
PDES, SUBMANIFOLDS AND

AFFINE DIFFERENTIAL GEOMETRY

BANACH CENTER PUBLICATIONS, VOLUME 69

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2005
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1. Introduction. Transformations which preserve special surface classes in 3- and 4-

space play an important role in surface geometry. One of the motivations to study those

transformations comes from the fact that they allow one to construct more complicated

surfaces from given simple surfaces. Historical examples include the Bäcklund transforma-

tion on surfaces of constant Gaussian curvature [Bia80] and the Darboux transformation

on isothermic surfaces [Dar99]. More recently, also a Bäcklund transformation on Will-

more surfaces has been studied [BFL+02].

In this paper we consider a general Bäcklund transformation on conformal surfaces

f : M → S4 where M is a Riemann surface. This will allow us to explicitly construct

new conformal immersions of a given Riemann surface into 4-space from a given one by

solving abelian integrals.

Since conformal surface theory is Möbius invariant, we view the 4-sphere as the quater-

nionic projective line HP1 on which the group of orientation preserving Möbius trans-

formations acts by GL(2,H). In this framework conformal maps f : M → S4 are the

(quaternionic) holomorphic maps f : M → HP1 as introduced in [FLPP01]. In particu-

lar, as in complex holomorphic geometry, holomorphic maps correspond via the Kodaira

correspondence to holomorphic line bundles together with a 2-dimensional space of holo-

morphic sections. More precisely, a conformal map f : M → HP1 induces the quaternionic

line bundle L = f∗T where T → HP1 is the tautological line bundle. The restrictions of

linear forms on H2 to L give the 2-dimensional subspace H ⊂ H0(L−1) of holomorphic

sections of the dual line bundle L−1. A “point at infinity” in HP1 not on the surface f ,

i.e., a linear form α on H2 so that α|L ∈ H0(L−1) has no zeros, determines a holomorphic

2000 Mathematics Subject Classification: Primary 53C42; Secondary 53Axx.
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structure on L. Then a choice of a 2-dimensional subspace H̃ ⊂ H0(L) of holomorphic

sections of L yields—via the Kodaira embedding—a conformal map f̃ : M → HP
1 which

we call a Bäcklund transform of f . For the special case of Willmore surfaces this con-

struction coincides with the Bäcklund transformation introduced in [BFL+02].

A similar procedure, replacing the point at ∞ by a hyperplane at ∞, can be carried

out for (quaternionic) holomorphic curves f : M → HP
n. Depending on the dimension

m of H0(L), which for compact M can be estimated by the Riemann–Roch relation

[FLPP01] in terms of the genus of M and the degree of L, we obtain Bäcklund transforms

f̃ : M → HPl of f for l ≤ m. Locally on M the dimension of H0(L) is infinite and we

obtain local Bäcklund transforms f̃ : M → HPl for any l ∈ N. Since the coordinates

fi : M → R4 of f = [f0 : . . . : fn] are all conformal maps this construction gives rise to

families of new conformal maps of M into S4 from the given holomorphic curve f .

A Bäcklund transform f̃ of a holomorphic curve f : M → HPn depends on the choice

of a hyperplane at ∞ and a subspace H̃ ⊂ H0(L) of holomorphic sections of L. The

latter can be constructed by integrating holomorphic L-valued forms ω ∈ H0(KL) and we

obtain Bäcklund transforms from abelian integrals. This motivates to some extent why we

call our construction a Bäcklund transformation rather than a Darboux transformation:

for those one usually has to solve Ricatti-type equations.

Geometrically, the abelian integral of ω ∈ H0(KL) will have periods and the Bäck-

lund transform f̃ will only be defined on the universal cover M̃ of M . But in the case

when M = T 2 is 2-torus these periods can be closed and we obtain closed Bäcklund

transforms f̃ : T 2 → S4 from a holomorphic curve f : T 2 → HPn.

Given a holomorphic curve f : M → HPn the integral of an L-valued holomorphic

form ω ∈ H0(KL) also defines an enveloping curve f̂ : M̃ → HPn+1 of f as discussed in

[LP03]. We show that the Bäcklund transform f̃ of f is obtained from a suitable projection

of the enveloping curve f̂ . This gives an interpretation of the Bäcklund transform in terms

of fundamental geometric constructions.

We conclude our paper with an application of the Bäcklund transform to constrained

Willmore surfaces f : M → S4. In this situation the bundle KL has a canonical family of

holomorphic sections ω ∈ H0(KL) whose corresponding Bäcklund transforms are again

constrained Willmore. As already mentioned, if M = T 2 is a 2-torus, the Bäcklund

transform f̃ : T 2 → S4 has no periods and we can construct new constrained Willmore

tori from given ones.

2. Bäcklund transforms of holomorphic curves. We first recall the basic notions

of holomorphic curves in quaternionic projective space HPn and explain briefly the Ko-

daira correspondence [FLPP01] which relates holomorphic curves in HPn to quaternionic

holomorphic line bundles with (n+1)-dimensional subspaces of holomorphic sections, the

so called linear systems.

A map f : M → HPn of a Riemann surface M into quaternionic projective space

HPn is the same as the line subbundle L ⊂ V = H
n+1 of the trivial Hn+1-bundle whose

fiber over p is given by Lp = f(p), i.e., L = f∗T is the pull-back of the tautological line

bundle T over HP
n. A smooth map f : M → HP

n is called a holomorphic curve if the
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line bundle L has a complex structure J ∈ Γ(End(L)), J2 = −1, such that ∗δ = δJ .

Here δ = πL∇|L ∈ Ω1(Hom(L, V/L)) denotes the derivative of f with πL : V → V/L the

canonical projection and ∇ the trivial connection on V . In the case n = 1 a holomorphic

curve is a conformal map f : M → S4 into the 4-sphere.

A quaternionic holomorphic structure on a complex quaternionic line bundle (L, J)

is a quaternionic linear map D : Γ(L) → Γ(K̄L) which satisfies the Leibniz rule

D(ψλ) = (Dψ)λ+ (ψdλ)′′,

where ψ ∈ Γ(L) is a section of L and λ : M → H is a quaternionic valued function.

We denote by ω′ ∈ Γ(KW ) and ω′′ ∈ Γ(K̄W ) the (1, 0) and (0, 1)-part of a 1-form

ω ∈ Ω1(W ) with values in a complex vector bundle W . Let

H0(L) = H0(L,D) = {ψ ∈ Γ(L) | Dψ = 0}

be the space of holomorphic sections of L with respect to D. An example of a holomorphic

structure is given by the (0, 1)-part (∇L)′′ of a quaternionic connection ∇L on L.

A holomorphic curve f : M → HPn induces by [FLPP01] a unique holomorphic

structure D on the dual bundle L−1 of L = f∗T such that linear forms α ∈ V ∗ on V

restricted to L give holomorphic sections

α|L ∈ H0(L−1).

Thus H = V ∗ ⊂ H0(L−1) is a (n+ 1)-dimensional linear system. By transversality H is

basepoint free, in other words, there exists a nowhere vanishing holomorphic section of

the holomorphic line bundle L−1 in H. Conversely, a holomorphic line bundle L−1 and a

basepoint free (n+ 1)-dimensional linear system H ⊂ H0(L−1) give a holomorphic curve

f : M → HPn = P(H∗) by

ev∗(L) ⊂ V = (M ×H)∗,

which is called the Kodaira embedding of L with respect to the linear system H. Here

the bundle map

ev : M ×H → L−1, (p, ψ) 7→ ψp

evaluates the holomorphic section ψ at the point p.

In particular, every holomorphic curve f : M → HP
n gives rise to a family of confor-

mal maps f ♯ : M → S4: choosing a 2-dimensional linear system H♯ ⊂ H yields, via the

Kodaira embedding of L ⊂ V ♯ = (H♯)∗, a conformal map f ♯ : M → S4.

In what follows, we frequently will make use of the bundle KL of L-valued (1, 0)-

forms. By [PP98] there is a unique holomorphic structure DKL on KL compatible with

the pairing

L−1 ×KL→ Λ2TM∗ ⊗ H :

given ψ ∈ Γ(L−1) and ω ∈ Γ(KL) the holomorphic structure is determined by the Leibniz

rule

(1) d〈ψ, ω〉 = 〈Dψ ∧ ω〉 + 〈ψ,DKLω〉.

Two descriptions of DKL will be useful for our purposes: first, since L ⊂ V is a

subbundle, we can take exterior derivatives of ω ∈ Γ(KL) with respect to the trivial
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connection ∇ on V . But πd∇ω = δ ∧ ω = 0 by type considerations which implies that

d∇ω ∈ Ω2(L) is again L-valued. One immediately checks (1) for d∇ and thus

(2) DKL = d∇.

Second, if ∇L−1

is any connection on L−1 adapted to the holomorphic structure D on

L−1, i.e., D = (∇L−1

)′′, then the exterior derivative of ω ∈ Γ(KL) with respect to the

dual connection ∇L on L also gives

(3) DKL = d∇
L

.

This follows again from the fact that d∇
L

satisfies (1).

To construct a Bäcklund transform of a holomorphic curve f : M → HPn, we first

fix a hyperplane at infinity: the basepoint free linear system H has a nowhere vanishing

holomorphic section and thus we can choose α ∈ V ∗ so that V = L ⊕ kerα. In this

splitting we decompose the trivial connection ∇ on V as

(4) ∇|L = ∇L + δ.

Here δ is the derivative of f expressed via the identification V/L = kerα and the induced

connection ∇L on L is flat since kerα ⊂ V is constant. We now equip the line bundle L

with the holomorphic structure

(5) D = (∇L)′′

coming from the connection ∇L on L. Note that L always has the canonical nowhere

vanishing holomorphic section ψ ∈ H0(L) for which 〈α, ψ〉 = 1: since ∇Lψ = 0 the

section ψ also has Dψ = 0 and thus is holomorphic. In particular, the complete linear

system H0(L) is basepoint free.

Definition 2.1. Let f : M → HPn be a holomorphic curve and α ∈ V ∗ such that

V = L ⊕ kerα. If H̃ ⊂ H0(L) is a basepoint free linear system of dimension at least 2,

the holomorphic curve

Bα,H̃(f) = f̃ : M → P(H̃∗),

obtained via the Kodaira embedding of L−1 in H̃∗, is a Bäcklund transform of f (with

parameters α and H̃). If H̃ = H0(L) is the complete linear system, we call f̃ = Bα(f)

the Bäcklund transform of f .

To estimate the dimension h0(L) of the space of holomorphic sections of L, in the

case when M is compact of genus g, we use the Riemann–Roch Theorem [PP98] for

quaternionic holomorphic line bundles:

(6) h0(L) − h0(KL−1) = degL− g + 1.

The degree of the complex quaternionic line bundle L = E⊕E is defined as the degree of

the underlying complex line bundle E, in other words, as the degree of the +i-eigenspace

E of J on L, [PP98]. From (3) we know that the holomorphic structure on KL−1 is given

by the exterior derivative d∇
L
−1

with respect to the dual connection ∇L−1

on L−1. Since

α|L ∈ H0(L−1) is parallel with respect to ∇L−1

the linear map

H0(L−1) → H0(KL−1) : β 7→ ∇L−1

β
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has kernel spanned by α|L and we obtain

h0(KL−1) = h0(L−1) − 1 ≥ n.

Applying the Riemann–Roch relation (6) we get:

Theorem 2.2. Let M be a compact Riemann surface of genus g and let f : M → HPn be

a holomorphic curve. For every choice of α ∈ V ∗ with α|L ∈ H0(L−1) nowhere vanishing,

there is an induced flat connection ∇L on L given by the splitting V = L⊕ kerα.

If L is equipped with the holomorphic structure D = (∇L)′′, then the dimension of the

space of holomorphic sections of L is given by

h0(L) = h0(L−1) + degL− g.

In particular, if the degree of the line bundle L = f∗T satisfies

degL ≥ 1 + g − n,

then the complete linear system H0(L) is at least 2-dimensional and there exists a Bäck-

lund transform of f .

In order to see how the Willmore energy behaves under Bäcklund transformation, we

first recall the Willmore energy

(7) W (f) = 2

∫

M

〈Q ∧ ∗Q〉.

of a holomorphic curve f : M → HPn of a compact Riemann surface into quaternionic

projective space HPn [FLPP01]. Here 〈B〉 = trRB is the real trace of an endomorphism

B ∈ End(V ) and Q ∈ Γ(K̄ End−(L−1)) is given by the splitting of the holomorphic

structureD = ∂̄+Q on L−1 into its J-commuting and anticommuting parts. Furthermore,

we denote by Hom± the complex linear respectively antilinear homomorphisms. In case

f : M → S4 = HP
1 is a conformal immersion it is shown in [BFL+02] that the energy

(7) coincides with the classical Willmore energy

(8) W (f) =

∫

M

|H|2 −K −K⊥,

where H is the mean curvature vector, K the Gaussian curvature and K⊥ the curvature

of the normal bundle of f .

Theorem 2.3. Let f : M → HPn be a holomorphic curve, M a compact Riemann sur-

face, and let Bα,H̃(f) : M → HPk be a Bäcklund transform of f with respect to an α ∈ V ∗

and H̃ ⊂ H0(L). Then the Willmore energy of Bα,H̃(f) is given by

W (Bα,H̃(f)) = W (f) − 4π degL.

Remark 2.4. This formula seems to suggest that the Bäcklund transform of a holomor-

phic curve f : M → HPn which is Willmore [LP03] is again Willmore, an issue which we

will return to in Section 5.

Proof. The flat connection ∇L = ∇̂ + Q + A on L splits into a complex connection ∇̂

and the J-anticommuting endomorphisms A ∈ Γ(K End−(L)) and Q ∈ Γ(K̄ End− L)).
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Therefore, the J-anticommuting part of the holomorphic structure on L is given by

(∇L)′′− = Q and the Willmore energy of the Bäcklund transform Bα,H̃(f) is given by

W (Bα,H̃(f)) = 2

∫

M

〈Q ∧ ∗Q〉.

Since ∇L is flat, we have

0 = R∇
L

= R∇̂ + d∇̂(A+Q) +
1

2
[A+Q ∧A+Q].

Taking the J-commuting part of this equation gives

0 = R∇̂ +A ∧A+Q ∧Q,

which shows that

W (Bα(f)) = 2

∫

M

〈A ∧ ∗A〉 − 〈JR∇̂〉.

Since ∇̂ is a complex connection on L, we have 2π degL =
∫

M
〈JR∇̂〉 and it remains to

verify that

W (f) = 2

∫

M

〈A ∧ ∗A〉.

The section α|L ∈ H0(L−1) is a parallel section of the dual connection ∇L−1

of ∇L.

Therefore, ∇L−1

induces the given holomorphic structure D on L−1 and

D = (∇L−1

)′′ = ∂̄ −A∗,

which implies that W (f) = 2
∫

M
〈A ∧ ∗A〉.

Remark 2.5. If we apply a Bäcklund transformation to Bα(f) with respect to the holo-

morphic section ψ ∈ H0(L) with 〈α, ψ〉 = 1, then the holomorphic structure on L−1

induced by ψ satisfies Dα = 0. Hence D is the given holomorphic structure on L−1. This

shows that Bψ,H(Bα(f)) = f where H ⊂ H0(L−1) is the linear system of f . On the

other hand, if we choose arbitrary nowhere vanishing ϕ ∈ H0(L) the induced holomor-

phic structure on L−1 will differ from D, and we get a transformation on holomorphic

curves preserving the Willmore energy by Theorem 2.3.

3. Construction of Bäcklund transforms from abelian integrals. The construc-

tion of a Bäcklund transform of a holomorphic curve f : M → HPn involves two choices:

first a hyperplane kerα ⊂ V at ∞ not intersecting f given by α ∈ V ∗ so that V = L⊕kerα

and, secondly, a choice of a basepoint free linear system H̃ ⊂ H0(L) of dimension at least

2. Then the Kodaira embedding f̃ : M → P(H̃∗) of L with respect to the linear system

H̃ is the Bäcklund transform Bα,H̃(f) of f .

We now will explain how one can use abelian integrals to construct linear systems

H̃ ⊂ H0(L). The holomorphic structure on L is induced by the splitting V = L ⊕ kerα

and is given (4), (5) by the (0, 1)-part of the flat connection ∇L on L. On the other

hand, the bundle KL has a canonical holomorphic structure entirely determined by the

holomorphic curve f : M → HPn expressed by (3). Therefore, the integrals of holomorphic

sections ω ∈ H0(KL) give holomorphic sections ϕ ∈ H0(L)—at least on the universal
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cover pr : M̃ →M . Since the section ψ ∈ H0(L) with 〈α, ψ〉 = 1 has no zeros any linear

system H̃ ⊂ H0(pr∗ L) containing ψ is basepoint free.

Given a linear system HKL ⊂ H0(KL) the linear system H̃ ⊂ H0(pr∗ L) obtained

by integrating sections in HKL and including the section ψ with 〈α, ψ〉 = 1 is called

the linear system obtained by integration of HKL. Since we have included ψ ∈ H0(L),

which appears as the constant of integration, in the linear system H̃ this procedure is

well-defined. Moreover, because ψ ∈ H̃ has no zeros, the linear system H̃ is basepoint

free. To calculate the dimension of H̃ in case M is compact and HKL = H0(KL) is the

complete linear system, we use the Riemann–Roch theorem (6) applied to L−1:

h0(KL) = h0(L−1) + degL+ g − 1

and therefore

dim H̃ = 1 + h0(KL) = h0(L−1) + degL+ g.

Lemma 3.1. Let f : M → HP
n be a holomorphic curve. Then, for any choice of hyper-

plane α ∈ V ∗ not intersecting f , the linear system H̃ ⊂ H0(pr∗ L) obtained by integration

of H0(KL) is basepoint free and has dimension

dim H̃ = h0(L−1) + degL+ g.

Assuming that m+1 = dim H̃ ≥ 2, we obtain a Bäcklund transform f̃ = Bα,H̃(f) : M̃ →

HPm on the universal cover M̃ of M .

If we only are concerned about local surface theory then spaces of holomorphic sections

are infinite dimensional, abelian integrals have no periods, and we always obtain Bäcklund

transforms by integrating sections in H0(KL).

In the case of compact surfaces, genus 0 is exceptional since there are no periods to

close. Moreover, for a holomorphic sphere f : S2 → HPn of

degL ≥ −n+ 1

the previous Lemma implies that m + 1 = dim H̃ ≥ 2 since h0(L−1) ≥ n + 1. Thus

we always have Bäcklund transforms f̃ : S2 → HP
m. In [Pet04], [BP] the Bäcklund

transformation is used to construct soliton spheres.

For higher genus surfaces f : M → HPn, we have to close the periods of the Bäcklund

transform. If HKL ⊂ H0(KL) is a linear system of dimHKL ≤ n+ 1, we choose a linear

map Ω : V → H0(KL) whose image is HKL. To obtain a closed Bäcklund transform it

suffices to find α ∈ V ∗ with V = L⊕ kerα such that the periods

(9)

〈

α,

∫

γ

Ω

〉

= 0

vanish for all γ ∈ π1(M).

In the case when M = T 2 is a torus it is possible to find α ∈ V ∗ and linear systems

HKL ⊂ H0(KL) for which (9) holds: since π1(T
2) = Zγ1⊕Zγ2 we have two period maps

Pi =
∫

γi

Ω ∈ End(V ). If one of the Pi, say P1, has kernel we choose a linear subspace

V1 ⊂ kerP1 of dimV1 < dimV and α ∈ V ∗ with 〈α, P2(V1)〉 = 0. Then the linear system

H1 = Ω(V1) ⊂ H0(KL) has no periods. If P1 is invertible, then P−1
1 P2 has a fixed space
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of dimension 1 ≤ dimV2 < dimV . Then P1(V2) = P2(V2) and we may choose α ∈ V ∗

with 〈α, P1(V2)〉 = 0. Again, the linear system H2 = Ω(V2) ⊂ H0(KL) has no periods.

To integrate the linear systemHi ⊂ H0(KL), we need α ∈ V ∗ to satisfy V = L⊕kerα.

Since we cannot choose α ∈ V ∗ freely this may not be the case for our α ∈ V ∗ resulting

in a discrete set of zeros of α|L ∈ H0(L−1). In this case the splitting V = L⊕kerα is not

defined everywhere. Thus we do not get the flat connection ∇L on L needed to define

the holomorphic structure on L and to integrate sections in H0(KL) to a linear system

H̃ ⊂ H0(L). To remedy this situation, we describe an alternative way to obtain the

Bäcklund transformation given by abelian integrals of a linear system HKL ⊂ H0(KL).

By (2) an L-valued (1, 0)-form ω ∈ H0(KL) is holomorphic if it is closed as a V -valued

form, i.e.,

d∇ω = 0.

Thus, given a linear system HKL ⊂ H0(KL) and any α ∈ V ∗, we can integrate 〈α, ωi〉 =

dḡi with gi : M̃ → H. The smooth map

g = [g1 : . . . : gk : 1] : M̃ → HP
k

is well-defined up to projective equivalence (resulting from different choices of basis ωi ∈

H0(KL) and constants of integration) and is called a generalized Bäcklund transform of

f . It is now easy to see that g coincides with the Bäcklund transform Bα,H̃(f) in case

α ∈ V ∗ has no zeros on L. In the case when α ∈ V ∗ has zeros on L the generalized

Bäcklund transform is a holomorphic curve away from those zeros: the complex structure

on the bundle g∗T is given by

J











g1
...

gn
1











=











g1
...

gn
1











N,

where N is defined by Jα|L = α|LN away from the zeros of α.

4. Geometric interpretation of Bäcklund transforms. In this section we give a

geometric interpretation for the Bäcklund transformation using the enveloping construc-

tion [LP03]. A holomorphic curve f : M → HPn has the osculating flag L = f∗T ⊂ V1 ⊂

. . . ⊂ Vn−1 ⊂ V = H
n+1 given by

(10) ∇(Γ(Vk)) ⊂ Ω1(Vk+1),

which exists away from the discrete set of Weierstrass points into which the flag extends

continuously [FLPP01]. The construction of an envelope of the holomorphic curve f

requires that the osculating flag exists smoothly onM . In view of applications to Willmore

surfaces, we restrict to the even smaller class of Frenet curves f : M → HPn. Recall

[LP03] that a holomorphic curve f : M → HPn is a Frenet curve if there is a smooth flag

L ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ V = H
n+1 and a complex structure S ∈ Γ(End(V )) such that

(11) ∗δk = Sδk = δkS
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and

(12) (∇S)′′|Vn−1
= 0, or, equivalently, (∇S)′V ⊂ L.

Here δk = πVk
∇|Vk

∈ Γ(K Hom+(Vk, Vk+1/Vk)) denote the derivatives of Vk with πVk
:

V → V/Vk the canonical projections and ∇ the trivial connection on V . The unique

complex structure S ∈ Γ(End(V )) given by (11) and (12) is called the canonical complex

structure [FLPP01] of the Frenet curve f . The dual curve f⊥ of a Frenet curve is defined

by the line bundle V ⊥
n−1 ⊂ V ∗. This is again a Frenet curve with derivatives δ⊥k = −δ∗n−k−1

and canonical complex structure S∗.

If f : M → S4 = HP
1 is a conformal immersion, the canonical complex structure

S ∈ Γ(End(V )) can be seen as the mean curvature sphere congruence of f : at each point

p ∈ M , we have a sphere S′(p) given by the fixed lines S′(p) = {l ∈ HP1 | S(p)l = l} of

S(p). The conditions (11) and (12) imply [BFL+02] that the sphere S′(p) goes through

f(p), touches f at f(p) and has the same mean curvature vector as f at f(p).

Given a Frenet curve f̂ : M → HP
n+1 we get [LP03] a holomorphic curve f : M →

HP
n, the tangent curve of f̂ , by intersecting the first flag space V̂1 of the Frenet flag of f̂

with a HPn ⊂ HPn+1. Conversely, f̂ : M → HPn+1 is called an envelope of f : M → HPn

if f is a tangent curve of f̂ .

For a Frenet curve f : M → HP
n with corresponding line bundle L ⊂ V any choice

of a nowhere vanishing holomorphic section ω ∈ H0(KL) gives an envelope: if ϕ ∈ Γ(V )

satisfies ∇ϕ = −ω then ψ̂ = ϕ ⊕ 1 is a nowhere vanishing section of the trivial Hn+1-

bundle V̂ = pr∗(V ) ⊕ H over the universal cover M̃ of M , and defines the quaternionic

line bundle L̂ = ψ̂H ⊂ V̂ . For α̂ ∈ V̂ ∗ nowhere vanishing and ker α̂ = V we see that

(13) L = ker α̂ ∩ (L̂⊕ im δ̂) = ker α̂ ∩ V1 ⊂ V,

since δ̂ψ̂ = −ω ∈ H0(KL). Moreover, ω defines N ∈ Im H by ∗ω = ωN and gives

a complex structure J on L̂ by Jψ̂ = ψ̂N . In particular, L̂ is a holomorphic curve

f̂ : M̃ → HPn+1, and due to (13) an envelope of f . It can be shown that f̂ is in fact a

Frenet curve [LP03].

Theorem 4.1. Every Bäcklund transform f̃ of a Frenet curve f : M → HP
n which is

given by integration of a linear system HKL = span{ω} with nowhere vanishing ω ∈

H0(KL) is the dual curve of a projection of an envelope f̂ of f . The envelope f̂ : M̃ →

HPn+1 is defined by L̂ = ψ̂H ⊂ H
n+2 with ∇ψ̂ = −ω.

Proof. Let α̂ ∈ V̂ ∗ with α̂|L̂ never zero and ker α̂ = V . Since

d〈α̂, ψ̂〉 = 〈α̂,∇ψ̂〉 = −〈α̂, ω〉 = 0

we can assume, by scaling α̂ if necessary, that 〈α̂, ψ̂〉 = 1. Choose α1 ∈ V̂ ∗ such that

α = α1|V is nowhere vanishing on L, and denote by H♯ the linear system spanned by α̂

and α1. The linear system H♯ is basepoint free since α̂ has no zeros. In particular, the

Kodaira embedding of L̂ in (H♯)∗ is a holomorphic curve f ♯ : M̃ → HP1 = P((H♯)∗).

Note that

α1|L̂ = −α̂|L̂g,

where g : M̃ → H satisfies dḡ = −d〈α1, ψ̂〉 = −〈α1,∇ψ̂〉 = 〈α, ω〉.
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We now show that f ♯ is the dual curve of the Bäcklund transform f̃ . Recall that the

dual curve f̃⊥ of f̃ is given by the Kodaira embedding of (L−1)⊥ in H̃∗, where the linear

system H̃ obtained by integration of HKL is given by H̃ = span{ψḡ, ψ}. Therefore, the

dual basis {α̃, β̃} ⊂ H̃∗ of {ψḡ, ψ} satisfies

β̃|(L−1)⊥ = −α̃|(L−1)⊥g.

In particular, the quaternionic linear map

ρ : L̂−1 → ((L−1)⊥)−1,

defined by ρ(α̂) = α̃ is a holomorphic bundle map which maps the linear system H♯ to

the linear system H̃∗ which shows that the dual curve f̃⊥ : M̃ → P(H̃∗) is given by

f ♯ : M̃ → P((H♯)∗).

Remark 4.2. The assumption of the theorem can be relaxed: as we have seen, an enve-

lope of a holomorphic curve exists if the osculating flag exists smoothly on M . Moreover,

if f : M → HP
n is Willmore then there are canonical choices of ω ∈ H0(KL) for which

it is still possible to define the canonical complex structure of the envelope even though

these ω might have zeros, [LP03].

5. Bäcklund transforms of Willmore surfaces. As an application we discuss Bäck-

lund transforms of Willmore surfaces. Recall that a Frenet curve f : M → HPn from a

compact Riemann surface M to quaternionic projective space HPn is called Willmore if

it is a critical point of the Willmore energy (7) under compactly supported variations by

Frenet curves where the conformal structure ofM may change under the variation [LP03].

This definition coincides with the classical definition of Willmore surfaces for conformal

immersions f : M → S4 and includes the case of those branched conformal immersions

for which the mean curvature sphere extends smoothly into the branch points.

It is a classical fact that the mean curvature sphere congruence of a Willmore surface is

harmonic. This fact also holds true in the general case of Willmore surfaces in quaternionic

projective space [LP03]: a Frenet curve f : M → HPn is Willmore if and only if the

canonical complex structure of f is harmonic. If S ∈ Γ(End(V )) is a complex structure,

we split ∇S into its (0, 1) and (1, 0)-parts, i.e.,

(14) ∇S = 2(∗Q− ∗A),

where Q ∈ Γ(K̄ End−(V )) and A ∈ Γ(K End−(V )). With this notation the harmonicity

of the canonical complex structure S of a Frenet curve f : M → HPn reads as

(15) d∇ ∗A = 0 or, equivalently, d∇ ∗Q = 0.

Holomorphic curves with A ≡ 0 are [FLPP01] exactly the twistor projections of holo-

morphic curves in CP2n+1. It turns out that envelopes and tangents, and thus also Bäck-

lund transforms, of Willmore curves are not necessarily Willmore. Rather they become

what is known to be constrained Willmore surfaces:

Definition 5.1. A Frenet curve f : M → HPn with canonical complex structure S is

called constrained Willmore if there exists η ∈ Γ(KR+) with
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(16) d∇(∗A+ η) = 0.

Here R = Hom(V/Vn−1, L) and L ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ V is the Frenet flag of f .

It can be shown by methods similar to the ones in [LP03] that every constrained

Willmore curve is a critical point of the Willmore functional under variations by Frenet

curves which preserve the conformal structure of M .

In the case of constrained Willmore surfaces with A 6≡ 0 there is a canonical linear

map Ω : V → H0(KL), namely

Ω = ∗A+ η,

which is non-trivial since A and η are of different ±-type. Therefore, we can apply Lemma

3.1 to construct Bäcklund transforms by abelian integrals:

Corollary 5.2. Let f : M → HPn be constrained Willmore so that

d∇(∗A+ η) = 0 and A 6≡ 0.

Then for any choice of α ∈ V ∗ with V = L⊕ kerα the linear system HKL = {(∗A+ η)b |

b ∈ V } ⊂ H0(KL) has dimension m = dimHKL ≥ 1 and there exists a Bäcklund

transform

f̃ : M̃ → HP
m

on the universal cover M̃ of M given by integration of HKL.

Moreover, in case of a torus M = T 2 there exists a (generalized) closed Bäcklund

transform.

Fig. 1. Willmore cylinders in R
4 obtained by Bäcklund transformation of the Clifford torus,

[Hel02]

We now show, at least in the case of a conformal immersion f : M → S4, that the

Bäcklund transforms with respect to the linear map Ω = ∗A+η preserve the constrained

Willmore and also the Willmore property. The latter has already been shown in [BFL+02].

Theorem 5.3. Let f : M → S4 be constrained Willmore so that

d∇(∗A+ η) = 0 with A 6≡ 0

and let α ∈ V ∗ satisfying V = L⊕ kerα. Then the Bäcklund transform f̃ : M̃ → S4 of f

obtained by integration of the linear system HKL = {(∗A+ η)b | b ∈ kerα} is constrained

Willmore, provided f̃ is a Frenet curve.
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Proof. To simplify notations, we assume that f̃ is defined on M . As before we define

Ω = ∗A+ η : V → H0(KL)

and we denote by H̃ the 2-dimensional linear system obtained by integration of {Ωb | b ∈

kerα}. Moreover, let ∇̃ be the flat connection on Ṽ = H̃∗ and ψ ∈ Γ(L) with 〈α, ψ〉 = 1.

Consider the bundle map

T : kerα→ H̃/ψH,

with ∇̂T = Ω where ∇̂ is the connection on Hom(kerα, H̃/ψH) induced by the trivial

connection ∇ on kerα and by the flat connection ∇L on H̃/ψH. The latter connection

is well-defined since ∇Lψ = 0 and H̃ ⊂ H0(L) ⊂ Γ(L). Let

T ∗ : kerψ = (H̃/ψH)−1 → H/αH = (kerα)−1

be the dual map of T . From (3) we see that ∇L−1

β ∈ H0(KL−1) for any β ∈ H0(L−1)

and therefore

∇̂T ∗ : kerψ → H0(KL−1),

where ∇̂ is the connection induced by the trivial connection ∇̃ on kerψ and ∇L−1

on

H/αH. Let S̃ be the mean curvature sphere congruence of f̃ and let Ã be as usual defined

by (14). Using the splitting Ṽ = kerψ⊕L−1, we define the linear map Ω̃ : Ṽ → Γ(KL−1)

by

Ω̃|L−1 = ∗Ã|L−1 and Ω̃|kerψ = ∇̂T ∗.

We show that Ω̃ is d∇̃-closed and differs from ∗Ã by a 1-form η̃ ∈ Γ(KR̃+) where

R̃ = Hom(Ṽ /L−1, L−1).

Since T and T ∗ are parallel with respect to the connections ∇ on V and ∇̃ on Ṽ , we get

〈ψ, Ω̃ ∧ ∇̃α〉 = 〈ψ, ∇̂T ∗ ∧ ∇̃α〉 = −〈∇̂T ∧∇ψ, α〉 = −〈Ω ∧∇ψ, α〉,

where we also used that ∇̃α ∈ Ω1(kerψ). Lemma A.1 and Lemma A.2 below show that

〈ψ, Ω̃ ∧ ∇̃α〉 = −d〈ψ, S̃∇̃α〉

and Lemma A.3 then implies that

(17) η̃ = Ω̃ − ∗Ã ∈ Γ(KR̃+).

In particular, η̃ ∧ δ̃ = 0, and η̃|L−1 = 0 so that

(18) d∇̃(∗Ã+ η̃)|L−1 = d∇̃ ∗ Ã|L−1 + η̃ ∧ δ̃ = 0.

Here d∇̃ ∗ Ã|L−1 = 0 holds by type considerations for canonical complex structures of

Frenet curves, see [LP03].

Using the splitting Ṽ = L−1 ⊕ kerψ, we decompose ∇̃|L−1 = ∇L−1

+ δ̃. By (2) and

(3) we get for b̃ ∈ kerψ

(19) (d∇̃(∗Ã+ η̃))b̃ = d∇̃(Ω̃b̃) = d∇
L
−1

(∇L−1

(T ∗b̃)) = 0.

Thus, f̃ is constrained Willmore since d∇̃(∗Ã+ η̃) = 0 on Ṽ = kerψ ⊕ L−1 by (18) and

(19).

As a corollary we show that the Bäcklund transformation also preserves Willmore

surfaces in S4.
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Corollary 5.4 ([BFL+02]). Let f : M → S4 be Willmore and α ∈ V ∗ so that V =

L ⊕ kerα. Then the Bäcklund transform f̃ : M̃ → S4 given by integration of the linear

system HKL = {∗Ab | b ∈ kerα} is Willmore provided f̃ is Frenet.

Fig. 2. Willmore sphere in R
3 obtained by Bäcklund transformation, [BP], [Hel02]

Proof. In view of Theorem 5.3 we have to show that the (1, 0)-form η̃ in (17) vanishes.

Let H̃ be the linear system obtained by integration of HKL and ∇̃ the flat connection on

Ṽ = H̃∗. Let ϕ ∈ Ṽ ∗ with ∇Lϕ = ∗Ab. Since ∇̃ϕ = 0 we get d〈ϕ, α〉 = 〈ϕ, ∇̃α〉. On the

other hand ∇L−1

α = 0 implies d〈ϕ, α〉 = 〈∇Lϕ, α〉 = 〈∗Ab, α〉, which shows that

(20) ∇̃α = b̃〈∗Ab, α〉

where b̃ ∈ kerψ is given by 〈ϕ, b̃〉 = 1. Similarly, if we choose β ∈ V ∗ with 〈β, b〉 = 1 then

T ∗b̃ = β and 〈Ω̃b̃, ψ〉 = 〈∇L−1

β, ψ〉 = 〈β,∇ψ〉. Therefore,

(21) ∇ψ = b〈Ω̃b̃, ψ〉.

By Lemma A.4 below we have

〈α,A∇ψ〉 = −〈ψ, ∗Ã ∗ ∇̃α〉,

and, plugging (20) and (21) into this equation, we get

〈ψ, Ω̃b̃〉 = 〈ψ, ∗Ãb̃〉.

Therefore Ω̃b̃ = ∗Ãb̃ and η̃ = 0, which shows that f̃ is Willmore.

A. Appendix. We conclude the paper by providing the technical lemmas used in the

proofs of Theorem 5.3 and Corollary 5.4. Since all calculations are done locally, we assume

that all appearing curves are Frenet curves on the Riemann surface M .

Lemma A.1. Let f : M → HPn be a Frenet curve with Bäcklund transform

f̃ = Bα,H̃(f) : M → HP
k

with respect to α ∈ H0(L−1), where H̃ is a linear system obtained by integration of a k-

dimensional linear system HKL ⊂ H0(KL). Let ψ ∈ Γ(L) be the section with 〈α, ψ〉 = 1.

Then the canonical complex structures S of f and S̃ of f̃ satisfy

(22) −d〈α, S∇ψ〉 = d〈ψ, S̃∇̃α〉.
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Proof. Note that the evaluation pairing on H̃ ⊂ H0(L) satisfies 〈ψ̃, α̃〉 = 〈α̃, ψ̃〉 for

ψ̃ ∈ Γ(L) and α̃ ∈ Γ(L−1). The complex structure on L−1 is the dual of the complex

structure on L so that

(23) 〈α, Sψ〉 = −〈ψ, S̃α〉.

Since ψ ∈ Γ(L) ⊂ Γ(Vn−1), we get by (14) and (12)

d〈α, Sψ〉 = 〈α, (∇S)ψ + S∇ψ〉 = 〈α,−2 ∗Aψ + S∇ψ〉.

On the other hand, since ∗δ = Sδ, we see

(24) ∗∇ψ = S∇ψ − ψ〈α, S∇ψ〉,

and calculate

Sψ ∗ d〈α, Sψ〉 = Sψ〈α, (∗∇S)ψ + S ∗ ∇ψ〉

= Sψ〈α, 2Aψ −∇ψ − Sψ〈α, S∇ψ〉〉

= Sψ〈α, 2Aψ − Sψ〈α, S∇ψ〉〉

= ψ〈α, 2 ∗Aψ + ψ〈α, S∇ψ〉〉,

where we used that 〈α,∇ψ〉 = 0 and Sψ〈α, χ〉 = ψ〈α, Sχ〉 for χ ∈ Γ(L). Combining the

above computations, we get

ψd〈α, Sψ〉 + Sψ ∗ d〈α, Sψ〉 = 2ψ〈α, S∇ψ〉

and therefore

2〈α, S∇ψ〉 = d〈α, Sψ〉 + 〈α, Sψ〉 ∗ d〈α, Sψ〉.

This implies

〈α, S∇ψ〉 ∈ im H

since 〈α, Sψ〉2 = −1 and thus 〈α, Sψ〉 ∗ d〈α, Sψ〉 = −〈α, Sψ〉 ∗ d〈α, Sψ〉. Using (23) we

compute

d〈α, Sψ〉 + 〈α, Sψ〉 ∗ d〈α, Sψ〉 = −d〈ψ, S̃α〉 + 〈ψ, S̃α〉 ∗ d〈ψ, S̃α〉

= −2d〈ψ, S̃α〉 + 2〈ψ, S̃∇̃α〉.

and conclude

(25) 〈α, S∇ψ〉 = −〈α, S∇ψ〉 = d〈ψ, S̃α〉 − 〈ψ, S̃∇̃α〉.

The assertion (22) follows by differentiating this equation.

Lemma A.2. Let f : M → HPn be a Frenet curve with canonical complex structure S

and η ∈ Γ(KR+). Then

−2〈α, (∗A+ η) ∧∇ψ̃n−1〉 = d〈α, S∇ψn−1〉.

for all ψn−1 ∈ Γ(Vn−1).

Proof. For ψn−1 ∈ Γ(Vn−1) we see ∗Q ∧ ∇ψn−1 = ∗Q ∧ δn−1ψn−1 = 0 by type. Since

∇S = 2(∗Q− ∗A) we get

(26) d〈α, S∇ψn−1〉 = −2〈α, ∗A ∧∇ψn−1〉.

Moreover, η ∧∇ψn−1 = η ∧ δn−1ψn−1 = 0 since η|Vn−1
= 0 and ∗η = ηS.
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Lemma A.3. Let f : M → HPn be a Frenet curve with canonical complex structure S,

α ∈ V ∗ with L⊕ kerα = V , and assume that η : V → Γ(KL) satisfies η|Vn−1
= 0 and

(27) −2〈α, (∗A+ η) ∧∇ψn−1〉 = d〈α, S∇ψn−1〉

for all ψn−1 ∈ Γ(Vn−1). Then η ∈ Γ(KR+).

Proof. Combining (26) with the assumption (27), we get 〈α, η∧∇ψn−1〉 = 0. Since η has

values in L and L ⊕ kerα = V , we see 0 = η ∧ ∇ψn−1 = η ∧ δn−1ψn−1, where we also

used η|Vn−1
= 0. Since δn−1ψn−1 6= 0 this implies either Im δn−1 ⊂ ker η, i.e. η ≡ 0, or

∗η = ηS. In both cases η ∈ Γ(KR+).

Lemma A.4. Let f : M → HPn be a Frenet curve with Bäcklund transform

f̃ = Bα,H̃(f) : M → HP
k

with respect to α ∈ H0(L−1), where H̃ is a linear system obtained by integration of a k-

dimensional linear system HKL ⊂ H0(KL). Let ψ ∈ Γ(L) be the section with 〈α, ψ〉 = 1.

Then the canonical complex structures S of f and S̃ of f̃ satisfy

(28) 〈α,A∇ψ〉 = −〈ψ, ∗Ã ∗ ∇̃α〉.

Proof. By Lemma A.1 and Lemma A.2 we see that

−〈α, ∗A ∧∇ψ〉 = 〈ψ, ∗Ã ∧ ∇̃α〉.

With (24) and A = ∗AS we compute

〈α, ∗A ∧∇ψ〉 = 〈α, ∗A ∗ ∇ψ +A∇ψ〉 = 〈α, 2 ∗A ∗ ∇ψ〉 + 〈α, ∗Aψ〉〈α, S∇ψ〉,

and similarly

〈ψ, ∗Ã ∧ ∇̃α〉 = 〈ψ, 2Ã∇̃α〉 − 〈ψ, ∗Ãα〉〈ψ, S̃∇̃α〉.

But this implies (28) since

〈α, ∗Aψ〉〈α, S∇ψ〉 = 〈ψ, ∗Ãα〉〈ψ, S̃∇̃α〉

by using (25)

−2〈α, ∗Aψ〉 = 〈α, (∇S)ψ〉 = d〈α, Sψ〉 − 〈α, S∇ψ〉 = −〈ψ, S̃∇̃α〉.

and similarly 2〈ψ, ∗Ãα〉 = 〈α, S∇ψ〉.
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(1899), 1299–1305.



118 K. LESCHKE AND F. PEDIT

[FLPP01] D. Ferus, K. Leschke, F. Pedit, and U. Pinkall, Quaternionic holomorphic geometry:
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