NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY III BANACH CENTER PUBLICATIONS, VOLUME 96 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2012

## A REMARK ON p-CONVOLUTION

## RAFAŁ SAŁAPATA

Institute of Mathematics and Computer Science, Wrocław University of Technology Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland e-mail: rafal.salapata@pwr.wroc.pl

**Abstract.** We introduce a *p-product* of algebraic probability spaces, which is the definition of independence that is natural for the model of noncommutative Brownian motions, described in [10] (for q = 1). Using methods of the conditionally free probability (cf. [4, 5]), we define a related *p-convolution* of probability measures on  $\mathbb{R}$  and study its relations with the notion of subordination (cf. [1, 8, 9, 13]).

- 1. Introduction. In the paper [10] a two-parameter family of noncommutative Gaussian operators, acting on the free Fock space was introduced. It was associated with Kesten laws and gave a continuous interpolation between free, monotone and Boolean Gaussian operators. In this paper we will describe a p-product of algebraic probability spaces, which can be treated as a definition of independence that is natural for the model described in [10] (for q = 1). To introduce the notion of p-product we will use well known framework of conditionally free probability [4, 5]. Using those methods we will also introduce a p-convolution of probability measures on  $\mathbb R$  which will appear to be a natural convolution related to the model noncommutative Brownian motions described in [10]. Moreover we will study its relation with the notion of subordination described in [1, 8, 9, 13].
- 2. Conditionally free product. In this section we will recall from [4, 5] the well known conditionally free product of algebraic probability spaces. Let  $\mathcal{A}_i$  be a unital \*-algebra with the unit  $1_i$  and two states  $\varphi_i, \psi_i$  on it, for i = 1, 2. The triple  $(\mathcal{A}_i, \varphi_i, \psi_i)$  will be called the algebraic probability space with two states. The conditionally free product of the algebraic probability spaces  $(\mathcal{A}_i, \varphi_i, \psi_i)$  is the pair  $(\mathcal{A}, \Phi)$ , where  $\mathcal{A} = \mathcal{A}_1 * \mathcal{A}_2$  is the free

[293]

<sup>2010</sup> Mathematics Subject Classification: Primary 46L53; Secondary 46L54.

Key words and phrases: p-product, p-convolution, algebraic probability space, conditionally free product, subordination.

This work is partially supported by MNiSW research grant No N N201 364436.

The paper is in final form and no version of it will be published elsewhere.

294 R. SAŁAPATA

product of algebras  $A_1$  and  $A_2$  with identification of units and  $\Phi$  is a state, the so called conditionally free product of pairs  $(\varphi_1, \psi_1)$  and  $(\varphi_2, \psi_2)$ , given by

$$\Phi(a_1 a_2 \cdots a_n) = \varphi_{i_1}(a_1) \varphi_{i_2}(a_2) \cdots \varphi_{i_n}(a_n),$$

for any  $a_k \in \mathcal{A}_{i_k}$ ,  $i_k \in \{1,2\}$ ,  $i_1 \neq i_2 \neq \ldots \neq i_n$ ,  $n \in \mathbb{N}$ , such that  $\psi_{i_k}(a_k) = 0$  for  $k = 1, \ldots, n$ . The pair  $(\mathcal{A}, \Phi)$  is an algebraic probability space (with one state) and we will write

$$(\mathcal{A}, \Phi) = (\mathcal{A}_1, \varphi_1, \psi_1) \overline{\mathbf{c}} (\mathcal{A}_2, \varphi_2, \psi_2) \text{ and } \Phi = (\varphi_1, \psi_1) \overline{\mathbf{c}} (\varphi_2, \psi_2).$$

Now we can define the conditionally free convolution of probability measures with compact support. Let  $\mu_i, \nu_i$  be the distribution of  $a_i \in \mathcal{A}_i$  with respect to  $\varphi_i, \psi_i$ , i.e.  $\varphi_i(a_i^n) = \int_{\mathbb{R}} x^n d\mu_i(x)$  and  $\psi_i(a_i^n) = \int_{\mathbb{R}} x^n d\nu_i(x)$  for i = 1, 2. Then the distribution  $\mu$  of  $a_1 + a_2 \in \mathcal{A}_1 * \mathcal{A}_2$  with respect to  $\Phi$  is called the conditionally free convolution of pairs of probability measures  $(\mu_i, \nu_i)$  and we write  $\mu = (\mu_1, \nu_1) | \mathbf{c} | (\mu_2, \nu_2)$ .

**3.** *p*-product of \*-algebras. Using the language of conditionally free probability we will present a construction of a *p*-product of \*-algebras with a state. This product can be viewed as a definition of independence that is a natural independence related to the model of a two-parameter family of Gaussian operators given in [10]. A similar construction for the monotone product has been given by Franz in [6].

From now on, we will assume that the \*-algebra  $\mathcal{A}_i$  has a decomposition  $\mathcal{A}_i = \mathbb{C}1_i \oplus \mathcal{A}_i^{\circ}$ , in the sense of the direct sum of vector spaces, such that  $\mathcal{A}_i^{\circ}$  is a \*-subalgebra of  $\mathcal{A}_i$ , for i = 1, 2. This assumption is quite restrictive but for our purpose, which is study of a p-convolution of the probability measures, is suitable. One of the simplest example of that kind of algebra is the algebra  $\mathbb{C}[X]$  of all polynomials of a variable X. Moreover, note that if  $\mathcal{A}_1$  and  $\mathcal{A}_2$  have a decomposition as above, then also  $\mathcal{A}_1 * \mathcal{A}_2$  does, i.e.

$$\mathcal{A}_1 * \mathcal{A}_2 = \mathbb{C}1 \oplus (\mathcal{A}_1 * \mathcal{A}_2)^{\circ},$$

where 
$$(\mathcal{A}_1 * \mathcal{A}_2)^{\circ} = \mathcal{A}_1^{\circ} * \mathcal{A}_2^{\circ} = \{a_1 a_2 \dots a_n : a_k \in \mathcal{A}_{i_k}^{\circ}, i_1 \neq i_2 \neq \dots \neq i_n, n \geqslant 1\}.$$

On the algebra  $\mathcal{A}_i$  we can put a functional  $\delta_i$  given by  $\delta_i(a + \lambda 1_i) = \lambda$ , for  $a \in \mathcal{A}_i^{\circ}$ ,  $\lambda \in \mathbb{C}$ . Obviously,  $\delta_i$  is well defined and is a state on  $\mathcal{A}_i$  since we assume that  $\mathcal{A}_i^{\circ}$  is a \*-subalgebra. Using this state we define

$$\widetilde{\varphi}_i = p\varphi_i + (1-p)\delta_i,$$

where  $p \in [0,1]$ . As a convex combination of states  $\widetilde{\varphi}_i$  is also a state that we will call the *p-deformation of*  $\varphi_i$ .

DEFINITION 3.1. The pair  $(\mathcal{A}, \Phi)$  given by

$$(\mathcal{A}, \Phi) = (\mathcal{A}_1, \varphi_1, \widetilde{\varphi}_1) \overline{c} (\mathcal{A}_2, \varphi_2, \varphi_2)$$

will be called the *p-product* of the algebraic probability spaces  $(A_1, \varphi_1)$  and  $(A_2, \varphi_2)$  and denoted by  $(A, \Phi) = (A_1, \varphi_1) \triangleright_p (A_2, \varphi_2)$ . The copies of  $A_1, A_2$  contained in A will be called *p-independent*.

EXAMPLE 3.2. Let  $a \in \mathcal{A}_1^{\circ}$  and  $b \in \mathcal{A}_2^{\circ}$ . We will use the above definition to calculate some mixed moments of variables a and b in state  $\Phi$ . For this matter let  $a^{\circ} = a - \widetilde{\varphi}_1(a)1$ 

and  $b^{\circ} = b - \varphi_2(b)1$ . Obviously,  $\widetilde{\varphi}_1(a^{\circ}) = \varphi_2(b^{\circ}) = 0$ , from which and from Definition 3.1 it follows that  $\Phi(a) = \varphi_1(a)$  and  $\Phi(b) = \varphi_2(b)$ . Moreover

$$\begin{split} \Phi(ab) &= \Phi(a^{\circ}b^{\circ}) + \Phi(a^{\circ})\varphi_2(b) + \widetilde{\varphi}_1(a)\Phi(b^{\circ}) + \widetilde{\varphi}_1(a)\varphi_2(b) \\ &= \varphi_1(a^{\circ})\varphi_2(b^{\circ}) + \varphi_1(a^{\circ})\varphi_2(b) + \widetilde{\varphi}_1(a)\varphi_2(b^{\circ}) + \widetilde{\varphi}_1(a)\varphi_2(b) = \varphi_1(a)\varphi_2(b). \end{split}$$

Similarly  $\Phi(ba) = \varphi_1(a)\varphi_2(b)$ . In the same way we compute the moments of third order:

$$\begin{split} \Phi(bab) &= \Phi(b^{\circ}ab) + \varphi_2(b)\Phi(ab) \\ &= \Phi(b^{\circ}a^{\circ}b) + \widetilde{\varphi}_1(a)\Phi(b^{\circ}b) + \varphi_2(b)\Phi(ab) \\ &= \Phi(b^{\circ}a^{\circ}b^{\circ}) + \varphi_2(b)\Phi(b^{\circ}a^{\circ}) + \widetilde{\varphi}_1(a)\Phi(b^{\circ}b) + \varphi_2(b)\Phi(ab) \\ &= \varphi_1(a^{\circ})\varphi_2^2(b^{\circ}) + \varphi_2(b)\varphi_2(b^{\circ})\varphi_1(a^{\circ}) + \widetilde{\varphi}_1(a)\varphi_2(b^{\circ}b) + \varphi_2^2(b)\varphi_1(a) \\ &= p\varphi_1(a)\varphi_2(b^2) + (1-p)\varphi_1(a)\varphi_2^2(b), \end{split}$$

but  $\Phi(aba) = \varphi_1(a^2)\varphi_2(b)$  (we omit similar calculations).

Let us observe that for p = 1 the above moments agree with the mixed moments of free random variables, and for p = 0 with those of monotone random variables.

**4.** *p*-convolution and transforms. In this section we will introduce and study a *p*-convolution of probability measures with compact support, i.e. we will try to find a measure, which would be the distribution of the sum of two random variables which come from *p*-independent \*-subalgebras.

Let  $\mu$  and  $\nu$  be probability measures on  $\mathbb{R}$  with compact support. Moreover, let  $\mathcal{A}_i = \mathbb{C}[X_i]$  be the \*-algebra of polynomials of the variable  $X_i$  and  $\varphi_i$  be a state on  $\mathcal{A}_i$  such that

$$\varphi_1(X_1^n) = \int_{\mathbb{R}} x^n d\mu(x), \qquad \varphi_2(X_2^n) = \int_{\mathbb{R}} x^n d\nu(x),$$

for  $n \ge 0$  and i = 1, 2. Obviously,  $\widetilde{\varphi}_1(1) = 1$  and  $\widetilde{\varphi}_1(X_1^n) = p\varphi_1(X_1^n)$  for  $n \ge 1$ . If we denote the distribution of  $X_1$  with respect to  $\widetilde{\varphi}_1$  by  $\widetilde{\mu}$ , then

$$\widetilde{\mu} = p\mu + (1 - p)\delta_0,$$

i.e.  $\widetilde{\mu}$  is a convex combination of the measures  $\mu$  and  $\delta_0$ .

DEFINITION 4.1. Let  $\mu$  and  $\nu$  be probability measures on  $\mathbb{R}$  with compact support. Using the above notation, we define the *p-convolution* of  $\mu$  and  $\nu$  as follows

$$\mu \rhd_p \nu = (\mu, \widetilde{\mu}) \boxed{\mathbf{c}} (\nu, \nu),$$

which is the distribution of the sum  $X_1 + X_2 \in \mathbb{C}[X_1] * \mathbb{C}[X_2]$  with respect to the state  $\Phi = (\varphi_1, \widetilde{\varphi}_1) \overline{|c|} (\varphi_2, \varphi_2)$ .

A symmetric version of the above convolution (i.e.  $\mu[\underline{r}]\nu = (\mu, \widetilde{\mu})[\underline{c}](\nu, \widetilde{\nu})$ ) was introduced by Bożejko in [2] and also studied in [3].

Definition 4.1 allows us to use the conditionally free techniques and related transforms to study the *p*-convolution. Let us recall the well known formula for the *R*-transform of a pair of measures  $(\mu, \nu)$  (cf. [4, 7]) given by

$$R_{(\mu,\nu)}(z) = G_{\nu}^{-1}(z) - F_{\mu}(G_{\nu}^{-1}(z)), \tag{1}$$

where  $F_{\mu}=1/G_{\mu}$  is the reciprocal (inverse in the sense of multiplication of functions) Cauchy transform of  $\mu$  and  $G_{\nu}^{-1}$  is the inverse (in the sense of function composition)

296 R. SAŁAPATA

Cauchy transform of  $\nu$ . Moreover, we know that the R-transform is additive with respect to the conditionally free convolution. Using that fact and Definition 4.1 we get

$$R_{(\mu \triangleright_{\nu} \nu, \widetilde{\mu} \boxplus \nu)}(z) = R_{(\mu, \widetilde{\mu})}(z) + R_{(\nu, \nu)}(z). \tag{2}$$

From the identities (1) and (2) and the fact that the R-transform of a single measure  $(R_{\mu}(z) = R_{\mu,\mu}(z))$  is additive with respect to free convolution (cf. [14]) we get the formula

$$F_{\mu \triangleright_p \nu}(z) = F_{\mu}(G_{\widetilde{\mu}}^{-1}(G_{\widetilde{\mu} \boxplus \nu}(z))). \tag{3}$$

This formula will be useful in the proofs of the next two theorems that describe the properties of p-convolution in terms of transforms. The first of these theorems is a rather simple connection of p-convolution with the notion of *subordination* described in [1, 8, 9, 13].

PROPOSITION 4.2. Let  $F_{\mu}(z) = 1/G_{\mu}(z)$  and  $K_{\mu}(z) = z - F_{\mu}(z)$  be the reciprocal Cauchy transform and the K-transform of a measure  $\mu$ , respectively. Then for compactly supported measures  $\mu$  and  $\nu$  we have the following formula

$$F_{\mu \triangleright_n \nu}(z) = F_{\mu}(z - K_{\nu}(z - K_{\widetilde{\mu}}(z - K_{\nu}(z - K_{\widetilde{\mu}}(z - \dots))))), \tag{4}$$

where  $K_{\widetilde{\mu}}(z) = (pzK_{\mu}(z))/(z - (1-p)K_{\mu}(z))$  is the K-transform of the measure  $\widetilde{\mu} = p\mu + (1-p)\delta_0$ . The right hand side of the above formula should be understood as a uniform limit on compact subsets of the upper complex half-plane  $\mathbb{C}^+$ .

*Proof.* First we will compute the Cauchy transform of  $\widetilde{\mu}$ , the support of which obviously is also compact. We have

$$G_{\widetilde{\mu}}(z) = \sum_{n=0}^{\infty} \frac{\widetilde{\mu}(n)}{z^{n+1}} = p \sum_{n=0}^{\infty} \frac{\mu(n)}{z^{n+1}} + \frac{1-p}{z} = pG_{\mu}(z) + (1-p)G_{\delta_0}(z),$$

where  $\widetilde{\mu}(n)$  and  $\mu(n)$  are the *n*-th moments of  $\widetilde{\mu}$  and  $\mu$ , respectively. So,  $G_{\widetilde{\mu}}$  is a convex combination of  $G_{\mu}$  and  $G_{\delta_0}$  from which we can calculate a formula for  $K_{\widetilde{\mu}}$ , i.e.

$$\begin{split} K_{\widetilde{\mu}}(z) &= z - \frac{1}{pG_{\mu}(z) + (1-p)G_{\delta_0}(z)} = z - \frac{1}{\frac{p}{z - K_{\mu}(z)} + \frac{1-p}{z}} \\ &= \frac{pzK_{\mu}(z)}{z - (1-p)K_{\mu}(z)} \,. \end{split}$$

Now we can prove formula (4). From [8] we know that  $G_{\widetilde{\mu}\boxplus\nu}(z) = G_{\widetilde{\mu}}(F_1(z))$ , where  $F_1$  is the so called *subordination function* with respect to  $G_{\widetilde{\mu}}$ , which has the form

$$F_1(z) = z - K_{\nu}(z - K_{\widetilde{\mu}}(z - K_{\nu}(z - K_{\widetilde{\mu}}(z - \dots)))),$$

which, together with (3), ends the proof.

Let us observe that for p = 0 the transform  $K_{\widetilde{\mu}}$  is equal to zero on  $\mathbb{C}^+$ . In that case, identity (4) takes the form

$$F_{\mu \triangleright_0 \nu}(z) = F_{\mu}(z - K_{\nu}(z)) = F_{\mu}(F_{\nu}(z)).$$

We can see that the convolution  $\triangleright_0$  agrees with the monotone convolution  $\triangleright$  introduced in [11, 12]. On the other hand, for p = 1 the equivalence of the convolutions  $\triangleright_1$  and  $\boxplus$ , not so obvious, is also true and follows from the identity

$$F_{\mu \boxplus \nu}(z) = F_{\mu}(z - K_{\nu}(z - K_{\mu}(z - K_{\nu}(z - K_{\mu}(z - \dots))))),$$

proven in [8]. A more intuitive relation between free and p-convolution for p=1 is provided by the following theorem.

THEOREM 4.3. Let  $R_{\mu}(z) = G_{\mu}^{-1}(z) - 1/z$  be the R-transform of a the measure  $\mu$ . Then for compactly supported measures  $\mu$  and  $\nu$  the identity

$$R_{\mu \triangleright_{p} \nu}(z) = R_{\mu}(z) + R_{\nu} \left( p H_{\delta_0}(z) + (1 - p) H_{\mu}(z) \right) \tag{5}$$

holds, where  $H_{\mu}(z) = 1/G_{\mu}^{-1}(z)$ .

*Proof.* Observe that formula (3) can be viewed as follows

$$G_{\mu \rhd_{v} \nu}^{-1}(z) = G_{\widetilde{\mu} \boxplus \nu}^{-1}(G_{\widetilde{\mu}}(G_{\mu}^{-1}(z))).$$

Using the above identity and the additivity of the R-transform with respect to the free convolution, we get

$$\begin{split} R_{\mu \triangleright_p \nu}(z) &= G_{\mu \triangleright_p \nu}^{-1}(z) - \frac{1}{z} = G_{\widetilde{\mu} \boxplus \nu}^{-1}(G_{\widetilde{\mu}}(G_{\mu}^{-1}(z))) - \frac{1}{z} \\ &= G_{\widetilde{\mu}}^{-1}(G_{\widetilde{\mu}}(G_{\mu}^{-1}(z))) + G_{\nu}^{-1}(G_{\widetilde{\mu}}(G_{\mu}^{-1}(z))) - \frac{1}{G_{\widetilde{\mu}}(G_{\mu}^{-1}(z))} - \frac{1}{z} \\ &= R_{\mu}(z) + R_{\nu}(G_{\widetilde{\mu}}(G_{\mu}^{-1}(z))). \end{split}$$

Now we will use the fact that  $G_{\widetilde{\mu}}$  is a convex combination of  $G_{\mu}$  and  $G_{\delta_0}$ , so

$$R_{\mu \triangleright_{p} \nu}(z) = R_{\mu}(z) + R_{\nu} \left( p G_{\mu}(G_{\mu}^{-1}(z)) + (1 - p) G_{\delta_{0}}(G_{\mu}^{-1}(z)) \right)$$

$$= R_{\mu}(z) + R_{\nu} \left( p z + \frac{1 - p}{G_{\mu}^{-1}(z)} \right)$$

$$= R_{\mu}(z) + R_{\nu} (p H_{\delta_{0}}(z) + (1 - p) H_{\mu}(z)),$$

since  $H_{\delta_0}(z) = z$ .

Substituting p=1 to formula (5), and using the fact that  $H_{\delta_0}(z)=z$ , we get  $R_{\mu \triangleright_1 \nu}(z)=R_{\mu}(z)+R_{\nu}(z)$ . So, the convolution  $\triangleright_1$  agrees with the free convolution  $\boxplus$ . On the other hand, for p=0 formula (5) takes the form

$$H_{\mu \triangleright_0 \nu}(z) = H_{\nu}(H_{\mu}(z)), \tag{6}$$

which is equivalent to  $F_{\mu \triangleright_0 \nu}(z) = F_{\mu}(F_{\nu}(z))$  and again confirm the equivalence of convolutions  $\triangleright_0$  and  $\triangleright$ .

EXAMPLE 4.4. We will use Theorem 4.3 to calculate the *p*-convolution of the Wigner law  $d\mu = \frac{1}{2\pi}\sqrt{4-x^2} dx$  with a single point measure  $\nu = \delta_a$ . The *R*-transforms of those measures are  $R_{\mu}(z) = z$  and  $R_{\nu}(z) = a$ . From Theorem 4.3 we have

$$R_{\mu \triangleright_p \nu}(z) = z + a,$$

which means that the *p*-convolution  $\mu \triangleright_p \nu$  is also the Wigner law shifted by a, i.e. with the density  $d(\mu \triangleright_p \nu) = \frac{1}{2\pi} \sqrt{4 - (x+a)^2} dx$ .

EXAMPLE 4.5. Now we compute the p-convolution of two two-point measures. To simplify the calculations we assume that

$$\mu = \frac{1}{2}(\delta_0 + \delta_1), \qquad \nu = \frac{1}{2}(\delta_{-1} + \delta_1).$$

Nevertheless, this approach could be applied to compute the p-convolution of any pair of two-point measures, where the first one has an atom at zero.

298 R. SAŁAPATA

First we can easily calculate that

$$K_{\widetilde{\mu}}(z) = \frac{pz}{2z + p - 2}, \qquad K_{\nu}(z) = \frac{1}{z}.$$

From Proposition 4.2 we know that  $G_{\mu \triangleright_p \nu}(z) = G_{\mu}(F_1(z))$ , where  $F_1(z)$  is a function, that satisfies the equation  $F_1(z) = z - K_{\nu}(z - K_{\tilde{\mu}}(F_1(z)))$ . After solving it we can get the explicit formula of  $F_1(z)$ , from where we deduce that

$$G_{\mu \rhd_p \nu}(z) = \frac{N(z) + \left(2 - p - 2pz - 2(1-p)z^2\right)\sqrt{-2p + p^2 + (1+z-z^2)^2}}{2p(p-2)(2z - z^2 - 2z^3 + z^4)} \,,$$

with  $N(z) = (1-p)\big(2-p+(2+p)z+(3p-4)z^2-2(1+p)z^3+z^4\big)$ . Applying the Stieltjes inversion formula to  $G_{\mu\triangleright_p\nu}$  we can obtain an explicit formula for the density of the measure  $\mu\triangleright_p\nu$ .

## References

- [1] Ph. Biane, Processes with free increments, Math. Z. 227 (1998), 143–174.
- [2] M. Bożejko, Deformed free probability of Voiculescu, Sūrikaisekikenkyūsho Kōkyūroku 1227 (2001), 96–113.
- [3] M. Bożejko, A. D. Krystek, Ł. J. Wojakowski, Remarks on the r and Δ convolutions, Math. Z. 253 (2006), 177–196.
- [4] M. Bożejko, M. Leinert, R. Speicher, Convolution and limit theorems for conditionally free random variables, Pacific J. Math. 175, 1996, 357–388.
- [5] M. Bożejko, R. Speicher,  $\psi$ -independent and symmetrized white noises, in: Quantum Probability and Related Topics, QP-PQ 6, World Scientific, River Edge, NJ, 1991, 219–236.
- [6] U. Franz, Multiplicative monotone convolutions, in: Quantum Probability, Banach Center Publ. 73, Polish Acad. Sci., Warsaw, 2006, 153–166.
- [7] A. Krystek, New models of non-commutative probability, Ph.D. Dissertation, University of Wrocław, 2006.
- [8] R. Lenczewski, Decompositions of the free additive convolution, J. Funct. Anal. 246 (2007), 330–365.
- [9] R. Lenczewski, Operators related to subordination for free multiplicative convolutions, Indiana Univ. Math. J. 57 (2008), 1055–1103.
- [10] R. Lenczewski, R. Sałapata, Noncommutative Brownian motions associated with Kesten distributions and related Poisson processes, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008), 351–375.
- [11] N. Muraki, Monotonic convolution and monotone Levy-Hinčin formula, preprint, 2000.
- [12] N. Muraki, Monotonic independence, monotonic central limit theorem and monotonic law of small numbers, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (2001), 39–58.
- [13] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory, Comm. Math. Phys. 155 (1993), 71–92.
- [14] D. Voiculescu, K. Dykema, A. Nica, Free Random Variables, CRM Monogr. Ser. 1, Amer. Math. Soc., Providence, RI, 1992.