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Abstract. We introduce a p-product of algebraic probability spaces, which is the definition of
independence that is natural for the model of noncommutative Brownian motions, described
in [10] (for ¢ = 1). Using methods of the conditionally free probability (cf. [4, 5]), we define a
related p-convolution of probability measures on R and study its relations with the notion of
subordination (cf. [1, 8, 9, 13]).

1. Introduction. In the paper [I0] a two-parameter family of noncommutative Gaussian
operators, acting on the free Fock space was introduced. It was associated with Kesten
laws and gave a continuous interpolation between free, monotone and Boolean Gaussian
operators. In this paper we will describe a p-product of algebraic probability spaces, which
can be treated as a definition of independence that is natural for the model described
in [I0] (for ¢ = 1). To introduce the notion of p-product we will use well known framework
of conditionally free probability [4, B]. Using those methods we will also introduce a
p-convolution of probability measures on R which will appear to be a natural convolution
related to the model noncommutative Brownian motions described in [I0]. Moreover we
will study its relation with the notion of subordination described in [11 8, [, [13].

2. Conditionally free product. In this section we will recall from [4] 5] the well known
conditionally free product of algebraic probability spaces. Let A; be a unital *-algebra
with the unit 1, and two states p;,4; on it, for ¢ = 1,2. The triple (A;, i, 1;) will be
called the algebraic probability space with two states. The conditionally free product of the
algebraic probability spaces (A;, i, ;) is the pair (A, @), where A = A; x A; is the free
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product of algebras A; and Ay with identification of units and ® is a state, the so called
conditionally free product of pairs (p1,11) and (p2,12), given by

D(arag - --an) = i, (a1)pi,(a2) - @i, (an),
for any ap, € A;,, ix € {1,2}, 41 # is # ... # in, n € N, such that ¢, (ax) = 0 for
k=1,...,n. The pair (A, ®) is an algebraic probability space (with one state) and we will
write

(A, @) = (A1, 01,91) ¢ (A2, p2,72) and ® = (p1,v1)[c (@2, V2).

Now we can define the conditionally free convolution of probability measures with
compact support. Let u;,v; be the distribution of a; € A; with respect to ¢;, s, i.e.
pi(a}) = [pa" dpi(z) and ¥;(a]’) = [p 2" dv;(z) for i = 1,2. Then the distribution p of
a1+ ag € Ay x Ay with respect to @ is called the conditionally free convolution of pairs
of probability measures (u;,v;) and we write p = (pu1, v1)[ ¢ (2, v2).

3. p-product of *-algebras. Using the language of conditionally free probability we
will present a construction of a p-product of *-algebras with a state. This product can be
viewed as a definition of independence that is a natural independence related to the model
of a two-parameter family of Gaussian operators given in [I0]. A similar construction for
the monotone product has been given by Franz in [6].

From now on, we will assume that the *-algebra A; has a decomposition A; = C1;$A?,
in the sense of the direct sum of vector spaces, such that A is a *-subalgebra of A;, for
1 = 1,2. This assumption is quite restrictive but for our purpose, which is study of a
p-convolution of the probability measures, is suitable. One of the simplest example of
that kind of algebra is the algebra C[X] of all polynomials of a variable X. Moreover,
note that if A; and A, have a decomposition as above, then also A; * As does, i.e.

A1 x Ay =Cl @ (A1 * AQ)O,

where (A; * A2)° = A x A3 = {a1as...an 1 ap € A, i1 #ip # ... Fin, n > 1}

On the algebra A; we can put a functional §; given by d;(a + A1;) = A, for a € A,
A € C. Obviously, §; is well defined and is a state on A; since we assume that A is a
*_subalgebra. Using this state we define

$i =ppi + (1= p)d;,

where p € [0,1]. As a convex combination of states @; is also a state that we will call the
p-deformation of ;.
DEFINITION 3.1. The pair (A, ®) given by

('A7 q)) = (-Ala L1, @1)("427 Y2, 802)

will be called the p-product of the algebraic probability spaces (A1, p1) and (As, p2) and
denoted by (A, ®) = (A1, ¢1) bp (Asg, p2). The copies of Ay, Az contained in A will be
called p-independent.

ExXAMPLE 3.2. Let a € A} and b € A5. We will use the above definition to calculate
some mixed moments of variables a and b in state ®. For this matter let a®° = a — $1(a)l
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and b° = b— p2(b)1. Obviously, ¢1(a®) = ¢2(b°) = 0, from which and from Definition [3.1]
it follows that ®(a) = ¢1(a) and ®(b) = p2(b). Moreover
®(ab) = ©(a®b°) + ®(a®)p2(b) + £1(a)P(b°) + p1(a)p2(b)
= 1(a®)p2(0°) + 1(a®)p2(b) + @1(a)p2(b°) + P1(a)p2(b) = ¢1(a)p2(b).
Similarly ®(ba) = 1(a)p2(b). In the same way we compute the moments of third order:
D(bab) = D(b°ab) + p2(b)P(ad)

= ©(b°a’b) + £1(a)2(b°D) + ©2(b)®(ab)

= ®(b%°a°b°) 4+ p2(b)P(b°a®) + £1(a)P(b°b) + p2(b)P(abd)

= p1(a®)p3(0°) + 2(D)e2(b")p1(a®) + P1(a)p2(b°D) + @3 (b)pi(a)

= pp1(a)pa(b?) + (1 = p)p1(a)ps(b),
but ®(aba) = ¢1(a?)p2(b) (we omit similar calculations).

Let us observe that for p = 1 the above moments agree with the mixed moments of
free random variables, and for p = 0 with those of monotone random variables.

4. p-convolution and transforms. In this section we will introduce and study a
p-convolution of probability measures with compact support, i.e. we will try to find a
measure, which would be the distribution of the sum of two random variables which
come from p-independent *-subalgebras.

Let u and v be probability measures on R with compact support. Moreover, let A; =
C[X;] be the *-algebra of polynomials of the variable X, and ¢; be a state on A; such
that

PX7) = [ amdute), a(Xp) = [ 2" i),

for n > 0 and ¢ = 1,2. Obviously, ¢1(1) = 1 and ¢1(X7') = pp1(X7) for n > 1. If we
denote the distribution of X3 with respect to @1 by g, then

fi = pp+ (1= p)do,
i.e. @ is a convex combination of the measures p and dy.

DEFINITION 4.1. Let p and v be probability measures on R with compact support. Using
the above notation, we define the p-convolution of y and v as follows

pop v = (1, Zj)(y, v),

which is the distribution of the sum X; + X € C[X;] % C[X3] with respect to the state
® = (1, P1)[c](p2, p2)-

A symmetric version of the above convolution (i.e. y[rlv = (u, ) c|(v, 7)) was intro-
duced by Bozejko in [2] and also studied in [3].

Definition [£.1]allows us to use the conditionally free techniques and related transforms
to study the p-convolution. Let us recall the well known formula for the R-transform of
a pair of measures (u,v) (cf. [4, [7]) given by

Ruu)(2) = G, (2) = Fu(G, 1 (2)), (1)
where F,, = 1/G,, is the reciprocal (inverse in the sense of multiplication of functions)
Cauchy transform of p and G, ! is the inverse (in the sense of function composition)
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Cauchy transform of v. Moreover, we know that the R-transform is additive with respect
to the conditionally free convolution. Using that fact and Definition we get

Ry i) (2) = Ry (2) + R (2)- (2)
From the identities and and the fact that the R-transform of a single measure
(Ru(2) = Ry (%)) is additive with respect to free convolution (cf. [14]) we get the formula

Fup,u(2) = Fu(G5 ' (Grm, (2)))- (3)
This formula will be useful in the proofs of the next two theorems that describe the
properties of p-convolution in terms of transforms. The first of these theorems is a rather
simple connection of p-convolution with the notion of subordination described in [1, 8,
9, 13].
PROPOSITION 4.2. Let F),(2) = 1/G(z) and K,,(2) = z— F},(2) be the reciprocal Cauchy

transform and the K-transform of a measure u, respectively. Then for compactly supported
measures |t and v we have the following formula

Fup,(2) = Fu(z — Ky(2 — Kp(z — K, (2 — Kp(2 — .. .))))), (4)
where Ky (2) = (pzK,(2))/(z — (1 — p)K,(2)) is the K-transform of the measure [i =
pp+(1—p)do. The right hand side of the above formula should be understood as a uniform
limit on compact subsets of the upper complex half-plane CT.

Proof. First we will compute the Cauchy transform of ji, the support of which obviously
is also compact. We have

Galr) =3 B0 3 B LR (0 4 (1 p)G ),

z

n=0 n=0
where fi(n) and p(n) are the n-th moments of 1 and p, respectively. So, Gj; is a convex
combination of G, and G5, from which we can calculate a formula for K3, i.e.
1 1
z— =z —
N ORI IN O R m—c:
_ pzKu(2)
2= (1=p)Ku(z)
Now we can prove formula (). From [8] we know that Gym,(z) = Gu(Fi(z)), where F
is the so called subordination function with respect to G, which has the form

Fl(Z) =z — KV(Z — Kﬁ(z — K,,(Z — Kﬁ(z — .. )))),
which, together with , ends the proof. =

Kpu(z) =

Let us observe that for p = 0 the transform Kj is equal to zero on C*. In that case,
identity takes the form
Fuoou(2) = Fu(z — Ky (2)) = Fu(Fu(2)).
We can see that the convolution >y agrees with the monotone convolution > introduced

in [II, 12]. On the other hand, for p = 1 the equivalence of the convolutions >; and H,
not so obvious, is also true and follows from the identity

Fum(2)=Fu(z - K, (2 — K, (2 — K, (2 — K, (2 —...))))),
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proven in [8]. A more intuitive relation between free and p-convolution for p = 1 is
provided by the following theorem.

THEOREM 4.3. Let R, (z) = G,'(2) —1/z be the R-transform of a the measure . Then

for compactly supported measures p and v the identity
Ryp,(2) = Ry(2) + Ry (pHs, (2) + (1 = p) Hu(2)) (5)
holds, where H,,(z) = 1/G;1(z).
Proof. Observe that formula can be viewed as follows
G (2) = G, (Ga(G 1 (2))).

H>pV nBy H
Using the above identity and the additivity of the R-transform with respect to the free
convolution, we get

Ryoyo(2) = Gb () — ~ = Gih, (Gr(G(2))

_ Ggl(G,a(G; () + G CHG D) — ey

1
z

= Ru(2) + Ry (Gi(G, ' (2)).

“w
Now we will use the fact that G is a convex combination of G, and Gs,, so

Ry, (2) = Ru(2) + Ry (pG (G (2) + (1 = p)Gs, (G (2)))
=R,(2)+ R, (pz +

L—p

Gzl(z)>

= R, (2) + Ry (pHs, (2) + (1 — p)H,.(2)),
since Hs,(2) = 2. m

Substltutmg p = 1 to formula , and using the fact that Hs,(2) = z, we get

R,5,v(2) = R,u(2) + R, (2). So, the convolution > agrees with the free convolution H. On
the other hand, for p = 0 formula takes the form
Hubou(z) = H,,(HM(Z)), (6)

which is equivalent to Fs,,(2) = F,,(F,(2)) and again confirm the equivalence of convo-
lutions >¢ and .

ExXAMPLE 4.4. We will use Theorem to calculate the p-convolution of the Wigner
law dp = %\/4 — z2 dx with a single point measure v = §,. The R-transforms of those
measures are R,(z) = z and R,(z) = a. From Theorem we have

Rys,u(2) = 2 +a,
which means that the - convolution o Dp v is also the Wigner law shifted by a, i.e. with

the density d(p>p v \/ (x+a)?dux.

ExXAMPLE 4.5. Now we compute the p-convolution of two two-point measures. To simplify
the calculations we assume that

1 1
,LL=§(50+51), 1/25(5_14—51).

Nevertheless, this approach could be applied to compute the p-convolution of any pair of
two-point measures, where the first one has an atom at zero.
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First we can easily calculate that
pz

Ki(z) = — 22
w(2) 22+p—2°

From Proposition we know that G . (2) = Gu(Fi(z)), where Fi(z) is a function,
that satisfies the equation Fi(z) = 2z — K, (2 — K;(Fi(2))). After solving it we can get

the explicit formula of Fj(z), from where we deduce that

G o(2) = N(z)+ (2—p—2pz—2(1 —p)2?)\/—2p+ P> + (1 + z — 22)?
aitad 2p(p —2)(22 — 22 — 223 + 2%) ’
with N(z) = (1 — p) (2 —p+2+pz+Bp—4)22—2(1+p)2?+ z4). Applying the
Stieltjes inversion formula to G5, we can obtain an explicit formula for the density of

K, (z)= % .

the measure >, v.
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