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Abstract. This paper is part of the autumn school on “Variational problems and higher order

PDEs for affine hypersurfaces”. We discuss affine Bernstein problems and complete constant

mean curvature surfaces in equiaffine differential geometry.

Contents

1. Affine Weierstrass representation

2. Proof of Calabi’s Affine Bernstein Conjecture

3. Euclidean complete affine surfaces with constant affine mean curvature

1. Affine Weierstrass representation. We use the notation for equiaffine hypersur-

faces in real affine space An+1 from [L-S-Z]. Let M be a connected, oriented differen-

tiable manifold, and let x : M → An+1 be a locally strongly convex hypersurface. If the

unimodular-affine mean curvature L1 satisfies L1 = 0 on M then x(M) is called an affine

maximal hypersurface.

The conormal field U satisfies the PDE ∆U + nL1U = 0; this implies the following

Theorem 1.1. Let x : M → An+1 be a locally strongly convex hypersurface, given as the

graph of a function f ; x is an affine maximal hypersurface (which means L1 ≡ 0 on M)

if and only if f satisfies the PDE

∆

{[
det

(
∂2f

∂xj∂xi

)]−1/(n+2)}
= 0,
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where the Laplacian, in local coordinates, satisfies:

∆ =
1√

det(Gkl)

n∑

i,j=1

∂

∂xi

(
Gij

√
det(Gkl)

∂

∂xj

)
.

Example 1.2. Any parabolic affine hypersphere is an affine maximal hypersurface. In

particular, the elliptic paraboloid

xn+1 =
1

2
[(x1)2 + · · · + (xn)2], (x1, . . . , xn) ∈ An

is an affine-complete affine maximal hypersurface.

An affine analogue of the Weierstrass representation. Let V be the R-vector space asso-

ciated to An+1. We consider a Euclidean inner product (·, ·) : V ×V → R with associated

normed determinant forms on V and its dual space V ∗; we use the same notation Det.

For simplicity, we study maximal surfaces in R3. Let x : M → R3 be a locally strongly

convex surface. Choose isothermal parameters u, v on M with respect to the Blaschke

metric G, and let e1 = ∂ux = xu, e2 = ∂vx = xv, and denote ∂U/∂u =: Uu, ∂U/∂v =: Uv.

Then G11 = G22 =: F > 0, G12 = G21 = 0. We have

(U, xu) = 0, (Uu, xu) = −F, (Uv, xu) = 0,

(U, xv) = 0, (Uu, xv) = 0, (Uv, xv) = −F,
(U, Y ) = 1, (Uu, Y ) = 0, (Uv, Y ) = 0,

where Y denotes the affine normal.

We use the cross product construction; then (see [L-S-Z], p. 3)

xu = λ[U,Uv], xv = µ[U,Uu],

Det(xu, xv, Y ) Det(Uu, Uv, U) = F 2,

where λ, µ are differentiable functions. Since

Det(xu, xv, Y ) = |det(hij)|1/4 = F,

we have

Det(Uu, Uv, U) = F.

Then

−F = (Uu, xu) = −λDet(Uu, Uv, U) = −λF.
It follows that λ = 1. Similarly, we have µ = −1.

Thus we obtain the following affine analogue of the well known Weierstrass represen-

tation for Euclidean minimal surfaces:

(1.1) x =

∫
[U,Uv]du− [U,Uu]dv.

If x(M) is an affine maximal surface then

∆U = 0,

where, in the given coordinate system, the Laplacian reads:

∆ =
1

Det(Uu, Uv, U)

(
∂2

∂u2
+

∂2

∂v2

)
.
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It follows that the components U1(u, v), U2(u, v) and U3(u, v) of U are harmonic func-

tions.

Conversely, given a triple of functions

U = (U1(u, v), U2(u, v), U3(u, v))

defined on Ω ⊂ R
2, satisfying the two conditions:

(i) U1, U2, U3 are harmonic with respect to the canonical metric of R
2;

(ii) Det(Uu, Uv, U)>0 in Ω, where Ω is a simply connected domain and (u0, v0), (u, v)∈Ω.

Then we can construct an affine maximal surface x : Ω → A3 as follows:

(1.2) x =

∫ (u,v)

(u0,v0)

[U,Uv]du− [U,Uu]dv.

The surface is well defined because the integrability conditions are satisfied:

[U,Uv]v + [U,Uu]u = [U,Uuu + Uvv] = 0.

From the point of view of local differential geometry the formula (1.2) admits a construc-

tion of any affine maximal surface.

In the following we give some further examples of affine maximal surfaces.

Example 1.3. Consider Ω := R
2 and define U : R

2 → R
3 by U := (1, u, v); we get

x =

(
1

2
(u2 + v2),−u,−v

)
,

which is an elliptic paraboloid.

Example 1.4. Consider Ω :=
{
(u, v) ∈ R2|u > 0

}
and define U : Ω → R3 by U :=

(1, u2 − v2, v), then

Det(Uu, Uv, U) = 2u.

The construction above gives

x =

(
1

3
(u3 + uv2),−u,−2uv

)
, u > 0.

Example 1.5. Let Ω :=
{
(u, v) ∈ R

2|u > 0, v < 0
}

and define U := (u, v, 2uv), then

Det(Uu, Uv, U) = −2uv,

x =

(
−2

3
v3,−2

3
u3,

1

2
(u2 + v2)

)
, u > 0, v < 0.

Affine completeness and Euclidean completeness. In affine differential geometry there are

two notions of completeness:

(1) affine completeness, that is, the completeness of the Blaschke metric G;

(2) Euclidean completeness, that is, the completeness of the Riemannian metric on M

induced from a Euclidean metric on An+1.

Affine Bernstein problem. About complete affine maximal surfaces there are two conjec-

tures, due to Chern and Calabi, both are called an “affine Bernstein problem” (see [CH],

[CA]):
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Chern’s conjecture. Let x3 = f(x1, x2) be a strictly convex function defined for all

(x1, x2) ∈ A2. If M =
{
(x1, x2, f(x1, x2))|(x1, x2) ∈ A2

}
is an affine maximal surface,

then M must be an elliptic paraboloid.

Calabi’s conjecture. A locally strongly convex affine complete surface x : M → A3

with affine mean curvature L1 ≡ 0 is an elliptic paraboloid.

These conjectures were generalized to higher dimensions (see [L-S-Z], [CA], [SO-2]).

Recently Calabi’s conjecture was solved, see [L-J-1], [T-W-2]; Chern’s conjecture was

solved by Trudinger and Wang X.-J. (see [T-W-1]). In [L-J-2] we proved the following

result:

Theorem 1.6. Let M be a locally strongly convex, Euclidean complete surface in A3

with constant affine mean curvature L1.

(a) If L1 > 0, then M is an ellipsoid.

(b) If L1 = 0, then M is an elliptic paraboloid.

(c) If L1 < 0, then M has “finite geometry”.

As a corollary of Theorem 1.6, we present a new proof of Chern’s conjecture about

affine maximal surfaces.

Note that the two versions of the affine Bernstein problem assume different com-

pleteness conditions. Calabi’s conjecture assumes affine completeness; Chern’s conjecture

assumes Euclidean completeness. Generally, the affine completeness and the Euclidean

completeness are not equivalent (see [SCH], [NO]).

2. Proof of Calabi’s Conjecture

Preliminaries. Let M be a C∞ manifold of dimension 2 and x : M → A3 a locally

strongly convex surface. We choose a local unimodular affine frame field x, e1, e2, e3 on

M such that

e1, e2 ∈ TxM, det(e1, e3, e3) = 1, e3 = Y.

Denote by Ak
ij and Bij the local components of the affine Fubini-Pick tensor and the affine

Weingarten tensor with respect to the frame field x, e1, e2, e3. We have the following local

formulas (see [L-S-Z], pp. 52–60); the comma indicates covariant differentiation w.r.t. the

Blaschke metric:

x,ij =
∑

Ak
ijek +GijY,(2.1)

U,ij = −
∑

Ak
ijU,k −BijU,(2.2)

∆x = 2Y,(2.3)

∆U = −2L1U,(2.4)
∑

GijAijk = 0,(2.5)

R = 2(J + L1),(2.6)

where R, J denote the scalar curvature and the Pick invariant, resp. For an affine maximal

surface we have R ≥ 0.
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Again we use isothermal parameters u,v. Suppose that M is an affine maximal surface.

As above U is harmonic with respect to u,v. Let z := u+ iv. Define α and β by

α :=
1

2
(A111 + iA222), β :=

1

2

(
B11 −B22

2
− iB12

)
.

Let ‖ . ‖G denote the norm with respect to the Blaschke metric. We have (see [L-S-Z],

p. 155)

‖α‖2 :=

(
F

2

)−3

· αᾱ =
1

2
‖A‖2

G, ‖β‖2 :=

(
F

2

)−2

· ββ̄ =
1

2
‖B‖2

G,(2.11)

α = iDet(U,Uz, Uz2),(2.12)

β = iF−1 Det(Uz, Uz̄, Uz2),(2.13)

F

2
= −iDet(U,Uz, Uz̄).(2.14)

Calabi calculated the Laplacian of 1/2(J + ‖B‖2) = 1/2J + ‖β‖, he got the following

differential inequality (compare [L-S-Z], p. 231):

(2.15) ∆

(
1

2
J + ‖β‖

)
≥ 3J2.

Proof of the conjecture. Using (2.15) we can easily prove the following result of Martinez

and Milan (see [M-M] or [L-S-Z], p. 231):

Theorem 2.1. Let x : M → A3 be a locally strongly convex affine maximal surface. If

M is complete with respect to the Blaschke metric and if there is a constant N > 0 such

that ‖B‖2
G ≤ N everywhere, then M must be an elliptic paraboloid.

Proof. From (2.15) and the assumptions we have

∆

(
1

2
J + ‖β‖

)
≥ 3J2 ≥ 6

(
1

2
J + ‖β‖

)2

− 12‖β‖2 ≥ 6

(
1

2
J + ‖β‖

)2

− 6N.

By a well-known result from geometric analysis it follows that 1
2J + ‖β‖ is bounded from

above. Being a bounded subharmonic function on a complete 2-dim Riemannian manifold

with R ≥ 0, 1
2J + ‖β‖ must be a constant. It follows that J = 0 everywhere. Thus x(M)

is an elliptic paraboloid.

From the assumption, x : M → A3 is a locally strongly convex affine maximal surface,

which is complete with respect to the Blaschke metric. We want to show that there is a

constant N > 0 such that ‖B‖2
G ≤ N everywhere. We need the following lemma (see [H],

p. 635, Lemma 26).

Lemma 1 (Hofer). Let (X, d) be a complete metric space with metric d, and Ba(p) =

{x|d(p, x) ≤ a} be a ball with center p and radius a. Let Φ be a positive continuous

function defined on B2a(p). Then there is a point q ∈ Ba(p) and a positive number

ǫ ≤ a/2 such that

Φ(x) ≤ 2Φ(q) for all x ∈ Bǫ(q) and ǫΦ(q) ≥ a

2
Φ(p).

Now we assume that ‖B‖2
G is not bounded above. Then there is a sequence of points

pℓ ∈M such that ‖B‖2
G(pℓ) → ∞. We may assume that M is simply connected, otherwise
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we consider its universal covering space. As M is noncompact, complete with R ≥ 0, it is

conformally equivalent to C. Then we may choose global isothermal parameters u,v on M

such that the Blaschke metric is given by G = F (du2 + dv2). Let B1(pℓ) be the geodesic

ball with center pℓ and radius 1. Consider a family Φ(ℓ) : B2(pℓ) → R of functions, ℓ ∈ N,

defined by

Φ(ℓ) = ‖∇ logF‖G + ‖A‖G + ‖B‖1/2
G .

In terms of u, v we have

‖∇ logF‖2
G =

1

F

((
∂ logF

∂u

)2

+

(
∂ logF

∂v

)2)
,

‖A‖2
G =

1

F

∑
(Ak

ij)
2, ‖B‖2

G =
1

F 2

∑
(Bij)

2.

Using Hofer’s Lemma we find a sequence of points qℓ and positive numbers ǫℓ such that

Φ(x) ≤ 2Φ(qℓ) ∀ x ∈ Bǫℓ
(qℓ)(2.16)

ǫℓΦ(qℓ) ≥
1

2
Φ(pℓ) → ∞.(2.17)

The restriction of the surface x to the balls Bǫℓ
(qℓ) defines a family M(ℓ) of maximal

surfaces. For every ℓ, we normalize M(ℓ) as follows:

Step 1. Denote by u(ℓ), v(ℓ) the restriction of the isothermal parameters of M to M(ℓ).

First we take a parameter transformation on M(ℓ):

(2.18) û(ℓ) = c(ℓ)u(ℓ), v̂(ℓ) = c(ℓ)v(ℓ), c(ℓ) > 0,

where c(ℓ) is a constant. Choosing c(ℓ) appropriately and using an obvious notation F̂ ,

we may assume that, for every ℓ, we have F̂ (qℓ) = 1. Note that, under the parameter

transformation (2.18), Φ is invariant.

Step 2. We use the Weierstrass representation for affine maximal surfaces (see Section

1) to define, for every ℓ, a new surface M̃(ℓ) from M(ℓ) via its conormal by

Ũ(ℓ) = λ(ℓ)U(ℓ), λ(ℓ) > 0;

we introduce new parameters ũ(ℓ), ṽ(ℓ) by

ũ(ℓ) = b(ℓ)û(ℓ), ṽ(ℓ) = b(ℓ)v̂(ℓ), b(ℓ) > 0,

where λ(ℓ) and b(ℓ) are appropriate constants. From the foregoing conormal equation

one easily verifies that each M̃(ℓ) again is a locally strongly convex maximal surface. We

now choose λ(ℓ) = (b(ℓ))2/3, b(ℓ) = Φ(qℓ). Using again an obvious notation F̃ , Φ̃, from

(2.11)-(2.14) one can see that

F̃ = F̂ , Φ̃(ℓ) =
1

b(ℓ)
Φ(ℓ).

The first equation is trivial. We calculate the second one. We can easily get

‖∇ log F̃‖G̃ =
1

b
‖∇ log F̂‖G.

From (2.11)–(2.14) and our choice λ3 = b2 we have

‖B̃‖2
G̃

= 2‖β̃‖2 = 2
1

b4
‖β‖2 =

1

b4
‖B‖2

G,
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‖Ã‖2
G̃

= 2‖α̃‖2 = 2
λ6

b6
‖α‖2 = 2

1

b2
‖α‖2 =

1

b2
‖A‖2

G.

Then the second equality follows.

We denote B̃a(qℓ) = {x ∈ M̃(ℓ) | d̃(ℓ)(x, qℓ) ≤ a}, where d̃(ℓ) is the geodesic distance

function with respect to the Blaschke metric on M̃(ℓ). Then Φ̃(ℓ) is defined on the geodesic

ball B̃r(ℓ)(qℓ) with r(ℓ) = ǫℓΦ(qℓ) ≥ 1
2Φ(pℓ) → ∞. From (2.16) we have

Φ̃(qℓ) = 1,(2.19)

Φ̃(x) ≤ 2, ∀x ∈ B̃r(ℓ)(qℓ).(2.20)

Step 3. For any ℓ we introduce new parameters ξ1(ℓ), ξ2(ℓ) as follows:

ξ1(ℓ) = ũ(ℓ) − ũ(ℓ)(qℓ), ξ2(ℓ) = ṽ(ℓ) − ṽ(ℓ)(qℓ).

Then at qℓ, (ξ1, ξ2) = (0, 0) for any ℓ, and we can identify the parametrization (ξ1, ξ2)

for any index ℓ. Let x̃(ℓ) denote the position vector of M̃(ℓ). An appropriate unimodular

affine transformation gives

x̃(ℓ)(o) = (0, 0, 0),(2.21)

x̃ξ1
(ℓ)(o) = e1 = (1, 0, 0),(2.22)

x̃ξ2
(ℓ)(o) = e2 = (0, 1, 0),(2.23)

Ỹ (ℓ)(o) = (0, 0, 1).(2.24)

Consider the open geodesic balls

Ω(ℓ) := {(ξ1, ξ2) ∈ R
2 | d̃(ℓ)(o, ξ) < r(ℓ)}

and the sequence M̃(ℓ) of maximal surfaces x̃(ℓ) : Ω(ℓ) → A3. They satisfy (2.21)-(2.24)

and the conditions

F̃ (ℓ)(o) = 1,(2.25)

Φ̃(ℓ)(o) = 1, Φ̃(ℓ)(ξ) ≤ 2 ∀ξ ∈ Ω(ℓ),(2.26)

(2.27) r(ℓ) → ∞.

It follows from (2.7)-(2.10) and (2.22)-(2.25) that, for any ℓ, (Ũξ1
, Ũξ2

, Ũ)(0) = I, where

I is the unit matrix. We need the following lemma

Lemma 2. Let M be an affine maximal surface defined in a neighborhood of 0 ∈ R2.

Suppose that, with the notations from above,

F (o) = 1, (Uξ1
, Uξ2

, U)(o) = I,(i)
(

1

F

∑(
∂(logF )

∂ξi

)2)1/2

+

(
1

F

∑
(Ak

ij)
2

)1/2

+

(
1

F

(∑
(Bij)

2
)1/2

)1/2

≤ 2.(ii)

Denote D := {(ξ1, ξ2)| ξ21 + ξ22 ≤ 1
2}. Then there is a constant C1 > 0 such that, for

(ξ1, ξ2) ∈ D, the following estimates hold:

(1)
4

9
≤ F ≤ 4;
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(2)

|U | + |Uξ1
| + |Uξ2

| ≤ C1

where | · | denotes the canonical norm in R
3;

(3) denote ro = 1
3 ; then Ωro

⊂ {ξ21 + ξ22 <
1
4} ⊂ D, where Ωro

is the geodesic ball with

center o and radius ro with respect to the Blaschke metric.

Proof of Lemma 2. (1) Consider an arbitrary curve Γ = {ξ1 = a1s, ξ2 = a2s, a
2
1 + a2

2 =

1, s ≥ 0}. By assumption we have

1

F

(
∂ logF

∂s

)2

≤ 2, F (0) = 1.

Solving this differential inequality with F (0) = 1, we get
(

1

1 +
√

2
2 s

)2

≤ F (s) ≤
(

1

1 −
√

2
2 s

)2

.

From the assumption we have s ≤ 1√
2
, then (1) follows.

(2) Note that the Christoffel symbols are given by ∂ logF/∂ξi. Along the curve Γ

the structure equation U,ij = −∑
Ak

ijU,k −BijU gives an ODE which can be written in

matrix form:

(2.28)
dX

ds
= XH,

where X = (Uξ1
, Uξ2

, U), and H is a matrix, whose elements depend on Bij , A
k
ij and

∂ logF/∂ξi. It follows from (2.27) that

(2.29)
dXt

ds
= HtXt,

where we use an obvious notation for the transpose of a matrix. Then

(2.30)
d(XtX)

ds
= HtXtX +XtXH.

Denote f = Tr(XtX). Taking the trace of (2.30) we get

(2.31)
df

ds
= Tr(HtXtX) + Tr(XtXH) ≤ Cf,

where C is a constant. Deriving the last inequality we used (1) and the condition (ii).

Solving (2.30) with the condition (i) we get (2). From (1) we immediately get (3).

We continue with the proof of the conjecture. Since r(ℓ) → ∞, we have D ⊂ Ω(ℓ) for

ℓ big enough. In fact, by (1), the geodesic distance from 0 to the boundary of D with

respect to the Blaschke metric on M̃(ℓ) is less than
√

2. Using (2) and a standard elliptic

estimate we get a Ck-estimate, independent of ℓ, for any k. It follows that there is a ball

{ξ21 + ξ22 ≤ C2} and a subsequence (still indexed by ℓ) such that Ũ(ℓ) converges to Ũ on

the ball, and correspondingly all derivatives, where C2 <
1
2 is very close to 1

2 . Thus, as

limit, we get a maximal surface M̃ , defined on the ball, which contains a geodesic ball

Ωro
. We now extend the surface M̃ as follows: For every boundary point p = (ξ1o, ξ2o) of

the geodesic ball Ωro
we first make the parameter transformation: ξ̃i = b(ξi − ξio) such
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that at p, (ξ̃1, ξ̃2) = (0, 0), and for the limit surface M̃ we have F̃ (p) = 1. We choose

frame e1, e2, e3 at p such that e1 = x̃ξ̃1
, e2 = x̃ξ̃2

, e3 = Ỹ . We have

(i′) F̃ (ℓ)(p) → F̃ (p) = 1, (Ũξ̃1
(ℓ), Ũξ̃2

(ℓ), Ũ(ℓ))(p) → I as ℓ→ ∞.

It is easy to see that under the conditions (i′) and (ii) in Lemma 2, the estimates (1),

(2) and (3) in Lemma 2 remain true. By the same argument as above we conclude that

there is a ball around p and a subsequence ℓk, such that Ũ(ℓk) converges to Ũ ′ on the

ball, and correspondingly all derivatives. As limit, we get a maximal surface M̃ ′, which

contains a geodesic ball of radius ro around p. Then we return to the original parameters

ξ1, ξ2 and the original frame e1, e2, e3 at 0. Note that the geodesic distance is independent

of the choice of the parameters and the frames. It is obvious that M̃ and M̃ ′ agree on

the common part. We repeat this procedure to extend M̃ to be defined on Ω2ro
, etc. In

this way we may extend M̃ to be an affine complete maximal surface defined in a domain

Ω ⊂ R2; using (24) and (25) we get

‖B̃‖G̃ ≤ 2, Φ̃(0) = 1.

By Theorem 1, M̃ must be an elliptic paraboloid, given by

x3 =
1

2
(x2

1 + x2
2),

where x1, x2, x3 are the coordinates in A3 with respect to the frame e1, e2, e3. For a

paraboloid we have ‖Ã‖G̃ = 0, ‖B̃‖2
G̃

= 0, R̃ = 0 identically, and G̃ = dx2
1 + dx2

2. Thus

(2.32) ‖∇ log F̃‖G̃(0) = 1.

We consider log F̃ as a function of x1, x2. Since the scalar curvature vanishes identically,

R̃ = 0, from the formula
∆ log F̃ = −R̃

we conclude that log F̃ is a harmonic function. As ‖∇ log F̃‖G̃ ≤ 2, log F̃ must be a linear

function. In view of (2.32), without loss of generality, we may assume that log F̃ = x1.

We introduce complex coordinates and write w = ξ1 + iξ2, z = x1 + ix2, then w(z) is a

holomorphic or anti-holomorphic function. We consider the case that w is holomorphic.

For the case that w is anti-holomorphic, the discussion is similar. Since G̃ = |dz|2 =

F̃ |dw|2 we have |w′|2 = F̃−1 = e−x1 . Let Q = e
z
2 . Then |w′Q| = 1. From the maximum

principle we get w′Q = C where C is a constant with |C| = 1. So w′ = Ce−
z
2 . It follows

that w = −2Ce−
z
2 + E, where E is a constant. Since e−

z
2 has period 2π for x2, we have

a covering map A2 → Ω; this is impossible. We get a contradiction. So ‖B‖G must be

bounded above on M . By Theorem 1 M is an elliptic paraboloid. We have proved the

following

Theorem 2.2. Let x : M → A3 be a locally strongly convex affine maximal surface. If

M is complete with respect to the Blaschke metric, then M must be an elliptic paraboloid.

3. Euclidean complete affine surfaces with constant affine mean curvature

Introduction. The classification of locally strongly convex, affine-complete affine hyper-

spheres had attracted many geometers during the last decades. For the history of this

problem and the contributions of different authors we refer to the monograph [L-S-Z],
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pp. 84-85. Obviously, every affine hypersphere has constant affine mean curvature L1.

Thus an interesting and important problem is the classification of locally strongly con-

vex, complete affine hypersurfaces with constant affine mean curvature L1. We shall show

that the study of locally strongly convex, Euclidean complete hypersurfaces with constant

affine mean curvature L1 = L is equivalent to the study of the convex solutions of the

fourth order P.D.E.

(∗) ∆

[
det

(
∂2f

∂xi∂xj

)]−1/(n+2)

= −nL
[

det

(
∂2f

∂xi∂xj

)]−1/(n+2)

.

In this paper, we consider the convex solutions of the equation (∗) for n = 2. We shall

prove that a) if L > 0, then there is no convex solution of (∗) which is defined for all

(x1, x2) ∈ R2; b) if L = 0 and f(x1, x2) is a convex solution of (∗), which is defined for all

(x1, x2) ∈ R2, then f(x1, x2) must be a quadratic polynomial. In the language of affine

differential geometry, our main theorems can be stated as follows:

Theorem 3.1. Every locally strongly convex, Euclidean complete surface with constant

affine mean curvature is affine complete.

To state our Theorem 3.2 we introduce a terminology. A locally strongly convex

hypersurface is said to have “finite geometry” if ‖B‖k and ‖A‖k are bounded, where

‖B‖k := ‖B‖ + ‖∇B‖ + ‖∇2B‖ + · · · + ‖∇kB‖,
‖A‖k := ‖A‖ + ‖∇A‖ + ‖∇2A‖ + · · · + ‖∇kA‖.

Using Theorem 3.1 we immediately get the following result:

Theorem 3.2. Let M be a locally strongly convex, Euclidean complete surface in A3

with constant affine mean curvature L1.

(a) If L1 > 0, then M is an ellipsoid.

(b) If L1 = 0, then M is an elliptic paraboloid.

(c) If L1 < 0, then M has “finite geometry”.

As a corollary of Theorem 3.2, we present a new proof of Chern’s conjecture about

affine maximal surfaces.

Fundamental formulas. Consider a locally strongly convex hypersurface x : M → An+1,

which is given as a graph by a strictly convex function

xn+1 = f(x1, . . . , xn).

Then, the Blaschke metric G is given as in Section 1 and the affine conormal vector field

U can be identified with

U =

[
det

(
∂2f

∂xi∂xj

)]−1/(n+2)(
− ∂f

∂x1
, . . . ,− ∂f

∂xn
, 1

)
.

The formula ∆U = −nL1U implies that x(M) is a locally strongly convex hypersurface

with constant affine mean curvature L1 ≡ L if and only if f satisfies the following P.D.E.:

(3.1) ∆

[
det

(
∂2f

∂xi∂xj

)]−1/(n+2)

= −nL
[

det

(
∂2f

∂xi∂xj

)]−1/(n+2)

.
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Denote

ρ :=

[
det

(
∂2f

∂xi∂xj

)]−1/(n+2)

.

Then (3.1) gives

(3.2) ∆ρ = −nL1ρ.

Note that in terms of x1, . . . , xn we have (det(Gkl))
1/2 = 1

ρ . By a direct calculation we

get

(3.3) ∆ =
1

ρ

∑
f ij ∂2

∂xi∂xj
− 2

ρ2

∑
f ij ∂ρ

∂xj

∂

∂xi
+

1

ρ

∑ ∂f ij

∂xi

∂

∂xj

where (f ij) denotes the inverse matrix of (fij) and fij = ∂2f/∂xi∂xj . Differentiate the

equality
∑
f ikfkj = δi

j ; one finds

∑ ∂f ik

∂xi
fkj = −

∑
f ik ∂fkj

∂xi
=

(n+ 2)

ρ

∂ρ

∂xj
.

It follows that

(3.4)
∑ ∂f ik

∂xi
=

(n+ 2)

ρ

∑
f jk ∂ρ

∂xj
.

Inserting (3.4) into (3.3) we obtain

(3.5) ∆ =
1

ρ

∑
f ij ∂2

∂xi∂xj
+
n

ρ2

∑
f ij ∂ρ

∂xj

∂

∂xi
.

To find the affine normal Y and calculate the affine Weingarten tensor Bij , we let (see

[CH])
e∗i = ei, 1 ≤ i ≤ n, e∗n+1 = en+1 +

∑
ai

n+1ei,

where e∗n+1 is in the affine normal direction. Then the coefficients ai
n+1 are determined

by ∑
aj

n+1fji =
∂

∂xi
log ρ.

It follows that

ai
n+1 =

∑
f ji ∂

∂xj
log ρ,

and hence

e∗n+1 = en+1 +
∑

f ji ∂

∂xj
log ρ · ei.

Therefore

Y = H1/(n+2)e∗n+1 = H1/(n+2)
∑

f ji ∂

∂xj
log ρ · ei +H1/(n+2)en+1,

where H = det(∂2f/∂xi∂xj).

Let x be the position vector of the hypersurface M . We can write

dx =
∑

wαe∗α, de∗α =
∑

wβ
αe

∗
β .

wα, wβ
α denote the Maurer-Cartan forms of the unimodular affine group. We compute

wi
n+1 = dai

n+1 − ai
n+1d log ρ =

∑ (
∂

∂xj

(
fki ∂

∂xk
log ρ

)
− fki ∂

∂xk
log ρ · ∂

∂xj
log ρ

)
wj .
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Therefore the affine Weingarten tensor is

Bij =
∑(

− ∂

∂xi

(
f lk ∂

∂xl
log ρ

)
+ f lk ∂

∂xl
log ρ

∂

∂xi
log ρ

)
fkj(3.6)

= −1

ρ

∂2ρ

∂xi∂xj
+

2

ρ2

∂ρ

∂xi

∂ρ

∂xj
+

∑ fkl

ρ

∂ρ

∂xl

∂fij

∂xk
.

Consider the Legendre transformation relative to f :

ξi =
∂f

∂xi
(x1, . . . , xn),

u(ξ1, . . . , ξn) =
∑

xi
∂f

∂xi
(x1, . . . , xn) − f(x1, . . . , xn),

and denote by Ω∗ the Legendre transformation domain of f , i.e. u : Ω∗ → R and

Ω∗ = {(ξ1(x), . . . , ξn(x))|x ∈ Ω}.
In terms of the coordinates (ξ1, . . . , ξn) the Blaschke metric is given by

Gij = ρ
∂2u

∂ξi∂ξj
,

and (∂2u/∂ξi∂ξj) is the inverse matrix of (∂2f/∂xi∂xj). We have

ρ =

[
det

(
∂2u

∂ξi∂ξj

)]1/(n+2)

,(3.7)

√
det(Gkl) = ρn+1,

∆ =
1√

det(Gkl)

∑ ∂

∂ξi

(
Gij

√
det(Gkl)

∂

∂ξj

)

(see [L-S-Z], p. 91). By a similar calculation as above we get

(3.8) ∆ =
1

ρ

∑
uij ∂2

∂ξi∂ξj
− 2

ρ2

∑
uij ∂ρ

∂ξj

∂

∂ξi
.

Estimates for the function ρ. In this section we give some estimates which play an im-

portant role in our proof. Suppose that f(x1, x2) is a strictly convex function defined in

a bounded convex domain Ω such that the graph

M = {(x1, x2, f(x1, x2))|(x1, x2) ∈ Ω}
is a locally strongly convex surface with constant affine mean curvature L1. As above

consider the Legendre transformation relative to f with u : Ω∗ → R. Then u is a convex

function defined in Ω∗ and M can be represented in terms of ξ1, ξ2 as follows:

x = (x1, x2, f(x1, x2)) =

(
∂u

∂ξ1
,
∂u

∂ξ2
,−u+

∑
ξi
∂u

∂ξi

)
.

First we estimate ρ = [det(∂2u/∂ξi∂ξj)]
1/4 from above. For any ξ0 = (ξ01 , ξ

0
2) ∈ Ω∗, we

choose r > 0 such that 0 < r < dist(ξ0, ∂Ω∗). We introduce the notations

Br(ξ0) =
{

(ξ1, ξ2)|
∑

(ξi − ξ◦i )2 ≤ r2
}
, h =

∑
(ξi − ξ◦i )2,

g =
∑ (

∂u

∂ξi

)2

, A = max
Br(ξ0)

g.



AFFINE MAXIMAL HYPERSURFACES 55

Consider the function

(3.9) F = exp

{
− m

r2 − h
+

1

αA
g

}
ρ

defined on Br(ξ0), where m and α are appropriate positive constants to be determined

later. Clearly, F attains its supremum at some interior point ξ∗ of Br(ξ0). We choose a

local orthonormal frame field e1, e2 of the Blaschke metric on M near

p∗ =

(
∂u

∂ξ1
(ξ∗),

∂u

∂ξ2
(ξ∗),−u(ξ∗) +

∑
ξ∗i
∂u

∂ξi
(ξ∗)

)
.

Then, at p∗,

F,i = 0,(3.10)
∑

F,ii ≤ 0.(3.11)

We calculate both expressions explicitly

− m

(r2 − h)2
h,i +

1

αA
g,i +

ρ,i

ρ
= 0,(3.12)

− 2m

(r2 − h)3

∑
h2

,i −
m

(r2 − h)2
∆h+

1

αA
∆g −

∑
ρ2

,i

ρ2
+

∆ρ

ρ
≤ 0.(3.13)

Using the formulas (3.5) (3.8) and (3.2), we get

− 2m

(r2 − h)3

∑
h2

,i −
2m

(r2 − h)2
1

ρ

∑
uii +

2m

(r2 − h)2

∑ ρ,i

ρ
h,i(3.14)

+
2

αA

1

ρ

∑
f ii +

2

αA

∑ ρ,i

ρ
g,i −

∑ ρ2
,i

ρ2
− 2|L1| ≤ 0.

Inserting (3.12) into (3.14) and applying the Cauchy-Schwarz inequality, we obtain

− 2m

(r2 − h)3

∑
h2

,i −
2m

(r2 − h)2
1

ρ

∑
uii +

1

2

m2

(r2 − h)4

∑
h2

,i(3.15)

+
2

αA

1

ρ

∑
f ii − 5

(αA)2

∑
g2

,i − 2|L1| ≤ 0.

Note that
∑

g2
,i =

∑ uij

ρ

∂g

∂ξi

∂g

∂ξj
=

4

ρ

∑
uijukukiululj(3.16)

=
4

ρ

∑
uklukul ≤

4

ρ

∑
uii ·

∑
u2

i .

Inserting (3.16) into (3.15), we get

− 2m

(r2 − h)3

∑
h2

,i −
2m

(r2 − h)2
1

ρ

∑
uii +

1

2

m2

(r2 − h)4

∑
h2

,i(3.17)

+
2

αA

1

ρ

∑
f ii − 20

α2A

1

ρ

∑
uii − 2|L1| ≤ 0.

We choose m = 4r2 and α = 20. Then

(3.18)
1

20A

∑
uii ≤

2m

(r2 − h)2

∑
uii + 2|L1|ρ.
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Denote by λ1, λ2 the eigenvalues of (∂2u/∂ξi∂ξj) = (uij). Recall that ρ =

[det(∂2u/∂ξi∂ξj)]
1
4 = (λ1λ2)

1
4 . It follows from (3.18) that

1

20A
(λ1 + λ2) ≤

2m

(r2 − h)2

(
1

λ1
+

1

λ2

)
+ 2|L1|(λ1λ2)

1
4(3.19)

=
2m

(r2 − h)2
λ1 + λ2

λ1λ2
+ 2|L1|(λ1λ2)

1
4 ,

and hence

1

20A
λ1λ2 ≤ 2m

(r2 − h)2
+ 2|L1|

(λ1λ2)
1
2 (λ1λ2)

3
4

λ1 + λ2
≤ 2m

(r2 − h)2
+ |L1|(λ1λ2)

3
4 ,

i.e.

ρ4 − 20A|L1|ρ3 − 40A
m

(r2 − h)2
≤ 0.

Consequently, from the Cauchy-Schwarz inequality, we have

ρ4 − 400A2|L1|2ρ2 − 80A
m

(r2 − h)2
≤ 0.

The left hand side is a quadratic expression in ρ2. If one consider its zeroes, it follows

that

ρ2 ≤ 400A2|L1|2 +

(
80A

m

(r2 − h)2

) 1
2

.

Therefore

ρ ≤ (800)1/2A|L1| + (320)
1
4A1/4 m1/4

(r2 − h)1/2
.

With our special choice of m and α, from (3.9) we thus get

F ≤ exp

{
1

20

}[
(800)1/2A|L1| + (20)1/4 exp {−1/2} A

1/4

r1/2

]
,

which holds at ξ∗, where F attains its supremum. Hence, at any point of B 1
2 r(ξ0), we

have

(3.20) ρ ≤ exp

{
161

20

}[
(800)1/2A|L1| + (20)1/4 exp {−1/2} A

1/4

r1/2

]
.

Using (3.20), we obtain the following lemma:

Lemma 3.3. Let Ω be a bounded convex domain with (0, 0) ∈ Ω and Ω′∗ be an arbitrary

subdomain of Ω∗ with dist(Ω′∗, ∂Ω∗) > 0. Then the following estimate holds:

ρ ≤ C1 for ξ ∈ Ω′∗,

where C1 is a constant depending only on dist(Ω′∗, ∂Ω∗), diam(Ω) and |L1|.

Next we estimate 1/ρ = [det(∂2f/∂xi∂xj)]
1/4 from above. Let Ω′ be an arbitrary

subdomain of Ω with dist(Ω′, ∂Ω) = 2r > 0. It is easy to see that

(3.21)

( ∑ (
∂f

∂xi

)2

(x)

)1/2

≤ supy,z∈Ω |f(y) − f(z)|
dist(x, ∂Ω)

for x ∈ Ω.
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On the other hand, by a similar calculation as in the proof of Lemma 3.3, one can obtain

(3.22)
1

ρ
≤ exp

{
33

8

}[
21/4A1/4(21/4A1/4|L1| + 23/2) + 2 exp {−1/2} A

1/4

r1/2

]
for x ∈ B 1

2 r(x0),

where Br(x0) =
{
(x1, x2)|

∑
(xi − x◦i )

2 ≤ r2
}

⊂ Ω and A = maxBr(x0)

∑
(∂f/∂xi)

2.

Combination of (3.21) and (3.22) gives us

Lemma 3.4. Let Ω be a bounded domain and Ω′ be an arbitrary subdomain of Ω with

dist(Ω′, ∂Ω) > 0. Then the following estimate holds:

1

ρ
≤ C2 for x ∈ Ω′,

where C2 is a constant depending only on dist(Ω′, ∂Ω), supy,z∈Ω |f(y) − f(z)|, and |L1|.

Proof of Theorem 3.1. Suppose that M is a locally strongly convex, Euclidean complete

affine surface. Obviously, M is affine complete if M is compact. Therefore, it is enough to

consider the case when M is a non-compact, Euclidean complete, locally strongly convex

surface with constant affine mean curvature L1. From Hadamard’s Theorem(see [WU])

M is the graph of a strictly convex function x3 = f(x1, x2) defined in a convex domain

V ⊂ A2. To prove Theorem 3.1, we need the following result (see [L-S-Z], p. 117):

Theorem 3.5. Let M be a locally strongly convex, Euclidean complete hypersurface in

An+1. If there is a constant N > 0 such that

‖B‖2
G ≤ N,

then M is also affine complete.

We now use blow-up analysis to show that there is a constant N > 0 such that

‖B‖2
G ≤ N everywhere. Then, by Theorem 3.5, Theorem 3.1 follows. To this end, suppose

that this is false. Then there would exist a sequence of points {pk} ⊂M such that

(3.23) ‖B‖2
G(pk) → ∞,

as k → ∞. For each pk ∈ M we may assume that the plane x3 = 0 is parallel to the

tangent plane ofM at pk and pk has the coordinates (0, 0). With respect to this coordinate

system we have f ≥ 0, and for any number C > 0 the set

MC = {(x1, x2) ∈ V |x3 = f(x1, x2) < C}
is a bounded convex domain in A2. It is well-known that there exists a unique ellipsoid

E, which attains the minimum volume among all the ellipsoids that contain MC and that

are centered at the center of mass of MC , and a positive constant α such that

(3.24) αE ⊂MC ⊂ E,

where αE means the α-dilation of E with respect to its center. By an orthogonal linear

transformation, we may suppose that the equation of the minimum ellipsoid E is

(x1 − x◦1)
2

a2
1

+
(x2 − x◦2)

2

a2
2

= 1.



58 A.-M. LI AND F. JIA

By the unimodular affine transformation

(3.25) x̂1 =

√
C
a2

a1
x1, x̂2 =

√
C
a1

a2
x2, x̂3 =

1

C
x3,

M is given as a graph of a strictly convex function f̂(x̂1, x̂2) defined in a convex domain

Ω̂ ⊂ A2. Denote by LC the linear transformation

x̂1 =

√
C
a2

a1
· x1, x̂2 =

√
C
a1

a2
· x2.

Then LC(E) is the ball Br with center (
√
C a2

a1
x◦1,

√
C a1

a2
x◦2) and radius r =

√
Ca1a2.

Setting
ΩC = LC(MC),

(3.23) becomes

(3.26) αBr ⊂ ΩC ⊂ Br.

Obviously, we have
ΩC = {(x̂1, x̂2) ∈ Ω̂|f̂(x̂1, x̂2) < 1}.

It is easy to see that the function

H : (0,∞) → R, H(C) = π · C · a1(C)a2(C)

is continuous. Note that H((0,∞)) = (0,∞). It follows that there exists a number

C(k) > 0 such that C(k)a1(C
(k))a2(C

(k)) = 1. This implies that, by a unimodular affine

transformation (3.25) with C = C(k),M is given by a strictly convex function f (k) defined

in a convex domain in A2 such that

B(x(k), α) ⊂ Ωk ⊂ B(x(k), 1), where Ωk = {(x1, x2)|f (k) < 1}.
Thus, we would obtain a sequence of convex functions {f (k)} and a sequence of points

{x(k)} such that f (k) ≥ 0, and such that B(x(k), α) ⊂ Ωk ⊂ B(x(k), 1). Therefore, we

may suppose, by taking subsequences, that {Ωk} converges to a convex domain Ω and

{f (k)} converges to a convex function f∞, locally uniformly in Ω. For x ∈ ∂Ω, we define

f∞(x) = limy→x,y∈Ωf∞(y).

In the following we shall give the uniform estimates of det(∂2u(k)/∂ξi∂ξj) from below

and above (where u(k) denotes the Legendre transformation relative to f (k)), and use

the Caffarelli-Gutierrez theory to obtain a Hölder estimate for det(∂2u(k)/∂ξi∂ξj)( see

[C-G] or [T-W], Theorem 4.1 ). Then we use the Caffarelli-Schauder estimate for the

Monge-Ampère equation [CAF] to get a C2,α estimate to show that the limit surface is

a smooth surface.

Estimate for det(∂2u(k)/∂ξi∂ξj) from below. Let us denote

D =
{
x ∈ Ω|f∞(x) = 0

}
,

where Ω denotes the closure of Ω. It is easy to see that D is a closed subset of Ω and

(0, 0) ∈ D. To estimate det(∂2u(k)/∂ξi∂ξj), we shall consider different cases according to

the location of D:

Case 1: D ⊂ Ω.

Case 2: D ∩ ∂Ω 6= ∅.
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Later we shall prove that Case 2 cannot take place. Now we consider Case 1. In this

case, there exists a number b, 0 < b < 1, such that the set

Ω2b ⊂ Ω,

where Ω2b := {(x1, x2) ∈ Ω|f∞(x1, x2) < 2b}. Put Ωk,b := {(x1, x2) ∈ Ωk | f (k)(x1, x2)

< b}. Since {f (k)} converges to f∞ locally uniformly,

Ωk,b ⊂ Ω2b ⊂ Ω

for k large enough; it follows that

dist(Ωk,b, ∂Ωk) > d

for k large enough, where d > 0 is a constant independent of k. Now we use Lemma 3.2

to conclude that

(3.27) det

(
∂2f (k)

∂xi∂xj

)
≤ d1 for x ∈ Ωk,b,

where d1 > 0 is a constant depending only on |L1| and d. Consider the Legendre trans-

formation relative to f (k):

ξ
(k)
i =

∂f (k)

∂xi
, u(k) =

∑
xi
∂f (k)

∂xi
− f (k).

Set

Ω∗
k = {(ξ(k)

1 (x), ξ
(k)
2 (x))|(x1, x2) ∈ Ωk}, Ω∗

k,b = {(ξ(k)
1 (x), ξ

(k)
2 (x))|(x1, x2) ∈ Ωk,b}.

Then, by (3.27), we have

(3.28) det

(
∂2u(k)

∂ξi∂ξj

)
≥ 1

d1
for ξ ∈ Ω∗

k,b.

Estimate for det(∂2u(k)/∂ξi∂ξj) from above. To get the estimate, we need some impor-

tant results of classical convex body theory (see [BA], [BU]). Let F be a convex hyper-

surface in An+1 and e be a subset of F . We denote by ψF (e) the spherical image of e. If

the set e is a Borel set, the spherical image of the set e is also a Borel set and therefore

is measurable. Denote by σF (e) the area (measure) of the spherical image ψF (e) of the

Borel set e of F and call it the integral Gaussian curvature of e. Denote by A(e) the

measure (or area) of the Borel set e on F . The ratio σF (e)/A(e) is called the specific

curvature of e. The following theorems hold (see [BU], [BA]):

Theorem 3.6 (A. V. Pogorelov). A convex surface whose specific curvature is bounded

away from zero is strictly convex.

Theorem 3.7. Let a sequence of closed convex hypersurfaces Fk converge to a closed

convex hypersurface F and a sequence of closed subset Mk of Fk converge to a closed

subset M of F ; then

σF (M) ≥ lim
k→∞

σFk
(Mk).

First of all, we claim that there exists a ball B(0, r) such that

B(0, r) ⊂ Ω∗
k,b for k = 1, 2, . . .
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In fact, since Ω is bounded, there is a ball B(0, r1) with the center (0, 0) and the radius

r1 such that

Ωb := {(x1, x2) ∈ Ω|f∞(x1, x2) ≤ b} ⊂ B(0, r1).

Since {f (k)} converges locally uniformly to f∞ in Ω, we see that

Ωk,b/2 := {(x1, x2) ∈ Ωk|f (k)(x1, x2) ≤ b/2} ⊂ B(0, r1)

for k large enough. Consider the convex cone K with vertex (0, 0) and the base

{(y1, y2, b/2)|(y1, y2) ∈ ∂Ωk,b/2}.
Then we have (see [BA], p. 115)

χf(k)(Ωk,b/2) ⊃ χK(Ωk,b/2).

On the other hand, since Ωk,b/2 ⊂ B(0, r1), we see that (see [BA], p.126) χK(Ωk,b/2) ⊃
B(0, b/2r1) and the claim follows.

Next, we want to prove that u∞ is strictly convex at (0,0). In fact, since u(k) are

convex and bounded, we may assume by taking subsequences, that {u(k)} converges

locally uniformly to a convex function u∞ in Ω∗
b/2r1

= {(ξ1, ξ2)|
∑
ξ2i < b2/4r21}. Let e

be a closed subset of Ω∗
b/2r1

with e0 6= ∅, where e0 denotes the interior of e. We denote

by F and F (k) the graphs of the functions u∞ : Ω∗
b/2r1

→ R and u(k) : Ω∗
b/2r1

→ R,

respectively.

Set

Fe = {(ξ1, ξ2, u∞(ξ1, ξ2))|(ξ1, ξ2) ∈ e} , F (k)
e = {(ξ1, ξ2, u(k)(ξ1, ξ2))|(ξ1, ξ2) ∈ e}.

Then, by Theorem 3.7, we get

σF (Fe) ≥ lim
k→∞

σF (k)(F (k)
e ) = lim

k→∞

∫

F
(k)
e

det( ∂2u(k)

∂ξi∂ξj
)

(1 +
∑

(∂u(k)

∂ξi
)2)2

dp

≥ b2 lim
k→∞

A(F (k)
e ) = b2A(Fe),

where b2 is a constant depending only d1 and diam(Ω), i.e.,

(3.29)
σF (Fe)

A(Fe)
≥ b2 > 0.

By Theorem 3.6, we conclude that u∞ is strictly convex at (0,0).

We now estimate det(∂2u(k)/∂ξi∂xξj) from above. Since u∞ is strictly convex at (0, 0),

there exists a positive constant 0 < h1 < 1, such that

Ω∗
h1

= {(ξ1, ξ2) ∈ Ω∗
b/2r1

|u∞(ξ1, ξ2) < h1}
is a bounded convex domain. Then, we choose 0 < h2 < h1 such that

Ω
∗
2h2

⊂ Ω∗
h1
,

where Ω∗
2h2

=
{
(ξ1, ξ2) ∈ Ω∗

h1
|u∞(ξ1, ξ2) < 2h2

}
. Put

Ω∗
k,h2

= {(ξ1, ξ2) ∈ Ω∗
k|u(k)(ξ1, ξ2) < h2}.

Since u(k) converges locally uniformly to u∞, we have

Ω
∗
k,h2

⊂ Ω∗
h1
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and there exists a constant d2 > 0, such that

dist(Ω∗
k,h2

, ∂Ω∗
h1

) > d2

for k large enough. Clearly, there is a uniform estimate

∑ (
∂u(k)

∂ξi

)2

≤ diam(Ω) for ξ ∈ Ω∗
b/2r1

.

Now we use Lemma 3.1 to conclude that

(3.30) det

(
∂2u(k)

∂ξi∂ξj

)
< d3 for ξ ∈ Ω∗

k,h2
,

for k large enough, where d3 > 0 is a constant depending only on diam(Ω), d2 and |L1|.
We are now ready to prove the following lemma:

Lemma 3.7. There exists a neighborhood U of (0,0) such that

(3.31) D2u(k) ≥ C3I, |Dlu(k)| ≤ C4 for k, l = 1, 2, . . . ,

where C3 and C4 are constants. C3 depends only on d2, dim(Ω), |L1| and d and C4 depends

additionally on l.

Proof. We set

v =
1

ρ
, ρi =

∂ρ

∂ξi
, vi =

∂v

∂ξi
vij =

∂2v

∂ξi∂ξj
.

Then

∆

(
1

v

)
=

1

ρ

∑
uij

(
−vij

v2
+ 2

vivj

v3

)
− 2

ρ2

∑
uij vivj

v4
= −ρ

∑
uijvij

On the other hand we have ∆(1/v) = ∆ρ = −nL1ρ, and it follows that
∑

uijvij − nL1 = 0.

Therefore, by setting

Ψ = v − L1u+ 2|L1|,
we obtain

(3.32)
∑

U ijΨij = 0.

where (U ij) is the matrix of cofactors of (uij). By (4.6), (4.8) and (4.10), we use the

Caffarelli-Gutierrez theory to obtain a Hölder estimate for det(∂2u(k)/∂ξi∂ξj) (see [C-G]

or [T-W], Theorem 4.1).Then we use the Caffarelli-Schauder estimate for the Monge-

Ampère equation ([CAF]) to get a C2,α estimate. Finally, by bootstrapping, Lemma 3.7

follows.

Consequently, from Lemma 3.7 it follows that u∞ is a smooth strictly convex function

in a neighborhood of (0,0), and hence f∞ is a smooth strictly convex function in a

neighborhood of (0,0).

Now it is our purpose to show that Case 2 cannot take place. Let

Vk = {(x1, x2, x3) ∈ A3|f (k)(x1, x2) ≤ x3 ≤ 1, (x1, x2) ∈ Ωk},
V∞ = {(x1, x2, x3) ∈ A3|f∞(x1, x2) ≤ x3 ≤ 1, (x1, x2) ∈ Ω}.
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Then the sequence of convex bodies {Vk} converges to the convex body V∞. First we

claim that D is a line segment or a single point. To prove this claim, we first show that

there exists a ball B(0, r0) with center (0,0) and the radius r0 such that

B(0, r0) ⊂ Ω∗
k for k = 1, 2, . . . .

As before, we choose a ball B(0, l) with the center (0,0) and the radius l such that

Ω ⊂ B(0, l). Since Ωk converges to Ω, we see that Ωk ⊂ B(0, l), for k large enough. Then

it is easy to see that Ω∗
k ⊃ B(0, 1/l) for k = 1, 2, . . . .

Now we prove our claim. By contradiction let us assume that there exists a ball

B(x0, ǫ) =
{

(x1, x2) |
∑

(xi − x◦i )
2 < ǫ2

}

such that B(x0, ǫ) ⊂ D. Since {f (k)} converges locally uniformly to f∞, there is a positive

number k0 such that

0 ≤ f (k)(x) <
r20ǫ

8
for x ∈ B(x0, ǫ/2) (k > k0).

Clearly, there exists a uniform estimate

∑(
∂f (k)

∂xi

)2

<
r20
4

for x ∈ B(x0, ǫ/2) (k > k0).

Put

Ω∗
k,ǫ/2 = {(ξ(k)

1 (x), ξ
(k)
2 (x1))|x ∈ B(x0, ǫ/2)}.

Then we have

Ω∗
k,ǫ/2 ⊂ B(0, r0/2) ⊂ Ω∗

k for k > k0.

Note that B(0, r0) ⊂ Ω∗
k for k = 1, 2, . . . . Hence we use Lemma 3.3 to conclude that there

exists a constant d4 > 0, depending only on r0, diam(Ω) and |L1|, such that

det

(
∂2u(k)

∂ξi∂ξj

)
< d4 for ξ ∈ B(0, r0/2).

This implies that

(3.33) det

(
∂2f (k)

∂xi∂xj

)
>

1

d4
for x ∈ B(x0, ǫ/2) (k > k0).

Therefore we can apply the argument of Case 1 to {f (k)} and conclude that the function

f∞ is strictly convex at x0. This contradiction shows that D must be a line segment or

a single point.

Now we prove that Case 2 cannot take place. We shall consider the following two

cases:

Case 2.1: D ∩ ∂Ω contains at most two points.

Case 2.2: D is a line segment with D ⊂ ∂Ω.

Case 2.1. Let p ∈ D ∩ ∂Ω and let l be a supporting line of Ω at p. The line l and

the unit normal ν of the (x1, x2)-plane determine a plane. We denote the plane by P .

Then the plane P and the (x1, x2)-plane divide the space R3 into four closed subsets such

that V∞ lies completely in one of them. Let α be a supporting plane of V∞ containing

the line l such that it intersects P and forms an angle ∠(α, P ) = θ with P , where
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θ > 0 is sufficiently small. Since p ∈ ∂V∞ and α is a supporting plane of V∞, there

is a neighborhood U ⊂ ∂V∞ which projects orthogonally and one-to-one onto a convex

domain Ω(1) ⊂ α. This implies that, near the point p, ∂V∞ can be represented as a graph

of a convex function g defined in Ω(1). Obviously, g is strictly convex at p, but is not

smooth at p. We choose a number b, 0 < b < 1, such that

Ω(2) = {(y1, y2) ∈ Ω(1)|g(y1, y2) < b}
is a bounded convex domain in A2. Then we choose a new coordinate system {y1, y2, y3}
such that

1) p has coordinate (0, 0, 1);

2) the equation of α is y3 = 1.

Since the sequence of convex bodies {Vk} converges to the convex body V∞, we see that

the boundary ∂Vk of Vk can also be represented as a graph of a convex function g(k) for

sufficiently large k. Obviously, g(k) → g+ 1 in a bounded convex domain Ω(3). Note that

the graph of g(k) is a locally strongly convex surface with constant affine mean curvature

L1. Therefore we can apply the argument of Case 1 to {g(k)} and conclude that the

function g is a smooth function near the point p. The contradiction shows that Case 2.1

cannot take place.

Case 2.2. In this case, we have p = (0, 0) ∈ ∂Ω. Let l be the line containing D. We

choose a new coordinate system {y1, y2, y3} as in Case 2.1. Then the boundary ∂V∞ of

V∞ can be represented as the graph of a convex function g defined in a convex domain

Ω(3). With respect to this coordinate system we have g ≥ 1. The boundary ∂Vk of Vk

can also be represented as the graph of a convex function g(k) for sufficiently large k.

Obviously, g(k) → g in Ω(3). Note that the graph of g(k) is a locally strongly convex

surface with constant affine mean curvature L1. Again, we shall consider different cases

according to the location of

D# = {(y1, y2) ∈ Ω
(3)|g(y1, y2) = 1}.

Case 2.2.1: D# ⊂ Ω(3).

Case 2.2.2. D# ∩ ∂Ω(3) 6= ∅.
Case 2.2.1. Note thatD# is a line segment. SinceD# ⊂ Ω(3), we can apply the argument

of Case 1 to Case 2.2.1 and conclude that Case 2.2.1 cannot take place.

Case 2.2.2. In this case, D#∩∂Ω(3) contains at most two points. Therefore we can apply

the argument of Case 2.1 to Case 2.2.2 and conclude that Case 2.2.2 cannot take place.

We are now in a position to prove that ‖B‖2
G is bounded. By Lemma 3.7, we have

D2u(k) ≥ C3I, |Dlu(k)| ≤ C4, l = 0, 1, 2, . . . ,

in a neighborhood U of (0,0), where C3 and C4 are constants. C3 depends only on

d, d2, diam(Ω) and |L1|, and C4 depends additionally on l. Note that ‖B‖2
G is equiaffinely

invariant. By (3.6) we have

‖B‖2
G(pk) =

∑
Gis

(k)G
jt
(k)B

(k)
ij B

(k)
st

∣∣
(0,0) ,
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where

B
(k)
ij = − 1

ρ(k)

∂2ρ(k)

∂xi∂xj
+

2

(ρ(k))2
∂ρ(k)

∂xi

∂ρ(k)

∂xj
+

∑ f (k)st

ρ(k)

∂ρ(k)

∂xs

∂f
(k)
ij

∂xt
.

ρ(k) =

[
det

(
∂2f (k)

∂xi∂xj

)]− 1
4

, G
(k)
ij = ρ(k) ∂

2f (k)

∂xi∂xj
.

Note that

∂2ρ(k)

∂xi∂xj
=

∑ ∂2ρ(k)

∂ξl∂ξs
u(k)liu(k)sj +

∑ ∂ρ(k)

∂ξl

∂u(k)li

∂ξs
u(k)sj ,

∂ρ(k)

∂xi
=

∑ ∂ρ(k)

∂ξl
u(k)li,

∂f
(k)
ij

∂xl
=

∑ ∂u(k)ij

∂ξs
u(k)sl.

Consequently, from Lemma 3.7, it follows that there exists a number N > 0 such that

‖B‖2
G(pk) ≤ N, k = 1, 2, . . . .

On the other hand, by (3.23) we have

‖B‖2
G(pk) → ∞ as k → ∞.

The contradiction shows that there must exist a number N > 0 such that ‖B‖2
G ≤ N on

M . Then, by Theorem 3.5, Theorem 3.1 follows.

Proof of Theorem 3.2. Recall that (see [L-S-Z], p. 121) there is no locally strongly convex,

compact hypersurface without boundary and with non-positive affine mean curvature.

This implies thatM is non-compact ifM is a locally strongly convex surface with constant

affine curvature L1 ≤ 0.

(a) Denote by R the scalar curvature; we have R = 2(J + L1) ≥ 2L1 > 0 (see [L-S-Z],

p. 76). Moreover, by Theorem 3.1, M is affine-complete. This implies that (M,G) is a

complete Riemannian manifold with Ricci curvature bounded from below by a positive

constant 2L1 > 0. By Myer’s and Bonnet’s Theorem (see [CH-E], p. 27) M is compact.

It follows that M is an ellipsoid see ([L-S-Z], p. 121).

(b) Since M is an Euclidean complete and affine complete affine maximal surface, by

Calabi’s Theorem (see, [L-S-Z], p. 219) M must be an elliptic paraboloid.

(c) Since the tensor norm is equiaffinely invariant, we replace ‖B‖2
G by it, then a similar

argument shows that the tensor norms of the Fubini-Pick tensor and the affine Weingarten

tensor and tensor norms of the k-th covariant differentiation of them are all bounded.

This completes the proof of Theorem 3.2.
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