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Abstract. We introduce a p-product of algebraic probability spaces, which is the definition of
independence that is natural for the model of noncommutative Brownian motions, described
in [10] (for q = 1). Using methods of the conditionally free probability (cf. [4, 5]), we define a
related p-convolution of probability measures on R and study its relations with the notion of
subordination (cf. [1, 8, 9, 13]).

1. Introduction. In the paper [10] a two-parameter family of noncommutative Gaussian
operators, acting on the free Fock space was introduced. It was associated with Kesten
laws and gave a continuous interpolation between free, monotone and Boolean Gaussian
operators. In this paper we will describe a p-product of algebraic probability spaces, which
can be treated as a definition of independence that is natural for the model described
in [10] (for q = 1). To introduce the notion of p-product we will use well known framework
of conditionally free probability [4, 5]. Using those methods we will also introduce a
p-convolution of probability measures on R which will appear to be a natural convolution
related to the model noncommutative Brownian motions described in [10]. Moreover we
will study its relation with the notion of subordination described in [1, 8, 9, 13].

2. Conditionally free product. In this section we will recall from [4, 5] the well known
conditionally free product of algebraic probability spaces. Let Ai be a unital *-algebra
with the unit 1i and two states ϕi, ψi on it, for i = 1, 2. The triple (Ai, ϕi, ψi) will be
called the algebraic probability space with two states. The conditionally free product of the
algebraic probability spaces (Ai, ϕi, ψi) is the pair (A,Φ), where A = A1 ∗A2 is the free
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product of algebras A1 and A2 with identification of units and Φ is a state, the so called
conditionally free product of pairs (ϕ1, ψ1) and (ϕ2, ψ2), given by

Φ(a1a2 · · · an) = ϕi1(a1)ϕi2(a2) · · ·ϕin(an),

for any ak ∈ Aik , ik ∈ {1, 2}, i1 6= i2 6= . . . 6= in, n ∈ N, such that ψik(ak) = 0 for
k = 1, . . . , n. The pair (A,Φ) is an algebraic probability space (with one state) and we will
write

(A,Φ) = (A1, ϕ1, ψ1) c (A2, ϕ2, ψ2) and Φ = (ϕ1, ψ1) c (ϕ2, ψ2).

Now we can define the conditionally free convolution of probability measures with
compact support. Let µi, νi be the distribution of ai ∈ Ai with respect to ϕi, ψi, i.e.
ϕi(ani ) =

∫
R x

n dµi(x) and ψi(ani ) =
∫

R x
n dνi(x) for i = 1, 2. Then the distribution µ of

a1 + a2 ∈ A1 ∗ A2 with respect to Φ is called the conditionally free convolution of pairs
of probability measures (µi, νi) and we write µ = (µ1, ν1) c (µ2, ν2).

3. p-product of *-algebras. Using the language of conditionally free probability we
will present a construction of a p-product of *-algebras with a state. This product can be
viewed as a definition of independence that is a natural independence related to the model
of a two-parameter family of Gaussian operators given in [10]. A similar construction for
the monotone product has been given by Franz in [6].

From now on, we will assume that the *-algebraAi has a decompositionAi = C1i⊕A◦i ,
in the sense of the direct sum of vector spaces, such that A◦i is a *-subalgebra of Ai, for
i = 1, 2. This assumption is quite restrictive but for our purpose, which is study of a
p-convolution of the probability measures, is suitable. One of the simplest example of
that kind of algebra is the algebra C[X] of all polynomials of a variable X. Moreover,
note that if A1 and A2 have a decomposition as above, then also A1 ∗ A2 does, i.e.

A1 ∗ A2 = C1⊕ (A1 ∗ A2)◦,

where (A1 ∗ A2)◦ = A◦1 ∗ A◦2 = {a1a2 . . . an : ak ∈ A◦ik , i1 6= i2 6= . . . 6= in, n > 1}.
On the algebra Ai we can put a functional δi given by δi(a + λ1i) = λ, for a ∈ A◦i ,

λ ∈ C. Obviously, δi is well defined and is a state on Ai since we assume that A◦i is a
*-subalgebra. Using this state we define

ϕ̃i = pϕi + (1− p)δi,

where p ∈ [0, 1]. As a convex combination of states ϕ̃i is also a state that we will call the
p-deformation of ϕi.

Definition 3.1. The pair (A,Φ) given by

(A,Φ) = (A1, ϕ1, ϕ̃1) c (A2, ϕ2, ϕ2)

will be called the p-product of the algebraic probability spaces (A1, ϕ1) and (A2, ϕ2) and
denoted by (A,Φ) = (A1, ϕ1) .p (A2, ϕ2). The copies of A1,A2 contained in A will be
called p-independent.

Example 3.2. Let a ∈ A◦1 and b ∈ A◦2. We will use the above definition to calculate
some mixed moments of variables a and b in state Φ. For this matter let a◦ = a− ϕ̃1(a)1
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and b◦ = b−ϕ2(b)1. Obviously, ϕ̃1(a◦) = ϕ2(b◦) = 0, from which and from Definition 3.1
it follows that Φ(a) = ϕ1(a) and Φ(b) = ϕ2(b). Moreover

Φ(ab) = Φ(a◦b◦) + Φ(a◦)ϕ2(b) + ϕ̃1(a)Φ(b◦) + ϕ̃1(a)ϕ2(b)

= ϕ1(a◦)ϕ2(b◦) + ϕ1(a◦)ϕ2(b) + ϕ̃1(a)ϕ2(b◦) + ϕ̃1(a)ϕ2(b) = ϕ1(a)ϕ2(b).

Similarly Φ(ba) = ϕ1(a)ϕ2(b). In the same way we compute the moments of third order:

Φ(bab) = Φ(b◦ab) + ϕ2(b)Φ(ab)

= Φ(b◦a◦b) + ϕ̃1(a)Φ(b◦b) + ϕ2(b)Φ(ab)

= Φ(b◦a◦b◦) + ϕ2(b)Φ(b◦a◦) + ϕ̃1(a)Φ(b◦b) + ϕ2(b)Φ(ab)

= ϕ1(a◦)ϕ2
2(b◦) + ϕ2(b)ϕ2(b◦)ϕ1(a◦) + ϕ̃1(a)ϕ2(b◦b) + ϕ2

2(b)ϕ1(a)

= pϕ1(a)ϕ2(b2) + (1− p)ϕ1(a)ϕ2
2(b),

but Φ(aba) = ϕ1(a2)ϕ2(b) (we omit similar calculations).
Let us observe that for p = 1 the above moments agree with the mixed moments of

free random variables, and for p = 0 with those of monotone random variables.

4. p-convolution and transforms. In this section we will introduce and study a
p-convolution of probability measures with compact support, i.e. we will try to find a
measure, which would be the distribution of the sum of two random variables which
come from p-independent *-subalgebras.

Let µ and ν be probability measures on R with compact support. Moreover, let Ai =
C[Xi] be the *-algebra of polynomials of the variable Xi and ϕi be a state on Ai such
that

ϕ1(Xn
1 ) =

∫
R
xn dµ(x), ϕ2(Xn

2 ) =
∫

R
xn dν(x),

for n > 0 and i = 1, 2. Obviously, ϕ̃1(1) = 1 and ϕ̃1(Xn
1 ) = pϕ1(Xn

1 ) for n > 1. If we
denote the distribution of X1 with respect to ϕ̃1 by µ̃, then

µ̃ = pµ+ (1− p)δ0,
i.e. µ̃ is a convex combination of the measures µ and δ0.

Definition 4.1. Let µ and ν be probability measures on R with compact support. Using
the above notation, we define the p-convolution of µ and ν as follows

µ .p ν = (µ, µ̃) c(ν, ν),

which is the distribution of the sum X1 + X2 ∈ C[X1] ∗ C[X2] with respect to the state
Φ = (ϕ1, ϕ̃1) c (ϕ2, ϕ2).

A symmetric version of the above convolution (i.e. µ r ν = (µ, µ̃) c(ν, ν̃)) was intro-
duced by Bożejko in [2] and also studied in [3].

Definition 4.1 allows us to use the conditionally free techniques and related transforms
to study the p-convolution. Let us recall the well known formula for the R-transform of
a pair of measures (µ, ν) (cf. [4, 7]) given by

R(µ,ν)(z) = G−1
ν (z)− Fµ(G−1

ν (z)), (1)

where Fµ = 1/Gµ is the reciprocal (inverse in the sense of multiplication of functions)
Cauchy transform of µ and G−1

ν is the inverse (in the sense of function composition)
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Cauchy transform of ν. Moreover, we know that the R-transform is additive with respect
to the conditionally free convolution. Using that fact and Definition 4.1 we get

R(µ.pν,µ̃�ν)(z) = R(µ,µ̃)(z) +R(ν,ν)(z). (2)

From the identities (1) and (2) and the fact that the R-transform of a single measure
(Rµ(z) = Rµ,µ(z)) is additive with respect to free convolution (cf. [14]) we get the formula

Fµ.pν(z) = Fµ(G−1
µ̃ (Gµ̃�ν(z))). (3)

This formula will be useful in the proofs of the next two theorems that describe the
properties of p-convolution in terms of transforms. The first of these theorems is a rather
simple connection of p-convolution with the notion of subordination described in [1, 8,
9, 13].

Proposition 4.2. Let Fµ(z) = 1/Gµ(z) and Kµ(z) = z−Fµ(z) be the reciprocal Cauchy
transform and the K-transform of a measure µ, respectively. Then for compactly supported
measures µ and ν we have the following formula

Fµ.pν(z) = Fµ(z −Kν(z −Kµ̃(z −Kν(z −Kµ̃(z − . . .))))), (4)

where Kµ̃(z) = (pzKµ(z))/(z − (1 − p)Kµ(z)) is the K-transform of the measure µ̃ =
pµ+(1−p)δ0. The right hand side of the above formula should be understood as a uniform
limit on compact subsets of the upper complex half-plane C+.

Proof. First we will compute the Cauchy transform of µ̃, the support of which obviously
is also compact. We have

Gµ̃(z) =
∞∑
n=0

µ̃(n)
zn+1

= p

∞∑
n=0

µ(n)
zn+1

+
1− p
z

= pGµ(z) + (1− p)Gδ0(z),

where µ̃(n) and µ(n) are the n-th moments of µ̃ and µ, respectively. So, Gµ̃ is a convex
combination of Gµ and Gδ0 from which we can calculate a formula for Kµ̃, i.e.

Kµ̃(z) = z − 1
pGµ(z) + (1− p)Gδ0(z)

= z − 1
p

z−Kµ(z) + 1−p
z

=
pzKµ(z)

z − (1− p)Kµ(z)
.

Now we can prove formula (4). From [8] we know that Gµ̃�ν(z) = Gµ̃(F1(z)), where F1

is the so called subordination function with respect to Gµ̃, which has the form

F1(z) = z −Kν(z −Kµ̃(z −Kν(z −Kµ̃(z − . . .)))),
which, together with (3), ends the proof.

Let us observe that for p = 0 the transform Kµ̃ is equal to zero on C+. In that case,
identity (4) takes the form

Fµ.0ν(z) = Fµ(z −Kν(z)) = Fµ(Fν(z)).

We can see that the convolution .0 agrees with the monotone convolution . introduced
in [11, 12]. On the other hand, for p = 1 the equivalence of the convolutions .1 and �,
not so obvious, is also true and follows from the identity

Fµ�ν(z) = Fµ(z −Kν(z −Kµ(z −Kν(z −Kµ(z − . . .))))),
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proven in [8]. A more intuitive relation between free and p-convolution for p = 1 is
provided by the following theorem.

Theorem 4.3. Let Rµ(z) = G−1
µ (z)− 1/z be the R-transform of a the measure µ. Then

for compactly supported measures µ and ν the identity

Rµ.pν(z) = Rµ(z) +Rν
(
pHδ0(z) + (1− p)Hµ(z)

)
(5)

holds, where Hµ(z) = 1/G−1
µ (z).

Proof. Observe that formula (3) can be viewed as follows

G−1
µ.pν(z) = G−1

µ̃�ν(Gµ̃(G−1
µ (z))).

Using the above identity and the additivity of the R-transform with respect to the free
convolution, we get

Rµ.pν(z) = G−1
µ.pν(z)− 1

z
= G−1

µ̃�ν(Gµ̃(G−1
µ (z)))− 1

z

= G−1
µ̃ (Gµ̃(G−1

µ (z))) +G−1
ν (Gµ̃(G−1

µ (z)))− 1
Gµ̃(G−1

µ (z))
− 1
z

= Rµ(z) +Rν(Gµ̃(G−1
µ (z))).

Now we will use the fact that Gµ̃ is a convex combination of Gµ and Gδ0 , so

Rµ.pν(z) = Rµ(z) +Rν
(
pGµ(G−1

µ (z)) + (1− p)Gδ0(G−1
µ (z))

)
= Rµ(z) +Rν

(
pz +

1− p
G−1
µ (z)

)
= Rµ(z) +Rν(pHδ0(z) + (1− p)Hµ(z)),

since Hδ0(z) = z.

Substituting p = 1 to formula (5), and using the fact that Hδ0(z) = z, we get
Rµ.1ν(z) = Rµ(z)+Rν(z). So, the convolution .1 agrees with the free convolution �. On
the other hand, for p = 0 formula (5) takes the form

Hµ.0ν(z) = Hν(Hµ(z)), (6)

which is equivalent to Fµ.0ν(z) = Fµ(Fν(z)) and again confirm the equivalence of convo-
lutions .0 and ..

Example 4.4. We will use Theorem 4.3 to calculate the p-convolution of the Wigner
law dµ = 1

2π

√
4− x2 dx with a single point measure ν = δa. The R-transforms of those

measures are Rµ(z) = z and Rν(z) = a. From Theorem 4.3 we have

Rµ.pν(z) = z + a,

which means that the p-convolution µ .p ν is also the Wigner law shifted by a, i.e. with
the density d(µ .p ν) = 1

2π

√
4− (x+ a)2 dx.

Example 4.5. Now we compute the p-convolution of two two-point measures. To simplify
the calculations we assume that

µ =
1
2

(δ0 + δ1), ν =
1
2

(δ−1 + δ1).

Nevertheless, this approach could be applied to compute the p-convolution of any pair of
two-point measures, where the first one has an atom at zero.
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First we can easily calculate that

Kµ̃(z) =
pz

2z + p− 2
, Kν(z) =

1
z
.

From Proposition 4.2 we know that Gµ.pν(z) = Gµ(F1(z)), where F1(z) is a function,
that satisfies the equation F1(z) = z − Kν(z − Kµ̃(F1(z))). After solving it we can get
the explicit formula of F1(z), from where we deduce that

Gµ.pν(z) =
N(z) +

(
2− p− 2pz − 2(1− p)z2

)√
−2p+ p2 + (1 + z − z2)2

2p(p− 2)(2z − z2 − 2z3 + z4)
,

with N(z) = (1 − p)
(
2 − p + (2 + p)z + (3p − 4)z2 − 2(1 + p)z3 + z4

)
. Applying the

Stieltjes inversion formula to Gµ.pν we can obtain an explicit formula for the density of
the measure µ .p ν.
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