)(x1 − x2)2 − 2x1x2

(
(1− p)x1 + px2

)
= 0. (19)
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By (17) we have p(x1−x2) = −x2 and (1− p)(x1−x2) = x1 so the left hand side of (19)
can be written as

−x1x2

(
x0 + 2(1− p)x1 + 2px2

)
= −x1x2(x0 + 2x1 + 2x2),

which concludes the proof.
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