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Abstract. We study the motion of a viscous incompressible fluid filling the whole three-
dimensional space exterior to a rigid body, that is rotating with constant angular velocity ω,
under the action of external force f . By using a frame attached to the body, the equations are re-
duced to (1.1) in a fixed exterior domain D. Given f = divF with F ∈ BUC(R;L3/2,∞(D)), we
consider this problem inD×R and prove that there exists a unique solution u∈BUC(R;L3,∞(D))

when F and |ω| are sufficiently small. If, in particular, the external force for the original problem
is independent of t, then f is periodic with period 2π/|ω|. In this situation, as a corollary of
our result, we obtain a periodic solution with the same period. Stability of our solution is also
discussed.

1. Introduction. This note is a continuation of the recent studies [5], [19] on the Navier-
Stokes fluid around a obstacle (rigid body) R3 \D, where D is an exterior domain with
smooth boundary ∂D. We are particularly interested in the situation that the obstacle
is rotating about the x3-axis with constant angular velocity ω = (0, 0, a)T , a 6= 0. In
the reference frame attached to the obstacle, the unknown velocity u = (u1, u2, u3)T and
pressure p should obey ([2], [10], [17])

∂tu+ u · ∇u = ∆u+ (ω × x) · ∇u− ω × u−∇p+ f,

divu = 0
(1.1)

subject to the boundary conditions

u|∂D = ω × x, u→ 0 as |x| → ∞ (1.2)

where × denotes the usual exterior product in R3. In [5] Farwig and the present author
constructed a unique steady solution u ∈ L3,∞(D), weak-L3 space, provided that the
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body force f(x) = divF (x) is independent of t and that both F ∈ L3/2,∞(D) and
|ω| are small enough. This class of solution is consistent with the pointwise estimate
|u(x)| ≤ C/|x| derived first by Galdi [11] when f = 0 (or f satisfies some pointwise decay
estimates). In [19] Shibata and the present author have recently proved the stability of the
small steady solution obtained above with respect to small initial disturbance in L3,∞(D)
together with some definite decay rates of the disturbance as t → ∞. Another stability
theorem was established by Galdi and Silvestre [12] within the framework of L2 theory.

In this paper we continue to study the rotating body problem; to be precise, we
discuss the existence and stability of the solution u ∈ BUC(R;L3,∞(D)) to (1.1) in
D × R with time-dependent body force f(x, t) = divF (x, t) subject to (1.2) when both
F ∈ BUC(R;L3/2,∞(D)) and |ω| are small enough, where BUC denotes the class of
bounded and uniformly continuous functions. Since the steady solution may be regarded
as a time-independent case of our solution, the theorems in this paper cover the previous
results [5], [19] mentioned above as a special case. In particular, another proof of the
existence of the steady solution in the class L3,∞(D) via semigroup is provided, while the
proof of [5] relied upon some tools from harmonic analysis (see [6], [18]) together with
the method (construction of parametrix) developed by [23]. And also, as a corollary of
our existence theorem, we obtain a time-periodic solution on account of the uniqueness
of the solution in the class BUC(R;L3,∞(D)); that is, when f(x, t) is periodic, so is our
solution u(x, t) with the same period. As a simple example, f(x, t) is actually periodic
with period 2π/|a| when the body force g(y) in the original frame is independent of t,
since f and g must satisfy the relation f(x, t) = O(at)T g(O(at)x) with

O(t) =

 cos t − sin t 0
sin t cos t 0

0 0 1

 .

Galdi and Silvestre [13] constructed a time-periodic solution in much more difficult situ-
ation that, for instance, the rotating axis is oscillating periodically. But the uniqueness
and stability of their solutions are not clear, differently from the solution in this paper,
because the solution in [13] does not possess good summability at infinity. The stability
problem in their physically interesting setting will be the focus in the future.

One should emphasize that the drift term (ω× x) · ∇u causes some difficulties due to
its hyperbolic effect. In fact, Farwig and Neustupa [8] proved that the essential spectrum
of the operator ∆u+(ω×x)·∇u−ω×u−∇p in L2 is given by {λ = µ+ika;µ ≤ 0, k ∈ Z};
it is the same in the Lq-setting as well, see [7]. Hence the semigroup {T (t)}t≥0 generated
by the operator above ([16] in L2, [14] in Lq) is no longer analytic unlike the usual
Stokes semigroup ([15], [25]). Nevertheless, our semigroup T (t) enjoys some remarkable
smoothing actions, see [17], [14], and that is the point for the construction of a local
solution. Furthermore, in [19] decay estimates of parabolic type, so-called Lp-Lq estimates,
of the semigroup

‖∇jT (t)f‖q ≤ Ct−j/2−(3/p−3/q)/2‖f‖p (t > 0) (1.3)

have been deduced, where

1 < p ≤ q ≤ ∞ (p 6=∞) for j = 0; 1 < p ≤ q ≤ 3 for j = 1, (1.4)
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and ‖ · ‖q denotes the norm of Lq(D). The main tool in this paper is the similar esti-
mate to (1.3) in the Lorentz space Lq,1(D), whose dual is Lq/(q−1),∞(D), and we follow
in principle the argument developed by Yamazaki [26]. In particular, his interpolation
technique implies a sharp estimate of the integral form, see (3.2), which is crucial in this
paper.

This paper is organized as follows. In section 2, after introducing notation, we state
our main theorems. Section 3 is devoted to the proof.

2. Results. Before stating our results, we introduce notation. By BUC(R;E) we denote
the class of bounded and uniformly continuous functions with values in a Banach space E.
For 1 < q < ∞ and 1 ≤ r ≤ ∞, let Lq,r(D) be the Lorentz space with norm ‖ · ‖q,r.
We especially need Lq,1(D), Lq,q(D) ≡ Lq(D) with norm ‖ · ‖q and Lq,∞(D). The last
one is well known as weak-Lq space, and a measurable function f is in Lq,∞(D) if and
only if

sup
σ>0

σ|{x ∈ D; |f(x)| > σ}|1/q <∞,

where | · | denotes the Lebesgue measure. Note Lq,1(D)∗ = Lq/(q−1),∞(D) and

Lq,r(D) = (Lq0(D), Lq1(D))θ,r

with

1 < q0 < q < q1 <∞,
1
q

=
1− θ
q0

+
θ

q1
, 1 ≤ r ≤ ∞, (2.1)

where (·, ·)θ,r is the real interpolation functor. For more details about the Lorentz space,
see [1]. In this paper we use the same symbols for denoting the spaces of vector and scalar
functions as long as there is no confusion.

Let C∞0,σ(D) be the class of all vector fields u which are of class C∞ and have compact
supports as well as divu = 0. For 1 < q <∞, the solenoidal space Jq(D) is defined by the
completion of C∞0,σ(D) in the norm ‖ · ‖q. Then the space Lq(D) of vector fields admits
the Helmholtz decomposition ([9], [22], [24])

Lq(D) = Jq(D)⊕ {∇p ∈ Lq(D); p ∈ Lq,loc(D)}.

Using the projection P from Lq(D) onto Jq(D), we define the Stokes operator

Dq(A) = {u ∈W 2
q (D) ∩ Jq(D);u|∂D = 0}, Au = −P∆u, (2.2)

where Wm
q (D) is the usual Lq-Sobolev space of m-th order (m ≥ 0). Then −A is the

generator of a bounded analytic semigroup of class (C0) on Jq(D) for each q ∈ (1,∞)
([15], [25], [4]), so that the fractional powers Aα are well defined, see (3) of Theorem 2.1.
The Stokes operator with rotation effect that plays an important role here is given by{

Dq(La) = {u ∈ Dq(A); (ω × x) · ∇u ∈ Lq(D)},
Lau = −P [∆u+ (ω × x) · ∇u− ω × u],

(2.3)

where ω = (0, 0, a)T . Geissert, Heck and Hieber [14] first proved that −La generates
a (C0)-semigroup {Ta(t)}t≥0 on Jq(D) for each q ∈ (1,∞). The uniform boundedness
of this semigroup in t has been shown by [19] as a part of (1.3): j = 0, p = q. By real
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interpolation, Ta(t) can be extended as the semigroup in various solenoidal Lorentz spaces

Jq,r(D) = (Jq0(D), Jq1(D))θ,r

where q and r satisfy (2.1). Note that it is not of class (C0) in the space

Jq,∞(D) = Jq/(q−1),1(D)∗

since the domain of the generator is not dense in this space, while for r < ∞ the class
C∞0,σ(D) is dense in Jq,r(D) and, therefore, Ta(t) is a (C0)-semigroup in those spaces.

Let us rewrite the problem (1.1)–(1.2) with f = divF in terms of the semigroup. To
do so, one needs an auxiliary function

b(x) =
−1
2

rot (ζ(x)|x|2ω)

where ζ ∈ C∞0 (R3; [0, 1]) is a cut-off function that fulfills ζ = 1 near the boundary ∂D.
Then we have div b = 0, b|∂D = ω × x and

‖b‖q,∞ = αq|ω| (2.4)

for some αq > 0, where 1 < q <∞. Set ũ = u−b, which together with pressure p satisfies

∂tũ+ ũ · ∇ũ+ b · ∇ũ+ ũ · ∇b = ∆ũ+ (ω × x) · ∇ũ− ω × ũ−∇p+ divF + divH,

div ũ = 0,
(2.5)

in D × R subject to
ũ|∂D = 0, ũ→ 0 as |x| → ∞, (2.6)

where
H(x) = −b⊗ b+∇b+ b⊗ (ω × x)− (ω × x)⊗ b

so that
divH = −b · ∇b+ ∆b+ (ω × x) · ∇b− ω × b

and
‖H‖q,∞ = βq(|ω|2 + |ω|) (2.7)

for some βq > 0, where 1 < q < ∞. The boundary value problem (2.5)–(2.6) is then
reduced to

∂tũ+ Laũ = −P div (G[ũ, F ]−H) (t ∈ R) (2.8)

in a suitable function space, where

G[ũ, F ](t) := ũ(t)⊗ ũ(t) + ũ(t)⊗ b+ b⊗ ũ(t)− F (t). (2.9)

Following Kozono and Nakao [20], we will convert (2.8) into an integral equation. Let ũ
be the solution of (2.8) and let −∞ < s < t <∞. Then we have (at least formally)

∂τ{Ta(t− τ)ũ(τ)} = Ta(t− τ){∂τ ũ(τ) + Laũ(τ)}
= −Ta(t− τ)P div (G[ũ, F ](τ)−H)

for s < τ < t. Integrating this from τ = s to τ = t, we get

ũ(t) = Ta(t− s)ũ(s)−
∫ t

s

Ta(t− τ)P div (G[ũ, F ](τ)−H) dτ. (2.10)
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We now intend to find a solution u(t) which remains bounded as t → −∞ in a suitable
norm. Combining this with Lp-Lq estimates (1.3) and letting s → −∞, see (3.18), we
obtain

ũ(t) = −
∫ t

−∞
Ta(t− τ)P div (G[ũ, F ](τ)−H) dτ (t ∈ R). (2.11)

We seek a solution of (2.11) in the class ũ ∈ BUC(R;L3,∞(D)) as in [5]. The term
div (ũ ⊗ ũ − F ), however, prevents us from direct analysis of (2.11). So, we employ a
duality argument within a framework of Lorentz spaces developed by [26] with the aid
of Ta(t) = T−a(t)∗; here, note the skew-symmetry of (ω× x) · ∇− ω×. Instead of (2.11),
we thus consider the following equation:

〈ũ(t), φ〉 =
∫ t

−∞
〈G[ũ, F ](τ)−H,∇T−a(t− τ)φ〉 dτ (2.12)

for all φ ∈ C∞0,σ(D).

Theorem 2.1. Let f = divF with F ∈ BUC(R;L3/2,∞(D)).

(1) There exists a constant δ > 0 such that if

|ω|+ sup
t∈R
‖F (t)‖3/2,∞ ≤ δ, (2.13)

then (2.12) admits a unique solution ũ ∈ BUC(R; J3,∞(D)) subject to

sup
t∈R
‖ũ(t)‖3,∞ ≤ c0(|ω|+ sup

t∈R
‖F (t)‖3/2,∞) (2.14)

with some constant c0 > 0 independent of ω and F .
(2) Let 3/2 < q < 3 and suppose in addition that F ∈ BUC(R;Lq,∞(D)). There

exists a constant δ̃ = δ̃(q) ∈ (0, δ] such that if

|ω|+ sup
t∈R
‖F (t)‖3/2,∞ ≤ δ̃, (2.15)

then the solution ũ obtained in (1) belongs to BUC(R; Jr(D)) subject to

sup
t∈R
‖ũ(t)‖r ≤ cr(|ω|+ sup

t∈R
‖F (t)‖3/2,∞ + sup

t∈R
‖F (t)‖q,∞) (2.16)

with some constant cr > 0 independent of ω and F for all r ∈ (3, q∗), where 1/q∗ =
1/q − 1/3.

(3) In addition to the assumptions of (2), suppose that f ∈ C(R;Lq(D)) for the same
q as in (2). Then the solution ũ obtained in (2) belongs to C(R;Dr(A1/2)) and satisfies
(2.11) in Jr(D) for all r ∈ (3, q∗), where A is the Stokes operator defined by (2.2).

Remark 2.1. Even if f is Hölder continuous with values in Lq(D) in (3) of Theorem 2.1,
the solution ũ is in general never of class C1 with values in Jr(D) because the semigroup
Ta(t) is not analytic.

Corollary 2.1. Let f = divF with F ∈ BUC(R;L3/2,∞(D)). In addition to (2.13),
suppose that F is periodic with period l > 0, i.e., F (t + l) = F (t) in L3/2,∞(D) for all
t ∈ R. Then the unique solution ũ obtained in (1) of Theorem 2.1 is also periodic with
the same period.
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In particular, when F is independent of t, it can be regarded as a periodic function
with arbitrary period. Thus the solution obtained in (1) of Theorem 2.1 is a steady flow
in L3,∞(D). The steady flow in this class has been already constructed by [5], [11]. We
note, as observed in [18], that the class ũ ∈ L3(D) with ∇ũ ∈ L3/2(D) is too restrictive;
in fact, the Stokes flow does not belong to L3(D) in general even if F ∈ C∞0 (D). We
essentially need the slightly larger space L3,∞(D), where the exponent 3 comes from
the nonlinearity. We thus find that the right space to be used for our problem (2.12) is
BUC(R;L3,∞(D)) as in [26]. Another candidate may be BC(R;L3,∞(D)), but this does
not seem to work well in showing the continuity with respect to t.

Let u (= ũ + b) ∈ BUC(R;L3,∞(D)) be the solution of (1.1)–(1.2). Consider the
evolution of perturbation from this solution u and the associated pressure p when the
initial perturbation v0 is prescribed. By (v, π) we denote the perturbation from (u, p);
then (v, π) should obey

∂tv + v · ∇v + u · ∇v + v · ∇u = ∆v + (ω × x) · ∇v − ω × v −∇π,
div v = 0,

(2.17)

in D × (0,∞) subject to the boundary and initial conditions

v|∂D = 0, v → 0 as |x| → ∞, v(·, 0) = v0. (2.18)

The problem (2.17)–(2.18) is reduced to

v(t) = Ta(t)v0 −
∫ t

0

Ta(t− τ)P div (v ⊗ v + v ⊗ u+ u⊗ v)(τ) dτ (2.19)

and, further, to

〈v(t), φ〉 = 〈v0, T−a(t)φ〉+
∫ t

0

〈(v ⊗ v + v ⊗ u+ u⊗ v)(τ),∇T−a(t− τ)φ〉 dτ (2.20)

for all φ ∈ C∞0,σ(D). Our stability theorem is as follows.

Theorem 2.2. Let u ∈ BUC(R;L3,∞(D)) with div u = 0 and let v0 ∈ J3,∞(D).

(1) There exists a constant η > 0 such that if

sup
t>0
‖u(t)‖3,∞ + ‖v0‖3,∞ ≤ η,

then (2.20) admits a unique solution v ∈ BC((0,∞); J3,∞(D)) subject to

sup
t>0
‖v(t)‖3,∞ ≤ c1(sup

t>0
‖u(t)‖3,∞ + ‖v0‖3,∞) (2.21)

with some constant c1 > 0 independent of u and v0, and v(t) → v0 weakly* in J3,∞(D)
as t→ 0. Here, BC denotes the class of bounded continuous functions.

(2) Given q ∈ (3,∞), there exists a constant η̃ = η̃(q) ∈ (0, η] such that if

sup
t>0
‖u(t)‖3,∞ + ‖v0‖3,∞ ≤ η̃,

then the solution v obtained in (1) belongs to C((0,∞); Jr(D)) and satisfies

‖v(t)‖r = O(t−1/2+3/2r) as t→∞ (2.22)

for all r ∈ (3, q).
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(3) Suppose in addition that u ∈ C(R;W 1
s (D)) for some s ∈ (3,∞). Then the solution

v obtained in (2) belongs to C((0,∞);Dr(A1/2)) and satisfies (2.19) in Jr(D) for all
r ∈ (3, q).

Theorem 2.2 can be proved along the same lines as in [19]; so, we may omit the proof.
Also, the idea of the proof of (3) is essentially the same as that of (3) of Theorem 2.1,
which will be given in the next section.

3. Proof. In this section we prove Theorem 2.1. We begin with decay estimates of the
semigroup in the Lorentz space, which have been shown in [19].

Lemma 3.1. Let p and q satisfy (1.4) for j = 0, 1, but q 6=∞. Given a0 > 0, there exists
a constant C = C(a0, p, q) > 0 such that

‖∇jTa(t)f‖q,1 ≤ Ct−j/2−(3/p−3/q)/2‖f‖p,1 (t > 0) (3.1)

for f ∈ Jp,1(D) provided |ω| = |a| ≤ a0.

When j = 1 and 1/p− 1/q = 1/3, the rate of (3.1) is just 1/t. For this case one can
apply the method of Yamazaki [26] to obtain

Lemma 3.2. Let 1 < p < q ≤ 3 with 1/p − 1/q = 1/3. Given a0 > 0, there exists a
constant kp = kp(a0) > 0 such that∫ ∞

0

‖∇Ta(t)f‖q,1 dt ≤ kp‖f‖p,1 (3.2)

for f ∈ Jp,1(D) provided |ω| = |a| ≤ a0.

Proof. Following [26], we give the proof for completeness. Fix q ∈ (1, 3] and consider the
sublinear operator

f 7→ ‖∇Ta(·)f‖q,1 : Jp,1(D)→ Lr,∞(R+)

where p ∈ (1, q) and 1/r = 1/2 + (3/p−3/q)/2. This is actually bounded for all p ∈ (1, q)
on account of (3.1). We now suppose that 1/p− 1/q = 1/3. We take p0, p1 in such a way
that

1 < p0 < p < p1 < q,
1
p

=
1− θ
p0

+
θ

p1
.

Now, applying the real interpolation (·, ·)θ,1 leads us to the conclusion.

We first show the uniqueness part of Theorem 2.1.

Proposition 3.1. There are constants δ1 > 0 and δ2 > 0 so that the solution of (2.12)
in the class ũ ∈ BUC(R; J3,∞(D)) with

sup
t∈R
‖ũ(t)‖3,∞ ≤M (3.3)

is unique if |ω| ≤ δ1 and if M ∈ (0, δ2).

Proof. Let u1, u2 be the solution of (2.12) with (3.3). Set u = u1 − u2, which fulfills

〈u(t), φ〉 =
∫ t

−∞
〈(u⊗ u1 + u2 ⊗ u+ u⊗ b+ b⊗ u)(τ),∇T−a(t− τ)φ〉 dτ
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for all φ ∈ C∞0,σ(D). By (3.2) together with (2.4) we find

|〈u(t), φ〉| ≤ 2(M + ‖b‖3,∞) sup
t∈R
‖u(t)‖3,∞

∫ t

−∞
‖∇T−a(t− τ)φ‖3,1 dτ

≤ 2k3/2(M + α3|ω|) sup
t∈R
‖u(t)‖3,∞‖φ‖3/2,1.

By duality we get

sup
t∈R
‖u(t)‖3,∞ ≤ 2k3/2(M + α3|ω|) sup

t∈R
‖u(t)‖3,∞.

We set, say,

δ1 :=
1

4α3k3/2
, δ2 :=

1
4k3/2

. (3.4)

Then |ω| ≤ δ1 together with M < δ2 implies u = 0.

Proof of (1) of Theorem 2.1. Set

EM = {ũ ∈ BUC(R; J3,∞(D)); sup
t∈R
‖ũ(t)‖3,∞ ≤M},

where M will be determined later, see (3.6). Given ũ ∈ EM , we define Ψũ by the relation

〈(Ψũ)(t), φ〉 = the RHD of (2.12), ∀φ ∈ C∞0,σ(D).

Similarly to the proof of Proposition 3.1, it follows from (3.2), (2.4) and (2.7) that

|〈(Ψũ)(t), φ〉| ≤ k3/2{sup
t∈R
‖F (t)‖3/2,∞ + β3/2(|ω|2 + |ω|) + 2α3|ω|M +M2}‖φ‖3/2,1

for all φ ∈ C∞0,σ(D). When |ω| ≤ δ1 ≡ 1/(4α3k3/2), see (3.4), the duality gives (Ψũ)(t) ∈
J3,∞(D) with

sup
t∈R
‖(Ψũ)(t)‖3,∞ ≤ k3/2N +

1
2
M + k3/2M

2

where
N := sup

t∈R
‖F (t)‖3/2,∞ + β3/2(δ1 + 1)|ω|.

Suppose

N <
1

16k2
3/2

(3.5)

and set

M :=
1−

√
1− 16k2

3/2N

4k3/2
< 4k3/2N <

1
4k3/2

≡ δ2, (3.6)

see (3.4); then we have k3/2M
2 − 1

2M + k3/2N = 0 which yields

sup
t∈R
‖(Ψũ)(t)‖3,∞ ≤M.

We also have

〈(Ψũ)(t+ h)− (Ψũ)(t), φ〉 =
∫ ∞

0

〈G[ũ, F ](t+ h− τ)−G[ũ, F ](t− τ),∇T−a(τ)φ〉 dτ
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where G[ũ, F ](t) given by (2.9) is uniformly continuous with values in L3/2,∞(D); given
arbitrary ε > 0 there is a constant η = η(ε) > 0 such that whenever |h| ≤ η,

sup
t∈R
‖G[ũ, F ](t+ h)−G[ũ, F ](t)‖3/2,∞ ≤ ε.

This together with (3.2) implies

|〈(Ψũ)(t+ h)− (Ψũ)(t), φ〉| ≤ k3/2 ε‖φ‖3/2,1.

As a consequence,
sup
t∈R
‖(Ψũ)(t+ h)− (Ψũ)(t)‖3,∞ ≤ k3/2 ε

holds provided that |h| ≤ η. We thus obtain Ψũ ∈ EM . Let u1, u2 ∈ EM . Following
exactly the same line as in the proof of Proposition 3.1, we get

sup
t∈R
‖(Ψu1)(t)− (Ψu2)(t)‖3,∞ ≤ 2k3/2(M + α3|ω|) sup

t∈R
‖u1(t)− u2(t)‖3,∞.

In view of (3.6), the condition |ω| ≤ δ1 ≡ 1/(4α3k3/2) yields 2k3/2(M + α3|ω|) < 1.
Hence, the mapping Ψ has a unique fixed point ũ ∈ EM with (3.6) if both |ω| ≤ δ1 and
(3.5) hold. This completes the proof.

Proof of Corollary 2.1. Let ũ be the solution obtained in (1) of Theorem 2.1 and set
v(t) := ũ(t+ l), where l > 0 is the period of F . We then have

〈v(t), φ〉 =
∫ t+l

−∞
〈G[ũ, F ](τ)−H,∇T−a(t+ l − τ)φ〉 dτ

=
∫ t

−∞
〈G[v, F ](τ)−H,∇T−a(t− τ)φ〉 dτ.

By Proposition 3.1 we obtain v = ũ, which proves the assertion.

Proof of (2) of Theorem 2.1. Fix q ∈ (3/2, 3) and assume that F belongs to

BUC(R;L3/2,∞(D) ∩ Lq,∞(D))

and satisfies (2.13). Let ũ ∈ BUC(R; J3,∞(D)) be the solution obtained in (1) of The-
orem 2.1. We define an auxiliary mapping Qeu by the relation

〈Qeu[v](t), φ〉 =
∫ t

−∞
〈ũ(τ)⊗ v(τ) + ũ(τ)⊗ b+ b⊗ ũ(τ)− F (τ)−H,∇T−a(t− τ)φ〉 dτ

for all φ ∈ C∞0,σ(D). Given v ∈ BUC(R; J3,∞(D) ∩ Jq∗,∞(D)), we see from (3.2) that

|〈Qeu[v](t), φ〉| ≤ (sup
t∈R
‖F (t)‖r,∞ + ‖H‖r,∞ + 2‖b‖r∗,∞ sup

t∈R
‖ũ(t)‖3,∞

+ sup
t∈R
‖ũ(t)‖3,∞ sup

t∈R
‖v(t)‖r∗,∞)kr∗/(r∗−1)‖φ‖r∗/(r∗−1),1

for r = 3/2 and r = q, where 1/r∗ = 1/r − 1/3. In particular, when r = q, we have

sup
t∈R
‖Qeu[v](t)‖q∗,∞ ≤ kq∗/(q∗−1){sup

t∈R
‖F (t)‖q,∞ + βq(|ω|2 + |ω|)

+ 2αq∗ |ω| sup
t∈R
‖ũ(t)‖3,∞ + sup

t∈R
‖ũ(t)‖3,∞ sup

t∈R
‖v(t)‖q∗,∞}

(3.7)

by (2.4) and (2.7). As in the proof of (1) of Theorem 2.1, Qeu[v](t) is uniformly contin-
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uous with values in Jq∗,∞(D) as well as in J3,∞(D); thus, Qeu[v] ∈ BUC(R; J3,∞(D) ∩
Jq∗,∞(D)). Furthermore, for v1, v2 ∈ BUC(R; J3,∞(D) ∩ Jq∗,∞(D)) we find

sup
t∈R
‖Qeu[v1](t)−Qeu[v2](t)‖r∗,∞ ≤ kr∗/(r∗−1) sup

t∈R
‖ũ(t)‖3,∞ sup

t∈R
‖v1(t)−v2(t)‖r∗,∞ (3.8)

for r = 3/2 and r = q. Set

δ̃ = δ̃(q) := min
{
δ,

1
2c0(k3/2 + kq∗/(q∗−1))

}
where δ and c0 are as in (1). Then, in view of (2.14), still smaller condition (2.15) yields

sup
t∈R
‖ũ(t)‖3,∞ ≤ c0(|ω|+ sup

t∈R
‖F (t)‖3/2,∞) ≤ 1

2(k3/2 + kq∗/(q∗−1))
(3.9)

which implies that the equation
Qeu[v] = v (3.10)

possesses a unique solution v ∈ BUC(R; J3,∞(D) ∩ Jq∗,∞(D)). By (3.7) together with
(3.9) this solution v enjoys

sup
t∈R
‖v(t)‖q∗,∞ ≤ 2kq∗/(q∗−1){sup

t∈R
‖F (t)‖q,∞ + βq(|ω|2 + |ω|)}+ 2αq∗ |ω|. (3.11)

Estimate (3.8) for r = 3/2 tells us, however, that the solution of (3.10) is unique only
within BUC(R; J3,∞(D)). Since ũ itself satisfies Qeu[ũ] = ũ, we see that v must coincide
with ũ. We thus conclude from (3.11), (2.14) and interpolation inequality that ũ belongs
to BUC(R; J3,∞(D) ∩ Jq∗,∞(D)) ⊂ BUC(R; Jr(D)) with (2.16) for all r ∈ (3, q∗). This
completes the proof.

We finally show (3) of Theorem 2.1. The strategy is similar to that of Kozono and
Yamazaki [21]. Let ũ be the solution obtained in (2) of this theorem. Fix τ0 ∈ R arbitrarily.
Our task is to find an open interval Iτ0 3 τ0 so that ũ can be identified with a solution
which enjoys further regularity on Iτ0 . In order to do so, one needs some auxiliary results
on the local existence and uniqueness of solutions to the following initial value problems
associated with (2.11) and (2.12), respectively:

v(t) = Ta(t− t0)v0 −
∫ t

t0

Ta(t− τ)P{(v · ∇v+ b · ∇v+ v · ∇b− f)(τ)− divH} dτ (3.12)

and its weak form

〈v(t), φ〉 = 〈v0, T−a(t− t0)φ〉+
∫ t

t0

〈G[v, F ](τ)−H,∇T−a(t− τ)φ〉 dτ (3.13)

for all φ ∈ C∞0,σ(D). Let r ∈ (3, q∗). Since ũ satisfies (2.12) for all φ ∈ Jr/(r−1)(D) by
continuity, one can replace φ by T−a(t − t0)φ in (2.12) with t = t0 to obtain a formula
of 〈ũ(t0), T−a(t − t0)φ〉. From this we find that ũ satisfies (3.13) with v0 = ũ(t0) for all
−∞ < t0 < t <∞.

Proposition 3.2. Assume that f ∈ C(R;Lq(D)) for some q ∈ (3/2, 3). Let r ∈ (3, q∗)
and v0 ∈ Jr(D), where 1/q∗ = 1/q − 1/3. Fix t0 ∈ R. Then there exist t1 ∈ (t0,∞) and
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a unique function
v ∈ C([t0, t1]; Jr(D)) ∩ C((t0, t1];Dr(A1/2)) (3.14)

which satisfies (3.12) for t0 ≤ t ≤ t1 in Jr(D). Furthermore,

t1 − t0 ≥ γ(‖v0‖r) (3.15)

with some continuous non-increasing function γ(·) = γq,r(·) : (0,∞)→ (0,∞).

The reason why Dr(A1/2) is employed here is to take the boundary condition v|∂D = 0
into account. We use the following estimate to show Proposition 3.2.

Lemma 3.3. Let 1<p≤ q <∞. Given a0> 0, there exists a constant C = C(a0, p, q)> 0
such that

‖A1/2Ta(t)f‖q ≤ Ct−1/2−(3/p−3/q)/2‖f‖p (0 < t < 1) (3.16)

for f ∈ Jp(D) provided |ω| = |a| ≤ a0.

Proof. We first assume that f ∈ C∞0,σ(D) ⊂ Dq(La). Then we have Ta(t)f ∈ Dq(La) ⊂
Dq(A) and

‖A1/2Ta(t)f‖q ≤ C‖∇Ta(t)f‖q
where we have used Theorem 4.4 of Borchers and Miyakawa [3]. Note that (1.3) with
j = 1 holds for 0 < t < 1 as long as 1 < p ≤ q < ∞, see [19]. This combined with
the above provides (3.16) for smooth f . Standard approximation procedure implies that
Ta(t)f belongs to Dq(A1/2) for general f ∈ Jp(D) together with (3.16).

Proof of Proposition 3.2. The class in which the solution is constructed is (3.14) subject
to

sup
t0≤t≤t1

‖v(t)‖r + sup
t0<t≤t1

(t− t0)1/2‖A1/2v(t)‖r

≤ C(‖v0‖r + |ω|2 + |ω|+ sup
t0≤t≤t0+1

‖f(t)‖q)

with some constant C = C(q, r) > 0, where t1 is chosen such that (3.15) holds with (3.17)
below. The proof is done by the contraction mapping principle with the aid of (3.16).
Since it is standard, we may omit it. We note only that the condition 3 < r < q∗ ensures
the integrability in Dr(A1/2) of the term which contains f . Finally, the function γ(·) can
be taken as

γ(ρ) = min{C0(ρ+ |ω|2 + |ω|+ sup
t0≤t≤t0+1

‖f(t)‖q)−2r/(r−3), C1|ω|−2, 1} (3.17)

with some constants C0 = C0(q, r) > 0, C1 = C1(r) > 0.

The following lemma is concerned with the uniqueness for (3.13).

Lemma 3.4. Let 3 < r < ∞ and v0 ∈ Jr(D). Then the solution of (3.13) on [t0, t1] is
unique within the class v ∈ C([t0, t1]; Jr(D)).

Proof. Let both v1 and v2 belong to C([t0, t1]; Jr(D)) and satisfy (3.13). We put v =
v1 − v2 and

K0 := max
t0≤t≤t1

(‖v1(t)‖r + ‖v2(t)‖r).
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Suppose that v(t) = 0 for all t ∈ [t0, σ] and set

K(t;σ) := max
σ≤τ≤t

‖v(τ)‖r.

Since v obeys

〈v(t), φ〉 =
∫ t

σ

〈(v ⊗ v1 + v2 ⊗ v + v ⊗ b+ b⊗ v)(τ),∇T−a(t− τ)φ〉 dτ,

we use (1.3) to get

|〈v(t), φ〉| ≤ Cr(K0 + 2‖b‖r)
(t− σ)1/2−3/2r

1/2− 3/2r
K(t;σ)‖φ‖r/(r−1).

We set

t∗ :=
(

1/2− 3/2r
2Cr(K0 + 2‖b‖r)

)2r/(r−3)

to obtain K(σ + t∗;σ) = 0. We repeat this procedure for σ = t0, t0 + t∗, t0 + 2t∗, . . . to
accomplish the proof.

We are now in a position to complete the proof of Theorem 2.1.

Proof of (3) of Theorem 2.1. Given q ∈ (3/2, 3), let ũ be the solution obtained in (2)
of Theorem 2.1. Fix r ∈ (3, q∗) arbitrarily and set m := the RHS of (2.16). Given any
τ0 ∈ R, we take t0 := τ0 − γ(m)/2, where γ(·) is the function in Proposition 3.2. From
this time t0 we solve the equation (3.12) with v0 = ũ(t0) ∈ Jr(D). By Proposition 3.2 we
have a solution

v ∈ C(Iτ0 ; Jr(D)) ∩ C(Iτ0 ;Dr(A1/2))

with Iτ0 = (t0, t1) for some t1. Since one can take t1 so that

t1 − t0 ≥ γ(‖ũ(t0)‖r) ≥ γ(m),

we find τ0 ∈ Iτ0 . Note that v is the solution of (3.13) as well. It thus follows from
Lemma 3.4 that v must coincide with ũ on Iτ0 . As a consequence, ũ ∈ C(Iτ0 ;Dr(A1/2)).
Since τ0 ∈ R is arbitrary, we are led to ũ ∈ C(R;Dr(A1/2)). Let −∞ < s < t <∞. From
the argument above it follows that for every σ ∈ [s, t] there is an open interval Iσ 3 σ so
that ũ fulfills

ũ(ζ) = Ta(ζ − η)ũ(η)−
∫ ζ

η

Ta(ζ − τ)P div (G[ũ, F ](τ)−H) dτ

for all η, ζ ∈ Iσ with η < ζ. Since there are σ1, · · · , σn ∈ [s, t] such that [s, t] ⊂ ∪nj=1Iσj ,
we see that ũ satisfies (2.10) in Jr(D) for all s < t. We take r̃ ∈ (3, r) to show that (2.16)
together with (1.3) implies

‖Ta(t− s)ũ(s)‖r ≤ C(t− s)−(3/er−3/r)/2‖ũ(s)‖er → 0 (s→ −∞). (3.18)

Thus ũ satisfies (2.11) in Jr(D). We have completed the proof.
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