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Abstract. We prove the existence of solution in the class H2(Ω) ×H1(Ω) to the steady com-

pressible Oseen system with slip boundary conditions in a two dimensional, convex domain with

boundary of class H5/2. The method is to regularize a weak solution obtained via the Galerkin

method. The problem of regularization is reduced to the problem of solvability of a certain

transport equation by application of the Helmholtz decomposition. The method works under an

additional assumption on the geometry of the boundary.

1. Introduction. In this paper we consider a system of Stokes-type equations describing
steady flow of a barotropic, compressible fluid in a two dimensional, convex domain with
H5/2-boundary, supplied with inhomogeneous slip boundary conditions with nonnegative
friction coefficient. The system can be considered as a linearization of a Navier–Stokes
system for compressible fluid around a constant flow (v ≡ (1, 0), ρ ≡ 1), thus we will call it
the compressible Oseen system. The slip boundary conditions involving friction enable to
describe the interactions between the fluid and the boundary of the domain. It also turns
out that they allow to extract some information on the vorticity of the velocity, that can
be used to show that the velocity has higher regularity. Such approach has been applied
in [5] and [7] to incompressible flows. In this paper we follow these ideas, modifying them
in a way that they can be applied to the compressible system. A significant feature of
this system is its elliptic-hyperbolic character: the momentum equation is elliptic in the
velocity, while the continuity equation is hyperbolic in the density. Therefore we can
prescribe the values of the density only on the part of the boundary where the flow enters
the domain and a singularity appears in the points where the inflow and outflow parts of
the boundary meet.
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We show existence of a solution (u,w) ∈ H2(Ω) ×H1(Ω). A method we apply is to
regularize a weak solution obtained via the Galerkin method. Analysing the vorticity of
the velocity we can show that the density is in fact solution to a certain transport equa-
tion, obtained by elimination of the velocity from the continuity equation. The problem of
regularization is thus reduced to the problem of solvability of a transport equation. The
values of the density are prescribed on the part of the boundary where the flow enters
the domain, and the density can be found as a solution to the transport equation via
the method of characteristics, thus singularities appear in points where the inflow and
outflow parts of the boundary coincide. We show that the solvability of this transport
equation is connected with the geometry of the boundary near the singularity points,
thus we can define classes of domains where our method of regularization can or cannot
be applied.

Since similar difficulties resulting from the mixed character of the problem appear
in the analysis of steady compressible Navier–Stokes system, it is likely that the results
of this paper will turn out useful in future analysis of a nonlinear problem. Now let us
formulate the problem more precisely.

The steady compressible Oseen system reads:
∂x1u− µ∆u− (ν + µ)∇div u+ γ∇w = F in Ω,
div u+ ∂x1w = G in Ω,
n · 2µD(u) · τ + f(u · τ) = B on Γ
n · u = 0 on Γ,
w = 0 on Γin,

(1)

where Ω is a bounded, convex domain in R2 with a boundary Γ of class H5/2. u : Ω→ R2

is the velocity of the fluid and w : Ω→ R is the density. n denotes outward unit normal
to Γ. We assume that F ∈ L2(Ω), G ∈ H1(Ω) and B ∈ H1/2(Γ) are given functions. ν
and µ are viscosity constants satisfying ν+ 2µ > 0 and f > 0 is a friction coefficient. The
system (1) can be considered as a linearization of a steady compressible Navier–Stokes
system around a constant flow (v̄ ≡ (1, 0), w̄ ≡ 1). More precisely, the perturbed flow
satisfies inhomogeneous boundary conditions n · u|Γ = d and w|Γin = win, but if we
assume that d and win are regular enough we can reduce the problem to homogeneous
boundary conditions (1)4,5. We distinguish the inflow and outflow parts of the boundary
Γ as the parts where the perturbed flow enters and leaves the domain:

Γin = {x : n1(x) < 0}, Γout = {x : n1(x) > 0}.

Let us also denote Γ∗ = {x : n1(x) = 0}. We assume that Γ∗ consists of two points:
x∗ = (x1∗, x2∗) and x∗ = (x∗1, x

∗
2) (see Fig. 1). Due to the convexity of Ω we can define

functions x1(x2) and x1(x2) for x2 ∈ (x2∗, x
∗
2) in the following way:

(x1(x2), x2) ∈ Γin, (x1(x2), x2) ∈ Γout.

Around x∗ and x∗, x2 is given as an H5/2-function of x1. We will denote these func-
tions by xl2(x1) and xu2 (x1) respectively (Fig. 2). For convenience we write C(DATA) :=
C(µ, ν,Ω, F,G,B). The main result of this paper is
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Theorem 1.1. Assume that F ∈ L2(Ω), G ∈ H1(Ω), B ∈ H1/2(Γ) and f is large enough.
Assume further that the boundary near the singularity points satisfies the following con-
dition

∃ 1 < q < 3 : lim
x1→x1∗

|xl2(x1)− x2∗|
||x1 − x1∗|q − x2∗|

= lim
x1→x∗1

|xu2 (x1)− x∗2|
||x1 − x∗1|q − x∗2|

= +∞. (2)

Then the system (1) has a unique solution (u,w) ∈ H2(Ω)×H1(Ω) and

||u||H2(Ω) + ||w||H1(Ω) ≤ C(DATA). (3)

The geometric condition (2) may look strange since it is formulated in a general form,
but it has a clear meaning. Namely, the boundary near the singularity points cannot be
too flat, more precisely, our method works if the boundary is less flat than the graph of
the function |x1|q around zero for some q < 3. We also show (lemma 3.10 (b)) that the
method does not work if the boundary behaves like |x1|3 or is more flat. The limit case
is when the boundary is more flat than the graph of |x1|q for all q < 3, but less flat than
|x1|3. An example of such a function is |x1|3 | ln |x1||. In lemma 3.11 we show that our
method doesn’t work in that case. The proof of theorem 1.1 is divided into several steps.
In section 2 we show existence of a weak solution in the class H1(Ω)× L2(Ω) using the
Galerkin method (theorem 2.7). To obtain a weak solution it is enough to assume that
G ∈ L2(Ω), and no further constraint on the geometry of Γ is required. The constraint (2)
arises when we want to show that the weak solution belongs to the class H2(Ω)×H1(Ω),
and we also need G ∈ H1(Ω). The issue of regularity of the weak solution is treated in
section 3. First we prove that the vorticity of the velocity belongs to H1(Ω) (lemma 3.3).
Such approach has been applied to incompressible Navier–Stokes equations in [5] and [7].
In the incompressible case we can next solve a div-rot system to show higher regularity
of the velocity, but in the compressible case we have to extract some information on the
density. The idea is to use the Helmholtz decomposition in H1(Ω), that means express
the velocity u as a sum of a divergence-free vector function and a gradient. The standard
theory of elliptic equations enables us to show that the divergence-free part belongs to
H2(Ω), and in order to show higher regularity of the gradient part it is enough to show
that div u ∈ H1(Ω). In lemma 3.6 we show that div u + w ∈ H1(Ω), thus it is enough
to prove that w ∈ H1(Ω). The method is to show that the density is a solution to the
transport equation

γ̄ w + wx1 = H ∈ H1(Ω). (4)

Thus the problem of regularization of the weak solution is reduced to the problem of
solvability of the transport equation (4). The boundary condition (6)5 prescribes the
values of the density on the inflow part of the boundary and (4) can be solved via the
method of characteristics, thus a singularity appears at the points x∗ and x∗, which we
will call the singularity points. It turns out that we can solve the equation (4) provided
that the singularity is not too strong, which is reflected in the constraint (2). We will
finish the introductory part removing inhomogeneity on the boundary. Let us construct
a function u0 ∈ H2(Ω) satisfying

n · 2µD(u) · τ + f(u · τ)|Γ = B and n · u|Γ = 0, (5)
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such that ||u0||H2(Ω) ≤ C(Ω)||B||H1/2(Γ). Then a pair (ũ, w), where ũ = u− u0, satisfies

∂x1 ũ− µ∆ũ− (ν + µ)∇div ũ+ γ∇w = F̃ in Ω,
div ũ+ ∂x1w = G̃ in Ω,
n · 2µD(ũ) · τ + f(ũ · τ) = 0 on Γ,
n · ũ = 0 on Γ,
w = 0 on Γin,

(6)

where {
F̃ = F + µ∆u0 + (ν + µ)∇div u0 − ∂x1u0 ∈ L2(Ω)

G̃ = G− div u0 ∈ H1(Ω).
(7)

Obviously we have

||F̃ ||L2(Ω) ≤ C(||F ||L2(Ω) + ||B||H1/2(Γ)) and ||G̃||H1(Ω) ≤ C(||G||H1(Ω) + ||B||H1/2(Γ)),

thus from now on we can work with the system (6) denoting u := ũ, F := F̃ , and G = G̃.

in Out

(X ,x *)1 2*

(X ,x )1 2* *

x1

x2

Fig. 1. The domain

2. Weak solution. In order to define a weak solution to the system (6) consider the
space

V0 = {v ∈ C∞(Ω) : v · n|Γ = 0, n · 2µD(v) · τ + f(v · τ)|Γ = 0}

and V = V0
||·||H1(Ω) equipped with the norm ||v||V = ||v||H1(Ω). Consider also a space

W = {η ∈ L2(Ω) : ηx1 ∈ L2(Ω) and η|Γin = 0}

with the norm ||w||W = ||w||L2(Ω) + ||wx1 ||L2(Ω).
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Now we want to introduce a weak formulation of (6). First, observe that for u, v
regular enough we have∫

Ω

(−µ∆u− (ν + µ)∇ div u) · v dx =
∫

Ω

2µD(u) : ∇ v + ν div u div v dx−∫
Γ

n · [2µD(u)] · v dσ −
∫

Γ

n · [ν(div u)Id] · v dσ, (8)

where A : B =
∑n
i,j=1 ai,j bi,j for A = {ai,j}, B = {ai,j} ∈ Rn×n. Thus taking u ∈ V0 in

(6)1 and multiplying it by a function v ∈ V0 we get∫
Ω

{v · ∂x1u+ 2µD(u) : ∇ v + ν div u div v − γw div v} dx+
∫

Γ

f(u · τ) (v · τ) dσ

=
∫

Ω

F · v dx. (9)

Multiplying (6)2 by a function η ∈W we get∫
Ω

η[div u+ wx1 ] dx =
∫

Ω

Gη dx. (10)

The above considerations lead to a natural definition of a weak solution to the system
(6).

Definition 2.1. By a weak solution to the system (6) we mean a couple (u,w) ∈ V ×W
satisfying (9)–(10) for each (v, η) ∈ V ×W .

We want to show existence of a weak solution using the Galerkin method. In order to
show existence of solutions to approximate problems in section 2.1 we apply a well-known
result (lemma 2.2), which automatically gives uniform boundedness of the sequence of
approximate solutions, which enables us to show convergence of this sequence to the weak
solution in section 2.2.

2.1. Approximate solutions. In order to construct a Galerkin approximation of a weak
solution let us introduce an orthonormal basis of V : {φi}∞i=1 = {(φ1

i , φ
2
i )}∞i=1 and finite

dimensional spaces V N = {
∑N
i=1 αiφi : αi ∈ R} ⊂ V . We will search for a sequence of

approximations to the velocity in the form

uN =
N∑
i=1

cNi φi. (11)

Let us denote x1 := x1(x2). Taking u = uN , v = φk and w = wN where

wN (x1, x2) =
∫ x1

x1

(G− div uN )(s, x2) ds

in (9) we get ∑
i

cNi

∫
Ω

∂x1φi · φk dx+ 2µ
∑
i

cNi

∫
Ω

D(φi) : ∇φk dx
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+ ν
∑
i

cNi

∫
Ω

div φi · div φk dx

− γ
∫

Ω

{∫ x1

x1

(
G−

∑
i

cNi div φi

)
(s, x2) ds

}
div φk dx

+ f
∑
i

cNi

∫
Γ

(φi · τ) (φk · τ) dσ =
∫

Ω

F · φk dx. (12)

For k = 1, . . . , N we obtain a system of N equations on coefficients {cNi }Ni=1. If a function
uN of a form (11) satisfies the equations (12) for k = 1, . . . , N , it means that a pair
(uN , wN ) satisfies (9)–(10) for each (v, η) ∈ V N ×W . We will call such a pair (uN , wN )
an approximate solution to (9)–(10).

The system (12), k = 1, . . . , N is rather complicated thus in order to solve it we will
use the following result (see for example [9]):

Lemma 2.2. Let X be a finite dimensional Hilbert space and let P : X → X be a
continuous operator satisfying

∃M > 0 : (P (ξ), ξ) > 0 for ||ξ|| = M. (13)

Then ∃ξ∗ : ||ξ∗|| ≤M and P (ξ∗) = 0.

In order to apply lemma 2.2 we will need some auxiliary results in the spaces V and
W .

Lemma 2.3 (Poincaré inequality in V ).

∀ v ∈ V : ||u||L2(Ω) ≤ C(Ω)||∇u||L2(Ω). (14)

Proof. Assume that (19) doesn’t hold. Then ∃{vk}∞k=1 ∈ V such that ||∇ vk||L2(Ω) <
1
k ||vk||L2(Ω). Without loss of generality we can assume ||vk||L2(Ω) = 1∀ k, thus

||∇ vk||L2(Ω) → 0. (15)

Clearly {vk} is a bounded sequence in H1(Ω) and thus thanks to the boundedness of
Ω the compact imbedding theorem implies that it contains a subsequence {vkj} that is
a Cauchy sequence in L2(Ω). But (15) implies that ∇vkj is also a Cauchy sequence in

L2(Ω). Thus {vkj} is a Cauchy sequence in H1(Ω), hence vkj
H1

→ v∗ for some v∗ ∈ H1(Ω).
Obviously ||v∗||L2(Ω) = 1 and ||∇v∗|| = 0, thus v∗ is constant almost everywhere. But
also (v∗ · n)|Γ = 0, and since Ω is a bounded set with sufficiently regular boundary, the
unit normal takes all the values from the unit sphere on Γ. Therefore

v∗
a.e.≡ const

(v∗ · n)|Γ = 0

}
⇒ v∗

a.e.≡ 0,

which contradicts ||v∗||L2(Ω) = 1.

Now we will use the Poincaré inequality to show that in V the following modification
of the Korn inequality holds:

Lemma 2.4. Assume that f is large enough. Then for u ∈ V :∫
Ω

2µD2(u) dx+
∫

Γ

f (u · τ)2 dσ ≥ C‖u‖2H1 . (16)
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Proof. The proof is based on a proof of a different version of the Korn inequality in [5].
We have

2
∫

Ω

D2(u) dx =
∫

Ω

2∑
i,j=1

[
(uixj )

2 + uixj u
j
xi

]
dx = ||∇u||2L2(Ω) +

∫
Ω

k∑
i,j=1

uixj u
j
xi dx

= ||∇u||2L2(Ω) +
∫

Ω

k∑
i,j=1

uixi u
j
xj dx−

∫
Γ

k∑
i,j=1

ui ujxj n
i dσ −

∫
Γ

k∑
i,j=1

ui uj njxi dσ. (17)

The second term of the r.h.s. is equal to
∫

Ω
div2 u dx ≥ 0 and the third term vanishes

since (u · n)|Γ = 0, thus from (17) we get

2µ
∫

Ω

D2(u) dx ≥ µ||∇u||2L2(Ω) − µ
∫

Γ

k∑
i,j=1

ui uj njxi dσ, (18)

but we have
∣∣ ∫

Γ

∑k
i,j=1 u

i uj njxi dσ
∣∣ ≤ C(Ω) ||u||L2(Γ) and thus using the Poincaré in-

equality (14) we get∫
Ω

2 D2(u) dx+
∫

Γ

f(u · τ)2 dσ ≥ C(Ω, µ)||u||H1(Ω) + [f − C(Ω, µ)] ||u||L2(Γ)

and the last term will be positive provided that f is large enough.

The last inequality we need is the Poincaré inequality in W .

Lemma 2.5 (Poincaré inequality in W ).

∀ η ∈W : ||η||L2(Ω) ≤ diam(Ω)||ηx1 ||L2(Ω). (19)

Proof. The proof is straightforward using the density of smooth functions in W and the
Jensen inequality.

The following theorem gives a solution to the system (12).

Theorem 2.6. For F,G ∈ L2(Ω) there exists a solution {cNi }Ni=1 to the system (12),
k = 1, . . . , N . The function uN =

∑
i c
N
i φi satisfies

||uN ||H1(Ω) ≤ C(DATA). (20)

Proof. In order to apply Lemma 2.2 we have to define an appropriate operator PN :
V N → V N . For convenience let us define BN : V N × V N → R:

BN (ξN , vN ) =
∫

Ω

vN∂x1ξ
N dx+ 2µ

∫
Ω

D(ξN ) : ∇vN dx+ ν

∫
Ω

div ξNdiv vN dx

−γ
∫

Ω

{∫ x1

x1

(G− div ξN )(s, x2) ds
}
div vN dx+ f

∫
Γ

(ξN · τ)(vN · τ) dσ −
∫

Ω

F · vN dx.

Now (12) can be rewritten as B(uN , φk) = 0 and thus it is natural to define

PN (ξN ) =
∑
i

BN (ξN , φk)φk for ξN ∈ V N . (21)
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We have to verify the assumptions of Lemma 2.2. Obviously PN : V N → V N and it is a
continuous operator. For ξN =

∑
i a
N
i φi we have

(
PN (ξN ), ξN

)
=
( N∑
k=1

BN (ξN , φk)φk,
N∑
i=1

aNi φi

)
=

N∑
k=1

{
BN (ξN , φk)

N∑
i=1

aNi (φi, φk)
}

=
N∑
k=1

BN (ξN , φk)aNk = BN (ξN , ξN ). (22)

Using the definition of BN we can rewrite (22) as(
PN (ξN ), ξN

)
= 2µ

∫
Ω

D2(ξN ) dx+ ν

∫
Ω

div2ξN dx︸ ︷︷ ︸
I1

+
∫

Ω

ξN∂x1ξ
N dx+

∫
Γ

f(ξN · τ)2 dσ︸ ︷︷ ︸
I2

−γ
∫

Ω

{∫ x1

x1

(G− div ξN )(s, x2) ds
}
div ξN dx︸ ︷︷ ︸

I3

−
∫

Ω

F · ξN dx.

Using the Korn inequality (16) we get I1 + I2 ≥ C(µ, ν,Ω)||ξN ||2H1 for f large enough.
Now let us denote

ηN (x1, x2) =
∫ x1

x1

(G− div ξN )(s, x2) ds.

Then ηNx1
= G− div ξN and we have

I3 = −γ
∫

Ω

ηN div ξN dx = γ

∫
Ω

ηN ηNx1
dx− γ

∫
Ω

GηN dx

≥ γ
∫

Ω

GηN dx ≥ −C||G||L2(Ω) ||ηN ||L2(Ω) ≥ −C ||G||L2(Ω) (||G||L2(Ω) + ||ξN ||H1(Ω)).

Combining these bounds we get(
PN (ξN ), ξN

)
≥ C(µ,Ω)||ξN ||2H1(Ω) − (||F ||L2(Ω) + ||G||L2(Ω))||ξ||H1(Ω) − ||G||2L2(Ω).

Thus there exists C̃ = C̃(µ,Ω, F,G) such that
(
PN (ξN ), ξN

)
> 0 for ||ξ|| = C̃, and

applying lemma 2.2 we conclude that ∃ξ∗ : PN (ξ∗) = 0 and ||ξ∗|| ≤ C̃. But since {φi} is
a basis of V , the definition of PN (21) yields

PN (ξ∗) = 0⇔ BN (ξ∗, φk) = 0, k = 1, . . . , N,

thus ξ∗ is a solution to (12).

2.2. Existence of weak solution. Now we show that the sequence (ξN , ηN ) constructed
in the previous section converges to the weak solution of our problem.

Theorem 2.7. Assume that F,G ∈ L2(Ω) and f is large enough. Then there exists a
weak solution (u,w) to (6) satisfying the estimate

||u||V + ||w||W ≤ C(DATA). (23)

Proof. The estimate (20) together with (19) gives

||uN ||H1(Ω) + ||wN ||L2(Ω) + ||wNx1
||L2(Ω) ≤ C(DATA). (24)
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Since the sequence {wNx1
} is bounded in L2(Ω), there exists a subsequence wNk and a

function ζ ∈ L2 such that wNkx1

L2

⇀ ζ. Now let us denote for simplicity wN := wNk . It is

bounded in L2, thus there exists a subsequence wNj L
2

⇀ w for some function w ∈ L2. Now
we need to show that ζ = wx1 , but this is quite obvious. We have

∀v ∈ L2 : −
∫

Ω

wNk vx1 =
∫

Ω

wNkx1
v →

∫
Ω

ζ v and
∫

Ω

wNk vx1 →
∫

Ω

w vx1 ,

thus
∫

Ω
ζ v = −

∫
Ω
w vx1 ∀v ∈ L2(Ω).

It is a bit more complicated to show the existence of u. The estimate (24) gives
boundedness in L2(Ω) of the sequences {div uN} , {∂x1u

N} , {D(uN )} and boundedness
in L2(Γ) of {(uN · τ)}. Thus up to a subsequence

div uN
L2

⇀ ξ, ∂x1u
N L2

⇀ α, D(uN ) L
2

⇀ β and uN · τ L2(Γ)
⇀ δ

for some ξ, α, β ∈ L2(Ω) and some δ ∈ L2(Γ). On the other hand, since the sequence {uN}
is bounded in H1, the compact imbedding theorem yields uN L2

→ u up to a subsequence
for some u ∈ L2(Ω). We want to show that in fact u ∈ H1 and that (u,w) satisfies
(9)–(10). But we have ∀φ ∈ C0

∞(Ω):

−
∫

Ω

u ∂x1φ← −
∫

Ω

un∂x1φ =
∫

Ω

φ∂x1un →
∫

Ω

αφ

thus α = ∂x1 u. Similarly we can verify that
ξ = div u,

β = D(u),
δ = u · τ |Γ.

(25)

Thus u ∈ H1(Ω), and the pair (u,w) satisfies (9)–(10) ∀N ∈ N ∀(v, η) ∈ V N ×W . The
density of V N in V implies that it also satisfies (9)–(10) ∀(v, η) ∈ V ×W . Thus indeed
(u,w) is a weak solution. The estimate (23) is obtained in a standard way taking v = u

and η = w in (9)–(10) and then applying the Korn inequality (16) and the Poincaré
inequality in W (19).

3. Regularity. In this section we will show that the weak solution belongs to the class
H2(Ω) × H1(Ω). The idea of the proof has been outlined in the introduction. We start
with showing that if (u,w) is a weak solution then rot u ∈ H1(Ω).

Since on this level we have only weak solutions, we have to work with the weak
formulation (9)–(10). Consider a special class of test functions:

V1 = {v ∈ V : v = ∇⊥φ, φ ∈ H2(Ω), v · n|Γ = 0, φ|Γ = 0}
where ∇⊥ = (∂x2 ,−∂x1). Note that on Γ we have ∂φ

∂τ = v · n = 0. Let us denote α =
rot u = u2

x1
− u1

x2
. Since div v = 0 for v ∈ V1, thus for v ∈ V1 (9) takes the form∫

Ω

α∂x1φdx+ 2µ
∫

Ω

D(u) : ∇v dx =
∫

Ω

F · ∇⊥φdx−
∫

Γ

f(u · τ)
∂φ

∂n
dσ. (26)

Lemma 3.1. For u ∈ V, v ∈ V1 we have∫
Ω

2µD(u) : ∇v dx = −µ
∫

Ω

α∆φdx+
∫

Γ

2(µχ− f)(u · τ)
∂φ

∂n
dσ (27)

where α = rot u and χ denotes the curvature of Γ.
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To prove lemma 3.1 we will use the following auxiliary result, proved in [7]:

Lemma 3.2. For u ∈ V0 we have

rot u|Γ =
(

2χ− f

µ

)
(u · τ), (28)

where χ is the curvature of Γ.

Proof of lemma 3.1. Due to the density of V0 in V it is enough to prove (27) for uε ∈
V0, v ∈ V1. For such functions we have (we omit the subscript ε):∫

Ω

2µD(u) : ∇ v dx = −
∫

Ω

2µdivD(u) · v dx+
∫

Γ

n · 2µD(u) · v dσ.

Since we have 2divD(u) = ∆u+∇div u, using the definition of V0 we can write∫
Ω

2µD(u) : ∇ v dx = −
∫

Ω

µ(∆u+∇ div u) · ∇⊥φdx−
∫

Γ

f(u · τ)
∂φ

∂n
dσ. (29)

Integration by parts yields∫
Ω

∇div u · ∇⊥φdx =
∫

Γ

div u
∂φ

∂τ
dσ = 0 (30)

and ∫
Ω

∆u · ∇⊥φdx =
∫

Ω

φ∆rot u dx+
∫

Γ

φ∆u · τ dσ︸ ︷︷ ︸
=0

= −
∫

Ω

∇φ · ∇rot u dx+
∫

Γ

φ
∂

∂n
rot u dσ︸ ︷︷ ︸

=0

=
∫

Ω

rot u∆φdx−
∫

Γ

rot u
∂φ

∂n
dσ. (31)

Substituting (30) and (31) into (29) we get∫
Ω

2µD(u) : ∇ v dx = −µ
∫

Ω

rot u∆φdx+ µ

∫
Γ

rot u
∂φ

∂n
dσ −

∫
Γ

f (u · τ) dσ, (32)

and application of (28) to the boundary term yields (27).

With lemma 3.1 (26) takes the form∫
Ω

α∂x1φdx−
∫

Ω

α∆φdx =
∫

Ω

F · ∇⊥φdx−
∫

Γ

(2µχ− f)(u · τ)
∂φ

∂n
dσ. (33)

Since u ∈ H1(Ω), we can construct d ∈ H1(Ω) such that{
d|Γ = (2µχ− f)(u · τ),
||d||H1(Ω) ≤ C ||u||H1(Ω).

(34)

Now consider a decomposition α = b + d where b|Γ = 0. From (33) we see that the
function b satisfies∫

Ω

b ∂x1φdx+
∫

Ω

∇b · ∇φdx = −
∫

Ω

d∂x1φdx+
∫

Ω

F · ∇⊥φdx−
∫

Ω

∇d · ∇φdx. (35)

Inverting the above reasoning we can prove

Lemma 3.3. Assume that (u,w) is a weak solution to (6). Then rot u ∈ H1(Ω) and

||rot u||H1(Ω) ≤ C(DATA).
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Proof. Consider a problem: find b ∈ H1
0 (Ω) satisfying (35) ∀φ ∈ H1

0 (Ω). Obviously this
problem has a solution b ∈ H1

0 (Ω) and

||b||H1
0
≤ C(DATA, d) ≤ C(DATA, ||u||H1) ≤ C(DATA).

In particular b satisfies (35) ∀φ ∈ H1
0 ∩H2. Thus if we define α∗ = b+d, where d is given

by (34), then ||α∗||H1 ≤ C(DATA) and α∗ satisfies (33) ∀φ ∈ H1
0 ∩H2. But this means

that α∗ = rot u.

We will use this fact together with a classical result, the Helmholtz decomposition in
H1(Ω) ([2],[8]):

Lemma 3.4 (Helmholtz Decomposition). For u ∈ H1(Ω), there exist ψ,A ∈ H2(Ω) such
that n · ∇⊥A|Γ = 0 and

u = ∇ψ +∇⊥A. (36)

Now our goal is to show that if (u,w) is a solution to (9)–(10) then ψ,A ∈ H3(Ω),
thus u ∈ H2(Ω).

Lemma 3.5. Assume that (u,w) is a weak solution to (6) and (ψ,A) is the Helmholtz
decomposition of u. Then A ∈ H3(Ω) and ||A||H3(Ω) ≤ C(DATA).

Proof. On the boundary we have n·∇⊥A = τ ·∇A = ∂A
∂τ , thus the condition n·∇⊥A|Γ = 0

yields A|Γ = const. Moreover, rot u = rot(∇ψ +∇⊥A) = rot∇⊥A = ∆A. We see that A
is a solution to the following boundary value problem:{

∆A = α,

A|Γ = const,

where α = rot u ∈ H1(Ω). Since the boundary is of class H5/2, the standard theory of
elliptic equations yields A ∈ H3(Ω) and ||A||H3(Ω) ≤ C(Ω)||α||H1(Ω).

Now we want to show that also ψ ∈ H3(Ω). We have div u = ∆ψ and on the boundary
we have 0 = u · n = (∇ψ +∇⊥A) · n = ∇ψ · n. Thus ψ satisfies{

∆ψ = div u,
∂ψ
∂n |Γ = 0,

and in order to prove that ψ ∈ H3(Ω) it is enough to show that div u ∈ H1(Ω). The next
step is to prove the following

Lemma 3.6. Assume that (u,w) is a weak solution to the system (6). Then

−(2µ+ ν) div u+ γ w =: H ∈ H1(Ω) (37)

and
|| − (2µ+ ν)div u+ γ w||H1(Ω) ≤ C(DATA). (38)

Proof. For u ∈ V0 we can integrate by parts in (9) and using (8) we obtain∫
Ω

{v · ∂x1u− [µ∆u+ (ν + µ)∇div u] · v} dx−
∫

Ω

γw div v dx =
∫

Ω

F · v dx. (39)
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Substituting the Helmholtz decomposition to (39) we get∫
Ω

−(ν + 2µ)∇(∆ψ) · v dx−
∫

Ω

γw divv dx =∫
Ω

(
F − ∂x1(∇ψ +∇⊥A) + µ∆∇⊥A

)︸ ︷︷ ︸
F̃

·v dx. (40)

From lemma 3.5 we see that F̃ ∈ L2(Ω) and ||F̃ ||L2(Ω) ≤ C(DATA). Integrating formally
by parts the second term of the l.h.s. of (40) we get∫

Ω

[−(2µ+ ν)∇(∆ψ) + γ∇w] · v dx =
∫

Ω

F̃ · v dx. (41)

At the beginning we assumed that u ∈ V0 in order to write (39), but we can understand
the identity 2D(u) = ∆u+∇div u in a weak sense, and thus we have

F̃ = ∇[−(2µ+ ν)∆ψ + γw] = ∇[−(2µ+ ν)div u+ γw]

and so lemma 3.6 is proved.

Combining (37) and (6)2 we get

γ

ν + 2µ
w + wx1 =

H

2µ+ ν
+G =: H̃ ∈ H1(Ω). (42)

We see that the density is a solution to a transport equation. Our goal is now to use
this fact to show that w ∈ H1(Ω). Since we already know that w ∈ L2(Ω), the problem
reduces to showing that wx2 ∈ L2(Ω). A natural way to extract some information on
wx2 from the equation (42) is to differentiate it with respect to x2. For simplicity we will
write γ := γ

2µ+ν and H := H̃. We have γw+wx1 = e−γx1∂x1(eγx1w), thus differentiating
(42) with respect to x2 we get

∂x2

[
e−γx1∂x1(eγx1w)

]
= ∂x2H ∈ L2(Ω). (43)

We want to use the above identity to define wx2 in an appropriate way. In order to
do this assume first that wx2 ∈ L2(Ω) is well defined. Then (43) can be rewritten as
e−γx1∂x1

[
eγx1wx2

]
= ∂x2H, thus

∂x1

[
eγx1wx2

]
= eγx1∂x2H =: α (44)

If we assume also that wx2 is well defined on Γin, then we can write:

eγ x1wx2(x1, x2) = eγ x1(x2)wx2(x1(x2)) +
∫ x1

x1(x2)

α(s, x2) ds. (45)

This identity will enable us to define wx2 on Ω provided that it is well defined on Γin. The
boundary condition w|Γin = 0 implies that the tangent derivative of w is well defined on
Γin: ∂

∂τw|Γin = 0. Provided that the first order derivatives of w are well defined on Γin,
this identity can be rewritten as

τ1wx1 + τ2wx2 = 0, (46)

but due to (42) we have wx1 |Γin = (w + wx1)|Γin = H|Γin ∈ H1/2(Γin), and thus (46)
yields wx2 |Γin = − τ

1

τ2 H|Γin . Note that on Γin we have τ1

τ2 = x1
′(x2) (Fig. 3), thus we can
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x2

2

1

x1 2(x )

Fig. 3. The function x1(x2) and the tangent vector

rewrite (45) as

wx2(x1, x2) = e−γ x1

[
− eγ x1(x2)x1

′(x2)H(x1(x2), x2) +
∫ x1

x1(x2)

α(s, x2) ds
]
.

Since α ∈ L2(Ω), we see that

wx2(x1, x2) ∈ L2(Ω)⇔
∫ x∗2

x2∗

∫ x1(x2)

x1(x2)

[x1
′(x2)H(x1(x2), x2)]2dx1 dx2 <∞.

Since the integrand does not depend on x1, we can rewrite the integral as∫ x∗2

x2∗
[x1(x2)− x1(x2)][x1

′(x2)]2H2(x1(x2), x2) dx2.

For simplicity let us denote H(x2) := H(x1(x2), x2). The above reasoning leads to the
following conclusion:

Lemma 3.7. Let (u,w) be a weak solution to (6). Assume that∫ x∗2

x2∗

β(x2)|x1
′(x2)|H2(x2) dx2 <∞, (47)

where
β(x2) = [x1(x2)− x1(x2)]|x1

′(x2)| (48)

and define

λ(x1, x2) = e−γ x1

[
− eγ x1(x2)x1

′(x2)H(x2) +
∫ x1

x1(x2)

α(s, x2) ds
]
, (49)

where α is defined in (44). Then λ ∈ L2(Ω), ||λ||L2(Ω) ≤ C(DATA) and λ = wx2 .

Remark. The functions H(·) and
∫ x1

x1(·) α(s, ·) ds are defined a.e. in (x2∗, x
∗
2), thus λ is

defined a.e. in Ω, more precisely, it is defined for all x1 and almost all x2 ∈ (x2∗, x
∗
2).

Proof of lemma 3.7. Since α ∈ L2(Ω), we see that (47) implies λ ∈ L2(Ω). Moreover,
inverting the passage from (43) to (45) we conclude that

e−γ x1 ∂x1 [eγ x1λ] = ∂x2H,

thus indeed λ = wx2 .
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Now we are ready to formulate a regularity result that can be considered a major step
in the proof of theorem 1.1.

Proposition 3.8. Let (u,w) ∈ V ×W be a weak solution to (6) and assume that the
boundary constraint (47) holds. Then (u,w) ∈ H2(Ω)×H1(Ω) and

||u||H2(Ω) + ||w||H1(Ω) ≤ C(DATA). (50)

Proof. At this stage in order to complete the proof it is enough to resume the steps we
have made. From (42) and lemma 3.7 we have w ∈ H1(Ω). Thus from (37) we conclude
that div u ∈ H1(Ω), and so (37) yields ψ ∈ H3(Ω), where u = ∇ψ +∇⊥A. From lemma
3.5 we have A ∈ H3(Ω), hence we conclude that u ∈ H2(Ω) and the estimate (50) holds.

As we see, the condition (47) is crucial for our regularization method to work, but it
is hard to interpret it since it depends not only on the geometry of the boundary, but also
on the function H. Thus we want to formulate some conditions equivalent, or at least
sufficient for (47) to be satisfied, that would depend only on the geometry of Γ. Such a
condition is stated in the following

Lemma 3.9. Assume that for some ε > 0∫ x∗2

x2∗

β1+ε(x2)|x′1(x2)| dx2 < +∞. (51)

Then (47) holds.

Proof. Since the integrability in (47) is questionable only in the neighbourhood of x2∗
and x∗2, we can fix some small δ > 0 and focus on(∫ x2∗+δ

x2∗

+
∫ x∗2

x∗2−δ

)
β(x2)|x1

′(x2)|H2(x2) dx2.

We will consider the first integral, the second is dealt with in the same way. Observe that
on Γin we have dx2 = |τ2| dσ, thus∫ x2∗+δ

x2∗

β(x2)|x1
′(x2)|H2(x2) dx2 =

∫ x2∗+δ

x2∗

β(x2)
∣∣∣∣τ1

τ2

∣∣∣∣H2(x2) dx2 '
∫

Γ1
in

β H2 dσ,

where Γ1
in denotes the part of Γin between x2∗ and x2∗ + δ. In the last passage we used

the fact that τ1 ' 1 in the neighbourhood of the singularity points. Since H ∈ H1/2(Γin),
due to the Sobolev imbedding theorem we have H ∈ Lp(Γin) ∀ p < +∞, and thus[

∃ε > 0 :
∫

Γ1
in

β1+ε dσ <∞
]
⇒
∫

Γ1
in

β H2 dσ < +∞, (52)

but on Γ1
in we have dσ ∼ |x1

′(x2)| dx2 and the l.h.s. of (52) is equivalent to

∃ε > 0 :
∫ x2∗+δ

x2∗

β1+ε(x2)|x1
′(x2)| dx2 < +∞.

The condition (51) depends only on the geometry of Γ in the neighbourhood of the
singularity points. Now we want to determine some classes of domains where this condi-
tion holds and does not hold. We will focus on one of the singularity points, let us say
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x2∗, and assume without loss of generality that (x1∗, x2∗) = (0, 0). For simplicity let us
denote xl2(x1) =: l(x1).

To begin, consider a class of domains where l(x1) = |x1|q, q ≥ 2. We have to assume
q ≥ 2 to ensure that |x|q ∈ H1/2(R). Indeed, we have

|x|q ∈ H1/2(R)⇔
∫ 1

0

∫ 1

0

|(x+ h)r − xr|2

h2
dh dx < +∞, (53)

where r = q − 2. Dividing the integral over x into
∫ h

0
+
∫ 1

h
we can see that r.h.s. of (53)

is equivalent to integrability on (0, 1) of the function x2r−1, which holds for r > 0.
We have x1(x2) = −x1/q

2 and x1(x2) = x
1/q
2 , and thus

β1+ε(x2)|x1
′(x2)| = [x1(x2)− x1(x2)]1+ε |x1

′(x2)|2+ε ∼ x
3+2ε
q −(2+ε)

2

We see that (51) holds for

q <
3 + 2ε
1 + ε

< 3. (54)

In particular, (51) doesn’t hold for any ε > 0 (or even for ε = 0) if q = 3, but for any
q < 3 there exists ε > 0 such that (51) is satisfied. Although this example concerns only
a particular class of boundaries, it suggests that we should be able to determine whether
(51) holds or does not hold by comparing the function l(x1) with the limit case from our
example, i.e. l∗(x1) = |x1|3. Let us denote

gq = lim
x1→0

l(x1)
|x1|q

. (55)

It turns out that whether (51) holds depends on gq in the following way:

Lemma 3.10. Let gq be defined in (55). Then we have

(a) ∃q < 3 : gq = +∞ ⇒ (51) holds for some ε > 0;

(b) g3 < +∞ ⇒ (51) does not hold for any ε ≥ 0. (56)

Proof. Let us show (b). We have

|g3| = lim
x1→0

∣∣∣∣∂x1 l(x1)
∂x1 |x1|3

∣∣∣∣ = lim
x2→0+

∣∣∣∣ ∂x2(x1/3
2 )

∂x2x1(x2)

∣∣∣∣ = lim
x2→0+

∣∣∣∣ ∂x2(x1/3
2 )

∂x2x1(x2)

∣∣∣∣, (57)

thus (we understand that 1
0 =∞ and 1

∞ = 0):

lim
x2→0+

|x1
′(x2)| = 1

3|g3|
lim

x2→0+
|x−2/3

2 |. (58)

From (57) we get

|g3| = lim
x2→0+

∣∣∣∣ x1/3
2

x1(x2)

∣∣∣∣ = lim
x2→0+

∣∣∣∣ x1/3
2

x1(x2)

∣∣∣∣, (59)

thus
lim

x2→0+
[x1(x2)− x1(x2)] =

2
|g3|

lim
x2→0+

x
1/3
2 . (60)

Combining (58) and (60) we get

lim
x2→0+

[x1(x2)− x1(x2)]1+ε|x1
′(x2)|2+ε
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=
C

|g3|3+2ε
lim

x2→0+
|x1/3

2 |1+ε |x−2/3
2 |2+ε =

C

|g3|3+2ε
lim

x2→0+
|x2|−1− ε3

for a positive, finite constant C, which implies
∫ δ

0
[x1(x2)− x1(x2)]1+ε|x1

′(x2)|2+ε dx2 =
+∞ since 1

|g3|3+2ε > 0. Thus (b) is proved. (a) can be shown exactly in the same way by
comparing l(x1) with the function |x1|q.

A remaining question is what happens in the limit case when gq = 0 ∀ 1 < q < 3
but g3 = +∞. The following lemma gives the answer:

Lemma 3.11.

∀ 1 < q < 3 gq = 0
g3 = +∞

}
⇒ (51) does not hold for any ε > 0. (61)

Proof. First of all, observe that

|gq| = lim
x2→0+

|x2|1/q

|x1(x2)|
= lim
x2→0+

|x2|1/q

|x1(x2)|
.

For a given function x1(x2) let us define h(x2) = x
1/3
2

|x1(x2)| . Then we have

+∞ = lim
x2→0+

x
1/3
2

|x1(x2)|
= lim
x2→0+

h(x2) (62)

and

∀ 1 < q < 3 : 0 = lim
x2→0+

x
1/q
2

|x1(x2)|
= lim
x2→0+

x
3−q
3q

2 h(x2). (63)

We have

|x1
′(x2)| ∼

∣∣∣∣x−2/3
2 h(x2)− h′(x2)x1/3

2

h2(x2)

∣∣∣∣ =
∣∣∣∣x−2/3

2 [h(x2)− x2 h
′(x2)]

h2(x2)

∣∣∣∣,
thus for ε > 0:

[x1(x2)− x1(x2)]1+ε|x1
′(x2)|2+ε ∼ x

1+ε
3

2

h1+ε(x2)
x
−4−2ε

3
2 [h(x2)− x2 h

′(x2)]2+ε

h4+2ε(x2)

=
x
−1− ε3
2

h5+3ε(x2)︸ ︷︷ ︸
Aε(x2)

[h(x2)− x2 h
′(x2)]2+ε︸ ︷︷ ︸

Bε(x2)

.

In order to determine whether the r.h.s. is integrable in the neighbourhood of 0, observe
first that Aε(·) is not integrable. Indeed, (63) implies xr2 h

5+3ε(x2)→ 0 ∀r > 0, thus for
x2 small enough

x
−1− ε3
2

h5+3ε
>
x
−1− ε3
2

x−r2

= x
−1− ε3 +r
2 ,

and if we choose r < ε
3 the last function is not integrable, and thus Aε(·) is not integrable.

Now let us see what happens with Bε(·). We have

lim
x2→0+

x2 h
′(x2) = lim

x2→0+

h′(x2)
(ln(x2))′

= lim
x2→0+

h(x2)
ln(x2)

,
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I q<3: g =+q

g3 <+

Fig. 4. Behaviour of the boundary near (x1∗, x2∗)

thus h(x2) is dominating in B(x2) when x2 → 0, and in particular limx2→0+ Bε(x2) =
+∞. We conclude that

∀ ε > 0 :
∫ δ

0

Aε(x2)Bε(x2) dx2 = +∞,

which completes the proof.

Lemma 3.11 together with point (b) from lemma 3.10 shows that if g0 = 0 ∀ 1 <

q < 3 then β /∈ L1+ε(Γin) for any ε > 0, thus we cannot show (47) without additional
information on the function H; the only information that we have under the assumptions
of theorem 1.1 is that H ∈ H1/2(Γin).

The condition from the point (a) of lemma 3.10 means that the singularity in x1
′(x2)

in the neighbourhood of the singularity points cannot be too strong, more precisely, it
must be weaker than the singularity of ∂x2(x1/q

2 ) for some q < 3. In other words, the
boundary around the singularity points cannot be too flat, it must be ”less flat” that
a graph of a function |x1|q for some q < 3 (after an obvious translation). Examples of
domains that allow or do not allow the application of our method are shown in Fig. 4.
The proof of our main result is almost complete.

Proof of theorem 1.1. If ∃ 1 < q < 3 : gq = +∞, then from lemma 3.10, (a) we see
that (51) is satisfied, thus lemma (3.9) gives (47), and so proposition 3.8 yields that the
weak solution (u,w) ∈ H2(Ω)×H1(Ω). We want to show that (u,w) satisfies (6) almost
everywhere.

Clearly (10) implies that (6)2 is satisfied a.e. Taking a test function v ∈ V ×H1
0 (Ω) we

see that also (6)1 holds. The definition of the spaces V and W implies that the boundary
conditions (6)4 and (6)5 hold, thus it is enough to show that also (6)3 is satisfied. Since
u ∈ H2(Ω), we can integrate by parts the r.h.s. of (9) and obtain ∀v ∈ V :∫

Ω

[
F −

(
∂x1 u− µ∆u− (ν + µ)∇ div u

)]
· v dx︸ ︷︷ ︸

=0

=
∫

Γ

[n · 2µD(u) · τ + f(u · τ)] (v · τ) dσ,

thus indeed n · 2µD(u) · τ + f(u · τ) a.e.= 0.
We have shown that for F ∈ L2(Ω) and G ∈ H1(Ω) the system (6) has a solution

(u,w) ∈ H2(Ω)×H1(Ω). Now let u0 ∈ H2 be an extension of the boundary data (5) and
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let (u,w) be a solution to (6) with F = F̃ and G = G̃ defined in (7). Then (u+ u0, w) is
a solution to (1) and the estimate (3) holds.

4. Conclusions. We have shown existence of a solution (u,w) ∈ H2(Ω) × H1(Ω) to
the compressible Oseen system with slip boundary conditions (1). The method we ap-
plied follows the approach of [5], [7] and reduces the problem of regularization of the
weak solution to the problem of solvability of the transport equation (4). We can solve
this equation and thus prove that the density w ∈ H1(Ω) provided that the boundary
constraint (2) holds. It should be underlined that this constraint does not result from
the system (1) itself, but from the method of regularization that reduces the problem to
solvability of (4). Application of different methods of regularization might enable us to
weaken the assumption (2). In particular it would be interesting if we could weaken it in
a way that admits domains where n1 = 0 on a set of positive measure, where clearly (2)
cannot hold. A natural continuation of this paper would be to consider the compressible
Navier–Stokes system. A similar approach enables again to reduce the problem of regu-
larization of the weak solution to solvability of a transport equation, which is however
more complicated than (4) since it contains a nonlinear term u · ∇w. A possible way to
solve this equation is to apply elliptic regularization.

We also plan to extend the approach presented in this paper to Lp-framework.
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