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Abstract. In this paper we present an entropic description of quantum state obtained by inter-
action of one mode of quantized electromagnetic field with two two-level atoms inside a cavity,
known as Tavis–Cumming model. Wehrl entropy has been calculated analytically and investi-
gated as a function of the average value of the photon number operator. Husimi’s Q function
has been calculated and compared with the behaviour of the field entropy.

1. Introduction. An interesting fundamental theoretical model of the interaction be-
tween two quantum systems is Tavis–Cummings model (TCM) [21] which describes the
interaction of a single mode of quantized electromagnetic field with an ensemble consist-
ing of two two-level atoms. Within the rotating wave approximation and under certain
initial conditions this is an exactly solvable model and the understanding of the dynamical
evolution of the TCM may throw some light on the performance of quantum informa-
tion processing which in its turn may help the understanding of fundamental quantum
mechanics. The one atom case which is the well known Jaynes–Cummings model and
can be considered as a bipartite entanglement system has been widely investigated for
initial pure states and mixed states of the field. The correlation that develops between
the atom and the field during the interaction in the Jaynes–Cummings model is responsi-
ble for interesting properties in the evolution of the micromaser where measuring atomic
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properties one can infer information concerning the field. Such an analysis is also possible
for TCM which can be considered as a tripartite quantum system. Quantum correlations
have been studied in this entangled tripartite quantum system by Coffman et al. [7].

Ever since the mathematical formulation of Heisenberg uncertainty relation the stan-
dard deviation was considered to be the natural measure of uncertainty related to quan-
tum fluctuations. Important effects in quantum optics such as squeezing and antibunching
have been defined in terms of standard deviation. One can also formulate with the help
of standard deviation measures of quantum uncertainty such as total noise or uncertainty
radius, surface and volume. However, it has been observed that the entropy rather than
the standard deviation is more reliable parameter to characterize the fluctuation of the
field and nowadays this alternative approach based on the concept of entropy is studied
extensively.

A good measure of purity of states is governed by Von Neumann quantum-mechanical
entropy [1,2,3,8,9,10,11,12,15,16,17,18,19,23,24] as it gives zero for all pure states and
does not distinguish different types of pure states. On the other hand Wehrl defined a
classical analogue of the Von Neumann entropy associated with a quantum state of the
system which in terms of the Husimi (Q) function can be written as

S = − 1
π

∫
Q(α) lnQ(α) d2α.

The definition above is justified as we know that Husimi (Q) function does not take
negative values for any α. The definition of Wehrl entropy [4,5,6,13,14,20,22] shows the
unique role played by coherent states |α〉 as the Q representation of the density operator
is defined by

Q(α) = 〈α|ρ|α〉

with the normalization condition
1
π

∫
Q(α) d2α = 1.

In this paper we shall investigate the Wehrl entropy of the state generated by the
interaction of the single mode of radiation field in a cavity which contains two two-level
atoms (TCM) to understand the dynamical nature of the evolved TCM state. In the
process we calculate analytically explicit value of the Wehrl entropy of the evolved state.

2. The state vector. We consider a single mode of quantized electromagnetic field
interacting with an ensemble consisting of two two-level atoms. This model is known
as Tavis–Cumming model or Dicke model. In rotating wave approximation the total
Hamiltonian (assuming h̄ = 1) describing the atom-field system is given by

H = H0 +H1, (1)

where

H0 = ωe1 |e1〉〈e1|+ ωg1 |g1〉〈g1|+ ωe2 |e2〉〈e2|+ ωg2 |g2〉〈g2|+ γa†a (h̄ = 1), (2)

and
H1 = λ1

(
a|e1〉〈g1|+ a+|g1〉〈e1|

)
+ λ2

(
a|e2〉〈g2|+ a+|g2〉〈e2

)
(3)
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Fig. 1. Interaction of one mode field with two two-level atoms

Here a† and a are, respectively, the creation and annihilation operators for the field of
frequency γ. |m〉(m = e1, g1, e2, g2) are the eigenstates of the atom with eigenfrequencies
ωm(m = e1, g1, e2, g2), and λr(r = 1, 2) are the corresponding coupling constants. We
assume the coupling constants λ1 and λ2 to be same and real throughout the paper.
Then interaction Hamiltonian H1 takes the form

H1 = λa(|e1〉〈g1|+ |e2〉〈g2|) + λa+(|g1〉〈e1|+ |g2〉〈e2|) (4)

The state vector of this atom-field coupling system at time t can be described by

|ψ(t)〉 =
∑
n

(
Ce1e2n|e1, e2, n〉+Ce1g2n|e1, g2, n〉+Cg1e2n|g1, e2, n〉+Cg1g2n|g1, g2, n〉

)
. (5)

Substituting equation (4) in the Schrödinger equation we get

j
d

dt
|ψ(t)〉 = H1|ψ(t)〉. (6)

Substituting (5) in (6) we get

iĊe1e2n = λ
√
n+ 1 (Ce1g2n+1 + Cg1e2n+1) (7)

iĊe1g2n+1 = λ
√
n+ 1Ce1e2n + λ

√
n+ 2Cg1g2n+2 (8)

iĊg1e2n+1 = λ
√
n+ 1Ce1e2n + λ

√
n+ 2Cg1g2n+2 (9)

iĊg1g2n+1 = λ
√
n+ 1 (Cg1e2n + Ce1g2n) (10)

From (7), (8), (9) and (10) we now have

Ce1g2n+1 = Cg1e2n+1 = d1e
iλ
√

2(2n+3) t + d2e
−iλ
√

2(2n+3) t. (11)

If the atoms are initially in the state |ψA(0)〉,

|ψA(0)〉 =
1√
2

(
|e1g2〉+ |g1e2〉

)
(12)

which means that the atoms are in the coherent superposition state of their eigenkets
|e1g2〉 and |g1e2〉, and the field is in the superposition of the photon number states at
time t = 0

|ψf (0)〉 =
∑
n

Fn|n〉, (13)
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where
∑
n |Fn|2 = 1, then the state vector of the total system at t = 0 can be described

as

|ψ(0)〉 =
∑
n

[ 1√
2
Fn|e1, g2, n〉+

1√
2
Fn|g1, e2, n〉

]
. (14)

Finally we get

Ce1e2n(t) =

√
n+ 1
2n+ 3

(
1− cos(λt

√
4n+ 6)

)
Fn (15)

Ce1g2n+1(t) = Cg1e2n+1(t) =
i√
2

sin(λt
√

4n+ 6)Fn (16)

Cg1g2n+2(t) =

√
n+ 2
2n+ 3

(
1− cos(λt

√
4n+ 6)

)
Fn (17)

where Fn = e−|α|
2/2 · αn/

√
n! for coherent field.

Substituting the values of Ce1e2n(t), Ce1g2n(t), Cg1e2n(t) and Cg1g2n from (15), (16)
and (17) respectively in equation (5) we can obtain the state vector of the system at
time t.

Now after the interaction with the field if we detect the atoms in the ground state
|g1g2〉 after time t1 then effectively atoms absorb no photons but project the cavity field
into the state

|ψ(t1)〉 =
1
η

∞∑
n=0

Cg1g2n+2(t1)|n+ 2〉

=
1
η

∞∑
n=0

√
n+ 2
2n+ 3

(
1− cos(λt1

√
4n+ 6)

)
Fn|n+ 2〉

(18)

The atom collapses in the ground state |g1g2〉 with maximum fidelity

Fidelity =

∑∞
n=0

n+2
2n+3

(
1− cos(λt

√
4n+ 6)

)2|Fn|2∑∞
n=0

{(
1− cos(λt

√
4n+ 6)

)2 + 2 sin2(λt
√

4n+ 6)
}
|Fn|2

(19)

and we assume that the maximum fidelity occurs at t = t1.

3. Husimi distribution and Wehrl entropy. To describe Wehrl entropy we need to
first calculate Husimi Q function

Q(ν) =
∣∣〈ν|ψ(t1)〉

∣∣2
=
e−|α|

2−|ν|2

η2
1

∣∣∣ ∞∑
n=0

√
n+ 2
2n+ 3

(
1− cos(λt1

√
4n+ 6)

) ν̄n+2αn√
n!(n+ 2)!

∣∣∣2 (20)

where η2
1 =

∞∑
n=0
|Cg1g2n+2(t1)|2.
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Now

Q(ν) ∼ 1
η2
1

e−|α|
2−|ν|2

( ∞∑
n=0

|ν|n+2|α|n√
n!(n+ 2)!

)2

f(α, η1)

=
1
η2
1

e−|α|
2−|ν|2

{ ∞∑
n=0

|ν|2n+4|α|2n

n!(n+ 2)!

+ 2
∞∑

m=n+1,n=0

|ν|m+n+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

}
f(α, η1).

(21)

Now we have

1
π

∫
Q(ν) d2ν =

1
η2
1

f(α, η1)e−|α|
2
∞∑

n,m=0

|α|n+m√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 6

2

)
. (22)

Let us now choose f(α, η1) such that 1
π

∫
Q(ν) d2ν = 1.

From (22) we now have

f(α, η1) = η2
1e
|α|2
[ ∞∑
n,m=0

|α|n+m√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 6

2

)]−1

(23)

Substituting the value of f(α, η1) in (21) we get

Q(ν) = χ · e−|ν|
2
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

(24)

where

χ =
[ ∞∑
n,m=0

|α|n+m√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 6

2

)]−1

.

We now plot Husimi Q distribution for different values of square root of mean photon
numbers |α| = 1, 3, 5, 7 and observe the rapid change of the shape of the distribution as
|α| changes.

Fig. 2. Plot of Q distribution for |α| = 1 Fig. 3. Plot of Q distribution for |α| = 3
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Fig. 4. Plot of Q distribution for |α| = 5 Fig. 5. Plot of Q distribution for |α| = 7

Then

lnQ(ν) = lnχ− ν2 + ln
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

. (25)

Now

Q(ν) lnQ(ν) = χ lnχ · e−|ν|
2
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

− χν2e−|ν|
2
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

+ χe−|ν|
2
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

· ln
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

.

(26)

We now calculate Wehrl entropy of the field as follows:
From (26) we substitute the value of Q(ν) lnQ(ν) in the formula

S = − 1
π

∫
Q(ν) lnQ(ν) d2ν

= −χ lnχ
π
·
∫
e−|ν|

2
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

d2ν

+
χ

π

∫
ν2e−|ν|

2
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

d2ν

− χ

π

∫
e−|ν|

2
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

× ln
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

d2ν

= I1 + I2 + I3.

(27)
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Now, we put ν = reiθ and d2ν = r dr dθ to get

I1 = −χ lnχ
π

∫ 2π

0

dθ

∫ ∞
0

e−r
2
∞∑

n,m=0

rn+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

r dr

= −χ lnχ
∞∑

n,m=0

|α|n+m√
n!m!(n+ 2)!(m+ 2)!

,Γ
(n+m+ 6

2

) (28)

Similarly

I2 = χ

∞∑
n,m=0

|α|n+m√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 8

2

)
. (29)

Again

I3 = −χ
π

∫
e−|ν|

2
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

× ln
∞∑

n,m=0

|ν|n+m+4|α|n+m√
n!m!(n+ 2)!(m+ 2)!

d2ν

= −2χ
∞∑

n,m=0

|α|n+m√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 6

2

)
Ψ
(n+m+ 6

2

)
− 2a0χ

∞∑
n,m=0

|α|n+m√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 6

2

)
− 2a1χ

∞∑
n,m=0

|α|n+m+1√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 7

2

)
− 2a2χ

∞∑
n,m=0

|α|n+m+2√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 8

2

)
+ . . .

(30)

where the function Ψ(x) is defined by

Ψ(x) =
Γ′(x)
Γ(x)

and the values of the coefficients ai are given in the following table:

Coefficient Numerical Value
a0 −0.346574
a1 0.57735
a2 0.0374575
a3 −0.000996473
a4 −0.000240473
a5 0.0000196618
a6 2.68953× 10−6

Coefficient Numerical Value
a7 −4.02432× 10−7

a8 −3.0295× 10−8

a9 8.10708× 10−9

a10 2.46262× 10−10

a11 −1.58362× 10−10

a12 1.29067× 10−12

...
...

(31)
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From (27), (28), (29) and (30) we get

S = ln
( ∞∑
n,m=0

|α|n+m√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 6

2

))
+ χ

∞∑
n,m=0

|α|n+m√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 8

2

)
− 2χ

∞∑
n,m=0

|α|n+m√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 6

2

)
Ψ
(n+m+ 6

2

)
− 2a0

− 2a1χ

∞∑
n,m=0

|α|n+m+1√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 7

2

)
− 2a2χ

∞∑
n,m=0

|α|n+m+2√
n!m!(n+ 2)!(m+ 2)!

Γ
(n+m+ 8

2

)
+ . . .

(32)

We shall now plot Wehrl entropy with respect to the square root of mean photon
number |α| of the initial field.

Fig. 6. Plot of Wehrl entropy
neglecting the smaller coefficients of ai

Fig. 7. Plot of Wehrl entropy
for short range of |α|

4. Conclusion. We have thus studied the dynamical evolution of Tavis–Cumming state
and studied the fluctuation of the evolved state. Using the coherent states we have ob-
tained different forms of Husimi distribution functions of the evolved TCM state explicitly
for the values |α| = 1, 3, 5, 7 and observe the rapid changes of the shape of the distri-
bution as |α| increases. We have calculated Wehrl entropy analytically and plotted by
neglecting smaller coefficients as well as for short range of square root of mean photon
number. In the limit |α| → 0, the Wehrl entropy goes to 1.8475. Wehrl entropy is useful
to understand the intrinsic state fluctuation which in its turn generate some information
theoretic measurement.



WEHRL ENTROPY IN A TWO-ATOM TAVIS-CUMMINGS MODEL 285

References

[1] G. S. Agarwal, P. K. Phatak,Mesoscopic superposition of states with sub-Planck structures
in phase space, Phys. Rev. A 70 (2004), 053813 (5 pp.).

[2] E. I. Aliskenderov, H. T. Dung, L. Knöll, Effects of atomic coherences in the Jaynes–
Cummings model: Photon statistics and entropy, Phys. Rev. A 48 (1993), 1604–1609.

[3] H. Araki, E. H. Lieb, Entropy inequalities, Commun. Math. Phys. 18 (1970), 160–170.
[4] V. Bužek, C. H. Keitel, P. L. Knight, Sampling entropies and operational phase-space

measurement. I. General formalism, Phys. Rev. A 51 (1995), 2575–2593.
[5] V. Bužek, C. H. Keitel, P. L. Knight, Sampling entropies and operational phase-space

measurement. II. Detection of quantum coherences, Phys. Rev. A 51 (1995), 2594–2601.
[6] V. Bužek, H. Moya-Cessa, P. L. Knight, Schrödinger-cat states in the resonant Jaynes–

Cummings model: Collapse and revival of oscillations of the photon-number distribution,
Phys. Rev. A 45 (1992), 8190–8203.

[7] V. Coffman, J. Kundu, W. K. Wootters, Distributed entanglement, Phys. Rev. A 61 (2000),
052306 (5 pp.).

[8] C. Huang, L. Tang, F. Kong, J. Fang, M. Zhou, Entropy evolution of field interacting with
V-type three-level atom via intensity-dependent coupling, Physica A 368 (2006), 25–30.

[9] W. K. Lai, V. Bužek, P. L. Knight, Dynamics of a three-level atom in a two-mode squeezed
vacuum, Phys. Rev. A 44 (1991), 6043–6056.

[10] X. S. Li, C. D. Gong, Coherent properties of the stimulated emission from a three-level
atom, Phys. Rev. A 33 (1986), 2801–2804.

[11] X. S. Li, Y. N. Peng, Quantum properties of a three-level atom interacting with two radi-
ation fields, Phys. Rev. A 32 (1985), 1501–1514.

[12] X. Liu, Entropy behaviors and statistical properties of the field interacting with a Ξ-type
three-level atom, Physica A 286 (2000), 588–598.

[13] A. Miranowicz, J. Bajer, M. R. B. Wahiddin, N. Imoto, Wehrl information entropy and
phase distributions of Schrödinger cat and cat-like states, J. Phys. A 34 (2001), 3887–3896.

[14] A. Orłowski, Classical entropy of quantum states of light, Phys. Rev. A 48 (1993), 727–731.
[15] P. K. Pathak, G. S. Agarwal, Generation of a superposition of multiple mesoscopic states

of radiation in a resonant cavity, Phys. Rev. A 71 (2005), 043823 (6 pp.).
[16] J. S. Peng, G. X. Li, A study on dissipation mechanism in two-photon laser, Acta Phys.

Sinica 41 (1992), 1590–1597.
[17] J. S. Peng, G. X. Li, P. Zhou, Phase properties and atomic coherent trapping in the system

of a three-level atom interacting with a bimodal field, Phys. Rev. A 46 (1992), 1516–1521.
[18] S. J. D. Phoenix, P. L. Knight, Fluctuations and entropy in models of quantum optical

resonance, Ann. Phys. 186 (1988), 381–407.
[19] S. J. D. Phoenix, P. L. Knight, Comment on “Collapse and revival of the state vector in

the Jaynes–Cummings model: An example of state preparation by a quantum apparatus”,
Phys. Rev. Lett. 66 (1991), 2833.

[20] S. J. D. Phoenix, P. L. Knight, Establishment of an entangled atom-field state in the
Jaynes–Cummings model, Phys. Rev. A 44 (1991), 6023–6029.

[21] T. E. Tessier, I. H. Deutsch, A. Delgado, I. Fuentes-Guridi, Entanglement sharing in the
two-atom Tavis–Cummings model, Phys. Rev. A 68 (2003), 062316 (10 pp.).

[22] A. Wehrl, General properties of entropy, Rev. Modern Physics 50 (1978), 221–260.
[23] H. I. Yoo, J. H. Eberly, Dynamical theory of an atom with two or three levels interacting

with quantized cavity fields, Phys. Rep. 118 (1985), 239–337.
[24] S. B. Zhang, Generation of nonclassical states with a driven dispersive interaction, Phys.

Rev. A 74 (2006), 043803 (5 pp.).

http://dx.doi.org/10.1103/PhysRevA.70.053813
http://dx.doi.org/10.1103/PhysRevA.48.1604
http://dx.doi.org/10.1007/BF01646092
http://dx.doi.org/10.1103/PhysRevA.51.2575
http://dx.doi.org/10.1103/PhysRevA.51.2594
http://dx.doi.org/10.1103/PhysRevA.45.8190
http://dx.doi.org/10.1103/PhysRevA.61.052306
http://dx.doi.org/10.1016/j.physa.2006.01.060
http://dx.doi.org/10.1103/PhysRevA.44.6043
http://dx.doi.org/10.1103/PhysRevA.33.2801
http://dx.doi.org/10.1103/PhysRevA.32.1501
http://dx.doi.org/10.1016/S0378-4371(00)00302-2
http://dx.doi.org/10.1088/0305-4470/34/18/315
http://dx.doi.org/10.1103/PhysRevA.48.727
http://dx.doi.org/10.1103/PhysRevA.71.043823
http://dx.doi.org/10.1103/PhysRevA.46.1516
http://dx.doi.org/10.1016/0003-4916(88)90006-1
http://dx.doi.org/10.1103/PhysRevLett.66.2833
http://dx.doi.org/10.1103/PhysRevA.44.6023
http://dx.doi.org/10.1103/PhysRevA.68.062316
http://dx.doi.org/10.1103/RevModPhys.50.221
http://dx.doi.org/10.1016/0370-1573(85)90015-8
http://dx.doi.org/10.1103/PhysRevA.74.043803



	Introduction
	The state vector
	Husimi distribution and Wehrl entropy
	Conclusion

