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Abstrat. We investigate hypersurfaes M in spaes of onstant urvature with some speialminimal polynomial of the seond fundamental tensor H of third degree. We present a urvatureharaterization of pseudosymmetry type for suh hypersurfaes. We also prove that if suh ahypersurfae is a manifold with pseudosymmetri Weyl tensor then it must be pseudosymmetri.1. Introdution. Let M , n = dimM ≥ 3, be a onneted hypersurfae in a semi-Riemannian manifold (N, gN ). We denote by g the metri tensor indued on M from gN .Further, let H, resp. A, be the seond fundamental tensor, resp. the shape operator, of
(M, g) in (N, gN ). It is well known that H(X,Y ) = g(AX,Y ), for any vetor �elds Xand Y tangent to M . We de�ne the (0, 2)-tensor Hk, k ≥ 1, by Hk(X,Y ) = g(AkX,Y ),where H1 = H and A1 = A. In Setions 3 and 4 we present further basi fats relatingto hypersurfaes.A hypersurfae M , n ≥ 3, in (N, gN ) is said to be quasi-umbilial at x ∈M if at thispoint we have

H = αg + βu⊗ u, u ∈ T ∗

xM, α, β ∈ R.(1)If α = 0 (resp., β = 0 or α = β = 0) at x then M is alled ylindrial (resp., umbilialor geodesi) at x. If (1) is ful�lled at every point of M then it is alled a quasi-umbilialhypersurfae. A hypersurfae M , n ≥ 4, in (N, gN ) is said to be 2-quasi-umbilial at
x ∈M (see [16℄ and referenes therein) if at this point we have

H = αg + βu⊗ u+ γv ⊗ v, u, v ∈ T ∗

xM, α, β, γ ∈ R,(2) 2000 Mathematis Subjet Classi�ation: Primary 53B20, 53B25; Seondary 53C25.Key words and phrases: pseudosymmetri manifold, manifold with pseudosymmetri Weyltensor, hypersurfae, 2-quasi-umbilial hypersurfae.The author is supported by VolkswagenStiftung (Germany).The paper is in �nal form and no version of it will be published elsewhere.
[145]



146 K. SAWICZwhere U , V are vetors at x suh that g(U, V ) = 0, u(X) = g(U,X) and v(X) = g(V,X)for every vetor X at x. If (2) is ful�lled at every point of M then it is alled a 2-quasi-umbilial hypersurfae. If α = 0 at x then M is alled 2-ylindrial at x. It is learthat if (N, gN ) is a Riemannian manifold then the above de�nition of a 2-quasi-umbilialhypersurfae M at x ∈M is equivalent to the following: the hypersurfae M , n ≥ 4, in aRiemannian manifold (N, gN ) is said to be 2-quasi-umbilial at x ∈M when at x it has aprinipal urvature with multipliity ≥ n− 2, i.e. when the prinipal urvatures at x are
µ, ν, λ,. . . , λ, where λ ours (n − 2)-times. Evidently, 2-quasi-umbilial hypersurfaesform a natural extension of the lass of quasi-umbilial hypersurfaes.Every 2-quasi-umbilial hypersurfae in onformally �at spae is a manifold withpseudosymmetri Weyl tensor (see Theorem 3.1(ii)). A semi-Riemannian manifold (M, g),
n ≥ 4, is said to be a manifold with pseudosymmetri Weyl tensor ([5℄, Setion 12.6) if, atevery point ofM , the tensors C ·C and Q(g, C) are linearly dependent. This is equivalenton UC = {x ∈M |C 6= 0 at x} to

C · C = LCQ(g, C),(3)where LC is some funtion on UC . For preise de�nitions of the symbols used we refer toSetions 2 and 3 of this paper and [3℄ and [10℄.Now let M be a hypersurfae in a semi-Riemannian spae Nn+1
s (c) of onstant ur-vature with signature (s, n + 1 − s), n ≥ 4, where c = κ̃

n(n+1) and κ̃ denotes the salarurvature of the ambient spae. We denote by UH the set of all points of M at whih thetensor H2 of M is not a linear ombination of the metri tensor g and H. It is knownthat UH ⊂ UC ∩ US , where US ⊂ M is de�ned by US = {x ∈ M |S − κ
n
g 6= 0 at x} (seee.g. [10℄, Setion 2). Theorem 4.3 of [17℄ and Lemma 4.1 and Theorem 4.1 of [4℄ implyTheorem 1.1. If M is a hypersurfae with pseudosymmetri Weyl tensor in Nn+1

s (c),
n ≥ 4, satisfying on UH ⊂M the equation

H3 = tr(H)H2 + ψH,(4)where ψ is some funtion on UH , then on this set we have
R ·R =

κ̃

n(n+ 1)
Q(g,R).(5) Theorem 5.2 of this paper shows that the above theorem remains true if on UH wereplae (4) by

H3 = tr(H)H2 + ψH + ρg,(6)where ψ and ρ are some funtions on UH . Thus in partiular, from Theorem 5.2 it followsthat if M is a hypersurfae with pseudosymmetri Weyl tensor in a Riemannian spae ofonstant urvature satisfying (6) on UH ⊂ M then (5) holds on UH . Further, Theorem5.3 shows that every hypersurfae M in Nn+1
s (c), n ≥ 4, satisfying (6) on UH ⊂ M is2-ylindrial on this set.We remark that if (6) holds on the subset UH of a hypersurfae M in a Riemannianspae of onstant urvature then at every point of this set M has three three distintprinipal urvatures.



HYPERSURFACES WITH THREE DISTINCT PRINCIPAL CURVATURES 147A semi-Riemannian manifold (M, g), n ≥ 4, is said to be pseudosymmetri ([5℄, Setion3.1) if, at every point of M , the tensors R · R and Q(g,R) are linearly dependent. Thisis equivalent on UR = {x ∈M |R− κ
(n−1)nG 6= 0 at x} to
R ·R = LRQ(g,R),(7)where LR is some funtion on UR.Hypersurfaes satisfying (3), resp., (7), were investigated e.g. in: [15℄, [16℄ and [17℄,resp., in: [2℄, [4℄, [6℄, [7℄, [11℄, and [18℄. We say that (3) and (7) are ertain onditionsof pseudosymmetry type. For a reent survey of results on manifolds satisfying suhonditions we refer to [3℄.Hypersurfaes in semi-Eulidean spaes in E

n+1
s , n ≥ 4, satisfying (6) were investi-gated in [1℄. Examples of suh hypersurfaes in E

n+1
s , with ρ 6= 0, will be presented in[19℄ (see also [13℄).We note that on the set M \ UH of a hypersurfae M in Nn+1

s (c), n ≥ 4, (3) and(7) are always satis�ed (see e.g. [17℄, Theorem 3.1). Thus in partiular, (3) and (7) aresatis�ed at all points at whih M has only two distint prinipal urvatures. We presentnow some results of [2℄, [4℄ and [7℄.Theorem 1.2. Let M be a hypersurfae in Nn+1
s (c), n ≥ 4, and let UH ⊂M .(i) ([2℄, Theorem 3.1) The onditions (7) and R · C = LRQ(g, C) are equivalent on

UC ⊂M .(ii) ([4℄, Lemma 4.1 and Theorem 4.1) If M is pseudosymmetri then (5) holds on UH .(iii) ([7℄, Theorems 3.1 and 5.1) The equation rankH = 2 is satis�ed on UH if and onlyif (5) holds on this set.(iv) ([4℄, Proposition 3.2, Proposition 3.1(ii)) (4) holds on UH if and only if on this setwe have
R · S =

κ̃

n(n+ 1)
Q(g, S).(8) In onnetion with the results presented above, we onsider in Setion 4 the questionof �nding a ondition of pseudosymmetry type equivalent to (6) on the set UH of ahypersurfae M in Nn+1

s (c), n ≥ 4. Propositions 5.1 and 5.2 solve this question. Namelywe have: (6) holds on UH ⊂M if and only if on this set we have
C ·R = L1Q(S,R) + L2Q(g,R) + L3Q(S,G)(9)for some funtions L1, L2 and L3. Further, let M be a hypersurfae in a Riemannianspae of onstant urvature Nn+1(c), n ≥ 4, and let V ⊂ UH ⊂M be the set of all pointsat whih the tensor R · S − κ̃

n(n+1)Q(g, S) is nonzero. Our main result is the following(see Theorem 5.1)Theorem 1.3. Let M be a hypersurfae in Nn+1
s (c), n ≥ 4, and let V be the set de�nedabove. Then on V the ondition (6) is equivalent to (33) and (36).We note that from Theorem 1.2(iv) it follows that if M is a hypersurfae of a Rie-mannian spae of onstant urvature and (6) holds on V , then at every point of this setthere are exatly three distint nonzero prinipal urvatures. Now Theorem 1.3 implies



148 K. SAWICZCorollary 1.1. Let M be a hypersurfae in a Riemannian spae of onstant urvature
Nn+1(c), n ≥ 4, and let V be the set de�ned above. Then on V the ondition (6) isequivalent to (33) and (36).The author would like to express her thanks to the referee for his hints, remarks andomments.2. Preliminaries. Throughout this paper all manifolds are assumed to be onnetedparaompat manifolds of lass C∞. Let (M, g) be an n-dimensional, n ≥ 3, semi-Riemannian manifold and let ∇ be its Levi-Civita onnetion and Ξ(M) the Lie algebraof vetor �elds onM . We de�ne onM the endomorphisms X∧AY and R(X,Y ) of Ξ(M)by

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,respetively, where A is a symmetri (0, 2)-tensor on M and X,Y, Z ∈ Ξ(M). The Riitensor S, the Rii operator S and the salar urvature κ of (M, g) are de�ned by
S(X,Y ) = tr{Z → R(Z,X)Y }, g(SX,Y ) = S(X,Y ), κ = trS,respetively. The endomorphism C(X,Y ) is de�ned by

C(X,Y )Z = R(X,Y )Z −
1

n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y

)
Z.Now the (0, 4)-tensor G, the Riemann-Christo�el urvature tensor R and the Weyl on-formal urvature tensor C of (M, g) are de�ned by

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),respetively, where X1, X2, . . . ∈ Ξ(M). Let B(X,Y ) be a skew-symmetri endomorphismof Ξ(M) and let B be a (0, 4)-tensor assoiated with B(X,Y ) by
B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4).(10)The tensor B is said to be a generalized urvature tensor if

B(X1, X2, X3, X4) +B(X2, X3, X1, X4) +B(X3, X1, X2, X4) = 0,

B(X1, X2, X3, X4) = B(X3, X4, X1, X2).Let B(X,Y ) be a skew-symmetri endomorphism of Ξ(M) and let B be the tensor de�nedby (10). We extend the endomorphism B(X,Y ) to derivation B(X,Y )· of the algebra oftensor �elds on M , assuming that it ommutes with ontrations and B(X,Y ) · f = 0for any smooth funtion f on M . Now for a (0, k)-tensor �eld T , k ≥ 1, we de�ne the
(0, k + 2)-tensor B · T by

(B · T )(X1, . . . , Xk;X,Y ) = (B(X,Y ) · T )(X1, . . . , Xk;X,Y )

= −T (B(X,Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1,B(X,Y )Xk).



HYPERSURFACES WITH THREE DISTINCT PRINCIPAL CURVATURES 149If A is a symmetri (0, 2)-tensor then we de�ne the (0, k + 2)-tensor Q(A, T ) by
Q(A, T )(X1, . . . , Xk;X,Y ) = (X ∧A Y · T )(X1, . . . , Xk;X,Y )

= −T ((X ∧A Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk).In this manner we obtain the (0, 6)-tensors B · B and Q(A,B). Setting in the aboveformulas B = R or B = C, T = R or T = C or T = S, A = g or A = S, we get thetensors R ·R, R · C, C ·R, R · S, Q(g,R), Q(S,R), Q(g, C) and Q(g, S). For symmetri
(0, 2)-tensors E and F , we denote their Kulkarni-Nomizu produt by

(E ∧ F )(X1, X2, X3, X4) = E(X1, X4)F (X2, X3) + E(X2, X3)F (X1, X4)

−E(X1, X3)F (X2, X4) − E(X2, X4)F (X1, X3).Clearly, the tensors R, C, G and E∧F are generalized urvature tensors. For a symmetri
(0, 2)-tensor E we de�ne the (0, 4)-tensor E by E = 1

2E ∧ E. We have g = G = 1
2g ∧ gand

C = R −
1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G.(11)We also have (see e.g. [10℄, eq. (24))

Q(E,E ∧ F ) = −Q(F,E).(12)Relations (11) and (12) give
Q(g, C) = Q(g,R) +

1

n− 2
Q(S,G).(13)Aording to [9℄, for a symmetri (0, 2)-tensor E and a (0, k)-tensor T , k ≥ 2, we de�netheir Kulkarni-Nomizu produt E ∧ T by

(E ∧ T )(X1, X2, X3, X4;Y3, . . . , Yk)

= E(X1, X4)T (X2, X3, Y3, . . . , Yk) + E(X2, X3)T (X1, X4, Y3, . . . , Yk)

− E(X1, X3)T (X2, X4, Y3, . . . , Yk) − E(X2, X4)T (X1, X3, Y3, . . . , Yk).Using the above de�nitions we an prove the followingLemma 2.1 ([9℄, [18℄). Let E1, E2 and F be symmetri (0, 2)-tensors at a point x of asemi-Riemannian manifold (M, g), n ≥ 3. Then at x we have
E1 ∧Q(E2, F ) + E2 ∧Q(E1, F ) = −Q(F,E1 ∧E2).If E = E1 = E2 then

E ∧Q(E,F ) = −Q(F,E).(14)3. Hypersurfaes in onformally �at spaes. Let M , n ≥ 3, be a onneted hyper-surfae in a semi-Riemannian manifold (N, gN ) and let g be the metri tensor induedon M from gN . We denote by ∇, ∇N , the Levi-Civita onnetions orresponding to themetri tensors g and gN , respetively. Similarly, we denote by R and RN the Riemann-Christo�el urvature tensors of (M, g) and (N, gN ), respetively. Let ξ be a loal unitnormal vetor �eld onM inN and let ε = gN (ξ, ξ) = ±1. We an write the Gauss formulaand the Weingarten formula of (M, g) in (N, gN ) in the form: ∇N
XY = ∇XY +εH(X,Y )ξ



150 K. SAWICZand ∇N
Xξ = −AX, respetively, where X,Y are vetor �elds tangent to M , H is the se-ond fundamental tensor of (M, g) in (N, gN ) and A is the shape operator. Let xr = xr(yk)be the loal parametri expression of (M, g) in (N, gN ), where yk and xr are loal oordi-nates ofM andN , respetively, and h, i, j, k ∈ {1, 2, . . . , n} and p, r, t, u ∈ {1, 2, . . . , n+1}.The Gauss equation of (M, g) in (N, gN ) has the form

Rhijk = RN
prtuB

p
h B

r
i B

t
j B

u
k + ε(HhkHij −HhjHik), B r

k =
∂xr

∂yk
,(15)where RN

prtu, Rhijk and Hhk are the loal omponents of the tensors RN , R and H,respetively.Let now (N, gN ) be a onformally �at spae. We have ([11℄, Setion 4)
Chijk = µGhijk + εHhijk +

ε

n− 2
(g ∧ (H2 − tr(H)H))hijk,(16)

µ =
1

(n− 2)(n− 1)
(κ− 2S̃rtB

r
hB

t
kg

hk + κ̃),(17)where S̃rt are the loal omponents of the Rii tensor S̃ of the ambient spae, Ghijk arethe loal omponents of the tensor G and κ̃ and κ are the salar urvatures of (N, gN )and (M, g), respetively. From (16) we get
C ·H =

ε

n− 2
(Q(g,H3) + (n− 3)Q(H,H2)(18)

− tr(H)Q(g,H2)) + µQ(g,H),

C ·H2 = ε(Q(H,H3) +
1

n− 2
(Q(g,H4) − tr(H)Q(g,H3)(19)

− tr(H)Q(H,H2))) + µQ(g,H2).Theorem 3.1. Let M , dimM ≥ 4, be a hypersurfae in a onformally �at semi-Rieman-nian manifold.(i) ([14℄, Theorem 4.1) M is quasi-umbilial if and only if it is a onformally �at mani-fold.(ii) ([16℄, Theorem 3.1) If M is 2-quasi-umbilial then it is a manifold with pseudosym-metri Weyl tensor.4. Hypersurfaes in spaes of onstant urvature. Let M be a hypersurfae in
Nn+1

s (c), n ≥ 4. Now (15) and (17) read
Rhijk = εHhijk +

κ̃

n(n+ 1)
Ghijk,(20)

µ =
1

n− 2

(
κ

n− 1
−

κ̃

n+ 1

)
,(21)respetively. Contrating (20) with gij and gkh we obtain

Shk = ε(tr(H)Hhk −H2
hk) +

(n− 1)κ̃

n(n+ 1)
ghk,(22)

κ = ε((tr(H))2 − tr(H2)) +
(n− 1)κ̃

n+ 1
,(23)



HYPERSURFACES WITH THREE DISTINCT PRINCIPAL CURVATURES 151respetively, where κ is the salar urvature of M , tr(H) = ghkHhk, tr(H2) = ghkH2
hkand Shk are the loal omponents of the Rii tensor S of M . Further, let A be the

(0, 2)-tensor on M de�ned by
A = H3 − tr(H)H2 +

εκ

n− 1
H.(24)From Theorem 5.1 of [12℄ it follows that A, de�ned by (24), vanishes on the subset UH ofany quasi-Einstein Rii-semisymmetri hypersurfae M in E

n+1
s , n ≥ 4. It is also known([10℄, Theorem 5.1) that A = 0 on the subset UH of a hypersurfaeM in Nn+1

s (c), n ≥ 4,if and only if, on UH , we have
R · C − C ·R =

1

n− 2
Q(S,R) +

(n− 1)κ̃

(n− 2)n(n+ 1)
Q(g,R).Examples of hypersurfaes with nonzero tensor A are given in [10℄. Further, on anyhypersurfae M in Nn+1

s (c), n ≥ 4, we have ([10℄, Theorem 3.1):
R · C = Q(S,R) −

(n− 2)κ̃

n(n+ 1)
Q(g,R)(25)

−
(n− 3)κ̃

(n− 2)n(n+ 1)
Q(S,G) +

1

n− 2
g ∧Q(H,A),

C ·R =
n− 3

n− 2
Q(S,R) −

(n2 − 3n+ 3)κ̃

(n− 2)n(n+ 1)
Q(g,R)(26)

−
(n− 3)κ̃

(n− 2)n(n+ 1)
Q(S,G) +

1

n− 2
H ∧Q(g,A).Proposition 4.1. If M is a pseudosymmetri hypersurfae in Nn+1

s (c), n ≥ 4, then on
UH ⊂M we have (4) with

ψ =
1

2
(tr(H2) − (tr(H))2).(27)Proof. Sine M is a pseudosymmetri manifold, in view of Theorem 1.2(iii), on UH wehave rankH = 2. Now, using Lemma 2.1(i) of [8℄, we get our assertion.Remark 4.1. Examples of hypersurfaes in Nn+1

s (c), n ≥ 4, with rankH = 2 were foundin [11℄.Theorem 4.1. If M is a hypersurfae in Nn+1
s (c), n ≥ 4, satisfying on UH ⊂M

R · C = LQ(g, C),(28)where L is some funtion on UH , then rankH = 2 and (4), i.e. (6) with ρ = 0, hold on
UH .Proof. On UH , by (28), we have

(R · C)(X1, X2, X3, X4;X5, X6) + (R · C)(X3, X4, X5, X6;X1, X2)

+ (R · C)(X5, X6, X1, X2, X3, X4) = 0,



152 K. SAWICZwhere X1, . . . , X6 are vetor �elds tangent to UH . Now on UH Proposition 5.1 of [18℄implies (6) and
R · S =

κ̃

n(n+ 1)
Q(g, S) + ρQ(g,H).(29)On the other hand, from (28), in view of Theorem 1.2(i) and (ii), it follows that (5) holdson UH , whih in view of Theorem 1.2(iii) implies rankH = 2 on UH . Further, from (5),by a suitable ontration, we get (8). This, together with (29), gives ρ = 0. Thus ourtheorem is proved.5. Hypersurfaes satisfying H3 = tr(H)H2 + ψH + ρg. Let M be a hypersurfae in

Nn+1
s (c), n ≥ 4, satisfying (6) on UH ⊂M . By making use of (6), (24) turns into

A =

(
εκ

n− 1
+ ψ

)
H + ρg, ρ =

1

n

(
tr(A) −

(
εκ

n− 1
+ ψ

)
tr(H)

)
.(30)Further, we set on UH

β1 =
ε

n− 2
(ψ + (n− 2)εµ),

β2 = εµtr(H) +
1

n− 2
(ψtr(H) + (n− 3)ρ),

β3 = β2 − εβ1tr(H),

β4 =
κ

n− 1
+ εψ −

(n2 − 3n+ 3)κ̃

n(n+ 1)
,

β5 = β1 −
(n− 3)κ̃

n(n+ 1)
.

(31)
Proposition 5.1. If M is a hypersurfae in Nn+1

s (c), n ≥ 4, satisfying (6) on UH ⊂M ,for some funtions ψ and ρ on UH , then on UH we have
R · C = Q(S,R) −

(n− 2)κ̃

n(n+ 1)
Q(g,R) + α2Q(S,G) +

ρ

n− 2
Q(H,G),(32)

C ·R =
n− 3

n− 2
Q(S,R) + α1Q(g,R) + α2Q(S,G),(33)

(n− 2)(R · C − C ·R) =

(
(n− 1)κ̃

n(n+ 1)
−

κ

n− 1
− εψ

)
Q(g,R)

+Q(S,R) + ρQ(H,G),

(34)
C · C =

n− 3

n− 2
Q(S,R) + α1Q(g,R)(35)

+
1

n− 2
((α1 − α2)Q(S,G) +

n− 3

n− 2
ρQ(H,G)),

α1 =
1

n− 2

(
κ

n− 1
+ εψ −

(n2 − 3n+ 3)κ̃

n(n+ 1)

)
=

1

n− 2
β4,(36)

α2 = −
(n− 3)κ̃

(n− 2)n(n+ 1)
.Proof. By making use of (14) and (30), (25) yields (32). Applying now (6) to (26) andusing (14) and (30), we get (33). Subtrating (32) from (33) we easily �nd (34). The



HYPERSURFACES WITH THREE DISTINCT PRINCIPAL CURVATURES 153relations (6) and (24) yield
H3 − tr(H)H2 = ψH + ρg,

H4 − tr(H)H3 = ψH2 + ρH,
(37)respetively. Applying (37) to (18) and (19) we obtain

C ·H =

(
µ+

εψ

n− 2

)
Q(g,H) +

(n− 3)ε

n− 2
Q(H,H2),(38)

C ·H2 =
(n− 3)εtr(H)

n− 2
Q(H,H2) +

(
µ+

ε

n− 2
ψ

)
Q(g,H2)(39)

−
(n− 3)ερ

n− 2
Q(g,H),respetively. Using (21), (22), (31), (38), and (39) we �nd

C · S = εC · (tr(H)H −H2) +
(n− 1)κ̃

n(n+ 1)
C · g(40)

= −εβ1Q(g,H2) + β2Q(g,H).Applying (22) to (39) and using (31), we get
C · S = β3Q(g,H) + β1Q(g, S).(41)Using (11), (14), (30), (33), (36) and (41) we �nd

(n− 2)C · C = (n− 2)C ·R − g ∧ (C · S)(42)
= (n− 2)C ·R − g ∧ (β3Q(g,H) + β1Q(g, S))

= (n− 3)Q(S,R) + (n− 2)α1Q(g,R)

+

(
β1 −

(n− 3)κ̃

n(n+ 1)

)
Q(S,G) + β3Q(H,G).An appliation of (20) and (22) and Lemma 2.1 leads to the identity

H ∧Q(g, εH2) − g ∧Q(H,S) = H ∧Q(g, εtr(H)H) −H ∧Q(g, S) − g ∧Q(H,S)

= tr(H)Q(g,R) − (H ∧Q(g, S) + g ∧Q(H,S))

= tr(H)Q(g,R) +Q(S, g ∧H).Applying this and (31) to (42) we get
(n− 2)C · C = (n− 3)Q(S,R) + β3Q(H,G) + β4Q(g,R) + β5Q(S,G),whih turns into (35), by making use of (21) and (31). Our proposition is thus proved.Proposition 5.2. If M is a hypersurfae in Nn+1

s (c), n ≥ 4, satisfying (9) on UH ⊂M ,for some funtions L1, L2 and L3, then (6) holds on UH . Moreover, at every x ∈ UH wehave:(i) L1 = n−3
n−2 , L2 = α1 and L3 = α2, or(ii) L1 6= n−3
n−2 , rank(S − α0g) = 1, ρ = 0, and in onsequene, (4) and (8), or(iii) L1 6= n−3
n−2 , rank(S −α0g) > 1, (5), and in onsequene, rankH = 2, (4) and ρ = 0,
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α0 = −

(n− 2)(L2 − α1)

(n− 2)L1 − (n− 3)
.(43)Proof. In view of Corollary 4.1 of [10℄, (9) implies (6) on UH . Further, Proposition 5.1yields (33), whih together with (9) leads to

(
L1 −

n− 3

n− 2

)
Q(S,R) + (L2 − α1)Q(g,R) + (L3 − α2)Q(S,G) = 0.(44)(i) We assume that L1 = n−3

n−2 at x. Now (44) redues to
(L2 − α1)Q(g,R) + (L3 − α2)Q(S,G) = 0.(45)In addition, we suppose that L2 6= α1 at x. Thus (45) yields Q(g,R)+α3Q(S,G) = 0, forsome α3 ∈ R, whih by (12), turns intoQ(g,R−α3g∧S) = 0. This givesR−α3g∧S = α4G,for some α4 ∈ R. But the last relation, in a standard way, implies C = 0, a ontradition.Therefore we have L2 = α1. Now (45) redues to (L3 −α2)Q(S,G) = 0, whene L3 = α2.We assume now that: L1 6= n−3

n−2 at x. Thus (44) turns into
Q(S − α0g,R) + α5Q(S,G) = 0,(46)where α0 is de�ned by (43) and α5 ∈ R. Sine Q(S,G) = Q(S − α0g,G) = 0, (46) yields

Q(S − α0g,R+ α5G) = 0.(47)(ii) Let rank(S − α0g) = 1 at x. Applying this to (22) we obtain
H2 = tr(H)H + α6g + α7w ⊗ w, w ∈ T ∗

xM,(48)for some α6, α7 ∈ R, where α7 6= 0. From (48) it follows that
H3

ij = tr(H)H2
ij + α6Hij + α7w

rHriwj ,(49)where wr = grjwj and wj are the loal omponents of w. But (49) implies wrHrj = α8wj ,for some α8 ∈ R. Applying the last equation and (48) to (49), we get
H3 = (tr(H) + α8)H

2 + (α6 − α8tr(H))H − α6α8g.Comparing this with (6) we obtain
α8H

2 + (α6 − α8tr(H) − ψ)H − (α6α8 + ρ)g = 0.Sine x ∈ UH , we have α8 = 0, α6 = ψ and ρ = 0. Thus (6) redues to (4). But (4), inview of Theorem 1.2(iv), implies (8).(iii) Let rank(S − α0g) > 1 at x. Now (47), in view of Lemma 4.2 of [10℄, implies
R+ α5G =

α9

2
(S − α0g) ∧ (S − α0g)for some α9 ∈ R − {0}. The last relation implies (7). Now Theorem 1.2(ii) and (iii)ompletes the proof.A onsequene of the last proposition is the followingTheorem 5.1. Let M be a hypersurfae in Nn+1

s (c), n ≥ 4, and let V be the set of allpoints of UH ⊂ M at whih the tensor R · S − κ̃
n(n+1)Q(g, S) is nonzero. Then on V theondition (6) is equivalent to (33) and (36).



HYPERSURFACES WITH THREE DISTINCT PRINCIPAL CURVATURES 155We �nish this setion with results on hypersurfaes with pseudosymmetri Weyl ten-sor.Theorem 5.2. If M is a hypersurfae in Nn+1
s (c), n ≥ 4, satisfying (3) and (6) on

UH ⊂M then on this set we have (4), i.e. (6) with ρ = 0, (5), (27) and
LC =

n− 3

2(n− 2)

(
κ̃

n+ 1
−

κ

n− 1

)
.(50)Proof. (35), by (3) and (11), turns into

Q(S,R) =
1

n− 3

(
(n− 2)LC −

κ

n− 1
− εψ +

(n2 − 3n+ 3)κ̃

n(n+ 1)

)
Q(g,R)

+
1

(n− 3)(n− 2)

(
(n− 2)LC −

κ

n− 1
− εψ +

(n2 − 4n+ 6)κ̃

n(n+ 1)

)
Q(S,G)

−
ρ

n− 2
Q(H,G).Now (32) and (51) yield

R · C =
1

n− 3

(
(n− 2)LC −

κ

n− 1
− εψ +

(2n− 3)κ̃

n(n+ 1)

)
(Q(g,R) +

1

n− 2
Q(S,G)),whih, by (13), turns into

R · C =
1

n− 3

(
(n− 2)LC −

κ

n− 1
− εψ +

(2n− 3)κ̃

n(n+ 1)

)
Q(g, C).This, in view on Theorem 4.1(i) and (ii), implies

R ·R =
1

n− 3

(
(n− 2)LC −

κ

n− 1
− εψ +

(2n− 3)κ̃

n(n+ 1)

)
Q(g,R),

κ̃

n(n+ 1)
=

1

n− 3

(
(n− 2)LC −

κ

n− 1
− εψ +

(2n− 3)κ̃

n(n+ 1)

)
,whih yields (5) and

LC =
1

n− 2

(
κ

n− 1
−

κ̃

n+ 1
+ εψ

)
.(51)Sine (5) holds on UH , Proposition 4.1 implies (4) and (27) on UH . Further, applying(23) and (27) into (51) we obtain (50), whih ompletes the proof.Theorem 5.3. Every 2-quasi-umbilial hypersurfae M in Nn+1
s (c), n ≥ 4, satisfying(6) on UH ⊂M , is 2-ylindrial on this set.Proof. Sine M is a 2-quasi-umbilial hypersurfae, in view of Theorem 3.1(ii), (3) holdson UH . Using now Theorem 4.1(iv) and Theorem 5.2 on UH we get rankH = 2. Further,from (2) we have rankB = 2, where B = H − αg. The last two equations, in view ofLemma 2.1 of [8℄ (see eq. (19) of [8℄), yield tr(H)H = H ∧ H2 and tr(B)B = B ∧ B2,respetively. From these relations, by suitable ontration, we �nd α(H2+α1H+α2g) = 0,where α1 and α2 are some funtions on UH . But from the last equation it follows that

α = 0 on UH , whih ompletes the proof.
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