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Abstract. We show that there are exactly three types of Hilbert series of Artin-Schelter regular
algebras of dimension five with two generators. One of these cases (the most extreme) may not be
realized by an enveloping algebra of a graded Lie algebra. This is a new phenomenon compared
to lower dimensions, where all resolution types may be realized by such enveloping algebras.

1. Introduction. Artin-Schelter (AS) regular algebras is a class of graded algebras
which may be thought of as homogeneous coordinate rings of non-commutative spaces.
They were introduced by Artin and Schelter [1], who classified such algebras of dimension
up to three which are generated in degree one. Since then these algebras of dimension
three and four, and their module theory, have been intensively studied, see [2], [3]. Ideal
theory (see [12], [7], [8]) and deformations (see [9]) have also been studied in recent years.
This paper is concerned with basic questions for AS-regular algebras of dimension five.
(We shall always assume our algebras to be generated in degree one.)

Fundamental invariants of a connected graded algebra are its Hilbert series, and,
more refined, the graded betti numbers in a resolution of the residue field k. Unlike
the polynomial ring, AS-algebras might not be defined by quadratic relations. For AS-
algebras the graded betti numbers may thus be distinct from that of the polynomial
ring. For instance in dimension three there are two types of resolutions for the residue
field [1]:
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A←A(−1)3 ← A(−2)3← A(−3),

A←A(−1)2 ← A(−3)2← A(−4).

A general class of examples giving AS-algebras of arbitrarily large dimension may be
obtained as follows. Let g = ⊕ni=1gi be a finite dimensional graded Lie algebra, generated
by g1. Then the enveloping algebra U(g) is AS-regular. The two resolutions above may
both be realized by such algebras. The first by the polynomial ring, which is the enveloping
algebra of the abelian Lie algebra, while the second resolution occurs for the enveloping
algebra of the three-dimensional Heisenberg Lie algebra.

In [11] Lu, Palmieri, Wu, and Zhang investigated four-dimensional AS-algebras and
in particular established the possible types of resolutions of the residue field when A is
a domain. All these types may be realized by enveloping algebra of Lie algebras. This
naturally raises the following question.

• May all resolution types or at least Hilbert series types of AS-algebras be realized
by enveloping algebras of graded Lie algebras?

We show that this is not so. Our first main result is the construction of a five-
dimensional AS-algebra with Hilbert series not among those of any enveloping Lie algebra
generated in degree one.

When studying AS-algebras of dimension four much work has been concerned with
AS-algebras which are defined by quadratic relations. In particular the Sklyanin algebra
has been intensively studied [16], [17]. In the paper [11] the authors focus on the algebras
which are the least like polynomial rings. They have two generators, and one relation of
degree three and one of degree four. The authors obtain a classification of such algebras
under certain genericity assumptions.

Here we consider AS-algebras of dimension five with two generators, the ones at the
opposite extreme compared to polynomial rings. The algebra we exhibit in our first main
result is of this kind. Our second main result shows that there are three Hilbert series of
such algebras under the natural condition that it is a domain.

It is intriguing that several natural questions concerning AS-algebras are not known.

• Artin and Schelter in [1] conjecture that they are noetherian and domains. Levasseur
[10] shows this in small dimensions.

• Is the Hilbert series of an Artin-Schelter regular algebra equal to the Hilbert series
of a commutative graded polynomial ring? I.e. is there a finite set of positive integers
ni such that it is ∏

i

1
(1− tni)

?

Polishchuk and Positselski [14] mention this as a conjecture in Remark 3, p. 135,
and attribute it to Artin and Schelter.
• In [11, Question 1.6] they ask whether the minimal number of generators of an

AS-regular algebra is always less than or equal to its global dimension.

For enveloping algebras of Lie algebras, this is true by the Poincaré-Birkhoff-Witt theo-
rem. Our example of an AS-algebra that has a Hilbert series different from Hilbert series
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of enveloping algebras (generated in degree one) still has this property; its Hilbert series
equals the Hilbert series of a polynomial ring with generators of degree 1, 1, 2, 3, 5.

In the resolution of the residue field k the last term will be A(−l) for some integer l
(in the two resolutions above for algebras of dimension three, l is 3 and 4). It is natural
to expect that the largest l occurs when the algebra is at the opposite extreme of the
polynomial ring, when the algebra has two generators.

• What is the largest l such that A(−l) is the last term in the resolution of k, for a
given dimension of A?

For polynomial rings of dimension d then l = d. For enveloping algebras of Lie algebras
the largest l that can occur for dimension d is 1 +

(
d
2

)
. However the algebra we construct

has l = 12, while the maximum for enveloping algebras is 11.
A last question to which we do not know a counterexample is the following.

• Are the global dimension and the Gelfand-Kirillov dimension of an AS-regular al-
gebra equal?

The paper is organized as follows. In Section 2 we recall the definition of AS-regular
algebras and recall some basic facts concerning their classification and concerning en-
veloping algebras of graded Lie algebras. In Section 3 we show that enveloping algebras
of graded Lie algebras are Artin-Schelter regular. In Section 4 we classify the Hilbert se-
ries of enveloping algebras of graded Lie algebras of dimension five. In Section 5 we give
an AS-regular algebra of dimension five whose Hilbert series is not that of any enveloping
algebra generated in degree one. In Section 6 we classify the Hilbert series of AS-regular
algebras of dimension five with two generators.

2. Preliminaries. In this section we first recall the definition of AS-regular algebras.
Then we recall basic classification results concerning these in dimension three and four.
Lastly we consider enveloping algebras of graded Lie algebras.

Definition 2.1 (AS-algebras). An algebra A = k⊕A1⊕A2⊕· · · is called Artin-Schelter
regular of dimension d if

(i) A has finite global dimension d.
(ii) A has finite Gelfand-Kirillov-dimension (so the Hilbert function of A is bounded by

a polynomial).
(iii) A is Gorenstein; we have

ExtiA(k,A) =

{
0 i 6= d

k(l) i = d

(here k(l) is the module k in degree −l).

Note. We shall in this paper only be concerned with algebras generated in degree one.

2.1. Algebras of dimension three and four. From the original article of Artin and
Schelter [1] the classification of these algebras in dimension ≤ 3 is known, see also Artin,
Tate and Van den Bergh [2]. For two-dimensional algebras the only possible type of
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resolution of the residue field is the same as that of the polynomial ring

A← A(−1)2 ← A(−2). (1)

For three-dimensional algebras there are two resolution types:

A← A(−1)3 ← A(−2)3 ← A(−3), (2)

A← A(−1)2 ← A(−3)2 ← A(−4). (3)

The Hilbert series of the algebras in (1),(2),and (3) are respectively:
1

(1− t)2
,

1
(1− t)3

,
1

(1− t)2(1− t2)
.

In [11] Lu, Palmieri, Wu, and Zhang consider four-dimension algebras. Under the natural
hypothesis that A is a domain they show that there are three possible resolution types:

A← A(−1)4 ← A(−2)6 ← A(−3)4 ← A(−4), (4)

A← A(−1)3 ←A(−2)2 ⊕A(−3)2← A(−4)3 ← A(−5), (5)

A← A(−1)2 ← A(−3)⊕A(−4) ← A(−6)2 ← A(−7). (6)

with Hilbert series, respectively:
1

(1− t)4
,

1
(1− t)3(1− t2)

,
1

(1− t)2(1− t2)(1− t3)
.

The algebras (1), (2), and (4) are Koszul. The polynomial ring is the basic example for
these types. The algebra (3) is 3-Koszul (see [4]). The algebras (5) are of a type studied in [6].

2.2. Enveloping algebras. It is an interesting observation that all these types of res-
olutions may be realized by enveloping algebras of graded Lie algebras. In fact such
algebras are always AS-regular. This is known to experts, but an explicit reference seems
hard to come by. Since we consider this such an important class of examples, we have
included a proof of this fact in the next section.

For enveloping algebras the form of a minimal resolution may often easily be deduced
from the Chevalley-Eilenberg complex which gives a resolution by left modules of the
residue field k of U = U(g). Explicitly the Chevalley-Eilenberg resolution C· has terms
Cp = U⊗k∧pg and differential d : Cp → Cp−1 where the image of u⊗x1∧· · ·∧xp is given by

p∑
l=1

(−1)l+1uxl ⊗ x1 ∧ · · · ∧ x̂l ∧ · · · ∧ xp

+
∑

1≤l<m≤p

(−1)l+mu⊗ [xl, xm] ∧ x1 ∧ · · · ∧ x̂l ∧ · · · ∧ x̂m ∧ · · · ∧ xp. (7)

There is also a right Chevalley-Eilenberg resolution C ′· of k by right modules. It has
terms C ′p = ∧pg⊗kU and differential d : C ′p → C ′p−1 where the image of x1∧· · ·∧xp⊗kU
is given by

p∑
l=1

(−1)p−lx1 ∧ · · · ∧ x̂l ∧ · · · ∧ xp ⊗k xlu

+
∑

1≤l<m≤p

(−1)l+mx1 ∧ · · · ∧ x̂l ∧ · · · ∧ x̂m ∧ · · · ∧ xp ∧ [xl, xm]⊗k u. (8)
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2.3. Minimal resolutions of enveloping algebras. If X is a finite set, we let Lie(X)
be the free Lie algebra with generating set X, and T (X) the free associative algebra
(tensor algebra). It is the enveloping algebra of the free Lie algebra on X.

Now if h is an ideal in a Lie algebra g, then U(g/h) is equal to U(g)/(h). Hence if I
is an ideal in Lie(X), the enveloping algebra of Lie(X)/I is T (X)/(I).

The resolutions (1), (2), and (4) are realized by the polynomial ring, the enveloping
algebra of the abelian Lie algebra. The resolution (3) may be realized by the enveloping
algebra of the graded Heisenberg Lie algebra which is 〈x, y〉 ⊕ 〈[x, y]〉. The resolution (5)
may be realized by the enveloping algebra of

Lie(x, y, z)/([z, x], [z, y], [x, [x, y]], [y, [x, y]])

which as a graded Lie algebra may be written in terms of basis elements as

〈x, y, z〉 ⊕ 〈[x, y]〉.

The resolution (6) may be realized by the enveloping algebra of

Lie(x, y)/([x[x[xy]]], [[xy]y])

which as a graded Lie algebra may be written in terms of basis elements as

〈x, y〉 ⊕ 〈[x, y]〉 ⊕ 〈[x, [x, y]]〉.

That the resolutions of these algebras are as stated, is easily worked out by writing the
Chevalley-Eilenberg complex and figuring out which adjacent free terms may be cancelled
to give a minimal resolution.

For a graded Lie algebra g = ⊕gi let hg(i) = dimk gi be its Hilbert function. It is an
easy consequence of the Poincaré-Birkhoff-Witt theorem that its Hilbert series is∏

i

1
(1− ti)hg(i)

. (9)

If g is finite dimensional of small dimension, we shall display the Hilbert function by the
sequence hg(1), hg(2), . . . , hg(n) where n is the largest argument for which the value of
the Hilbert function is nonzero.

3. Enveloping algebras are Artin-Schelter regular. This section contains a proof
of the following.

Theorem 3.1. Let g be a finite dimensional positively graded Lie algebra. Then the
enveloping algebra U(g) is an Artin-Schelter regular algebra. Its global dimension and
Gelfand-Kirillov dimension are both equal to the vector space dimension of g.

As said, this is known to experts, but we include a proof since we consider this an
important class of AS-algebras, and a reference is hard to come by.

Proof of Theorem 3.1. There are three conditions for an algebra to be Artin-Schelter
regular.

(i.) The global dimension must be finite. For an enveloping algebra, the global dimension
is equal to the dimension of the Lie algebra, see Exercise 7.7.2 of [19].
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(ii.) The Gelfand-Kirillov dimension must be finite. This follows by the Poincaré--
Birkhoff-Witt theorem, see (9).

(iii.) The algebra must have the Gorenstein property. This follows by Proposition 3.5
below.

Remark 3.2. One may patch together an argument for the above theorem from sources
in the litterature as follows. If A is an Auslander regular algebra (see [13], 3.2.4), then
an Ore extension A[x;σ, δ] is also Auslander regular, [13], 3.2.16.4. But the enveloping
algebra of a graded Lie algebra is an iterated Ore extension, as we note below, and so is
Auslander regular. By [13], p. 127, an Auslander regular algebra is AS-regular.

To see that enveloping algebras of graded Lie algebras are iterated Ore extensions, let
h ⊆ g be an ideal in a Lie algebra with one-dimensional quotient g/h and x an element of
g generating this quotient. Then the map [x,−] : h → h is a derivation. It is easily seen
that a derivation on the Lie algebra extends to a derivation of the enveloping algebra.
Then U(g) becomes an Ore extension U(h)[x;σ, δ] with σ = id and δ = [x,−].

3.1. Some basic facts on modules and their duals. Before proving Proposition 3.5
below, we recall some general facts about modules over (non-commutative) rings. If A
and B are left modules over a ring R, denote by HomR(A,B) the group of left homomor-
phisms. If A and B are R-bimodules, denote by HomR−R(A,B) the group of bimodule
homomorphisms. For a left R-module A we write the dual A∗ = HomR(A,R), which is a
right R-module. If A is a bimodule, this dual is also naturally a left R-module.

Lemma 3.3. Let R be a ring, B a left R-module and A an R-bimodule.

a. HomR(B,A∗) ∼= HomR(A⊗R B,R).
b. If B is also an R-bimodule, there is a natural isomorphism of bimodule homomor-

phisms
HomR−R(B,A∗) ∼= HomR−R(A⊗R B,R).

c. In particular if B = A∗ we get a natural pairing

A⊗R A∗ → R.

Proof. a. This is just the standard adjunction between HomR(A,−) and A ⊗R − for a
bimodule A.

b. Let B φ−→ A∗ be a left R-module homomorphism. It corresponds to the pairing
A⊗R B → R given by a⊗ b 7→ φ(b)(a). That this pairing is a bi-module homomorphism
means that

φ(br)(a) = φ(b)(a) · r.

That φ is a bi-module homomorphism means that φ(br) = φ(b) · r which again says the
same as the equation above.

c. This natural pairing corresponds to the identity A∗ → A∗.

Proposition 3.4. Let R be a ring and let A and B be R-bimodules. Given a homomor-
phism A

α−→ B of left modules and B∗ β−→ A∗ of right modules. Then β is dual to α iff
the natural pairings

A⊗R A∗ → R, B ⊗R B∗ → R
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fulfill the following for a in A and b′ in B∗:

〈a, β(b′)〉 = 〈α(a), b′〉.

Proof. The left side of the equation above is equal to β(b′)(a) while the right side is equal
to b′(α(a)) = b′ ◦ α(a). So the equation above says β(b′) = b′ ◦ α, which means that β is
dual to α.

3.2. Duality between the left and right Chevalley-Eilenberg complex. For a
finite-dimensional Lie algebra g with basis {x1, x2, · · · , xdimk g}, we consider the form

∆(g) =
∑

1≤i<j≤dimk g

(−1)i+j [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xdimk g.

This form lies in ∧dimk g−1g and is uniquely determined up to a scalar, since it is easily
seen that it is invariant under substitutions xi 7→ xi+αxj with j 6= i. Note that this form
occurs in one of the parts of the initial differential of the Chevalley-Eilenberg complex.
In particular the vanishing of this form is equivalent to the top Lie algebra homology
Hdimk g(g, k) (defined as Hdimk g(k ⊗U C·)) being nonzero, isomorphic to k.

Proposition 3.5. If the form ∆(g) vanishes, the dual of the left Chevalley-Eilenberg
complex is isomorphic to the right Chevalley-Eilenberg complex. In particular this holds
for positively graded Lie algebras.

Proof. Note that the form vanishes if each term [xi, xj ] is contained in the linear span of
the other xk. This is certainly true for a positively graded Lie algebra, since the degree
of the bracket will be larger than both the degree of xi and of xj .

Now let n be dimk g. There is a natural perfect pairing

∧pg⊗k ∧n−pg −→ ∧ng

giving an isomorphism
∧pg→ Homk(∧n−pg,∧ng).

We get an induced pairing

(U ⊗k ∧pg)⊗U (∧n−pg⊗k U)
〈,〉−→ U ⊗k ∧ng

which by Lemma 3.3.b corresponds to the isomorphism of U -bimodules

∧n−pg⊗k U → HomU (U ⊗k ∧pg, U ⊗k ∧ng).

For the left Chevalley-Eilenberg complex C· of (7), we shall show that HomU (C·, U⊗k∧ng)
is isomorphic to the right Chevalley-Eilenberg complex C ′· of (8), but equipped with
differential (−1)n−1d′. According to Proposition 3.4 we must then show that for u⊗x in
U ⊗k ∧pg and y ⊗ v in ∧n−p+1g⊗k U we have

〈d(u⊗ x),y ⊗ v〉 = (−1)n−1〈u⊗ x, d′(y ⊗ v)〉. (10)

We may as well assume that x = x1 ∧ · · · ∧ xp and y = xq ∧ . . . ∧ xq+n−p where q ≤ p.
We divide into three cases.
1. q ≤ p − 2. Then x and y have at least three overlapping xi’s, and we see that both
expressions in (10) are zero.
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2. q = p− 1. Then x and y have two overlapping xi’s. The left side of (10) is then

(−1)(2p−1)uv ⊗k [xp−1, xp] ∧ x1 ∧ · · · ∧ xn−1

and this is equal to the right side which is

(−1)n−1 · (−1)(2p−1)uv ⊗k x1 ∧ · · · ∧ xn−1 ∧ [xp−1, xp].

3. q = p, so x and y have one overlapping xi. The left side of (10) is then

(−1)p+1uxpv ⊗k x1 ∧ · · · ∧ xn
+
∑
i<p

(−1)i+puv ⊗k [xi, xp] ∧ x1 ∧ · · · x̂i · · · ∧ xn,

while the right hand side is

(−1)n−1[(−1)n−puxpv ⊗k x1 ∧ · · · ∧ xn
+
∑
p<j

(−1)p+j uv ⊗k x1 ∧ · · · x̂j · · · ∧ xn ∧ [xp, xj ]].

These two expressions are equal provided∑
i<p

(−1)i+p[xi, xp] ∧ x1 ∧ · · · x̂i · · · ∧ xn

−
∑
p<j

(−1)p+j [xp, xj ] ∧ x1 ∧ · · · x̂j · · · ∧ xn

is zero. But this expression is just (−1)n−p∆(g) ∧ xp and hence is zero.

Remark 3.6. One may show that the form ∆(g) vanishes for nilpotent and semi-simple
Lie algebras. In general it does not however vanish.

4. Hilbert series of enveloping algebras of dimension five. In this section we give
the Hilbert series of enveloping algebras of five-dimensional graded Lie algebras. The
classification of resolutions is just slightly more refined. In all cases save one there is one
resolution type for each Hilbert series.

Proposition 4.1. The following are the Hilbert functions of graded Lie algebras of di-
mension five which are generated in degree one:

a) 5 b) 4, 1 c) 3, 2 d) 3, 1, 1 e) 2, 1, 2 f) 2, 1, 1, 1.

Proof. Denote by Ln the degree n piece of a free Lie algebra Lie(X). The cases above
may then be realized as follows.

Case Lie algebra Basis
a) Abelian Lie algebra x, y, z, w, t

b) Lie(x, y, z, w)/(([z,−], [w,−]) + L3) x, y, z, w, [x, y]

c) Lie(x, y, z)/(([y, z]) + L3) x, y, z, [x, y], [x, z]

d) Lie(x, y, z)/(([z,−], [x, [x, y]]) + L4) x, y, z, [x, y], [[x, y], y]

e) Lie(x, y)/(L4) x, y, [x, y], [x, [x, y]], [[x, y], y]

f) Lie(x, y)/(([x, [x, y]]) + L5) x, y, [x, y], [[x, y], y], [[[x, y], y], y]
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That there are no more possible Hilbert functions for Lie algebras generated in degree
one, is trivial to verify.

Remark 4.2. In all these cases save one there is only one possible resolution type of
enveloping algebras associated to graded Lie algebras with this Hilbert function. The
exception is for the Hilbert function 4, 1. Consider the Lie algebra

g = Lie(x, y, z, w)/(([z,−], [w,−]) + L3)

from the proof of case b) above, and

h = Lie(x, y, z, w)/([x, y]− [z, w], [x, z], [x,w], [y, z], [y, w]).

It is clear that g has two (necessary) relations in degree three, killing [x, [x, y]] and
[[x, y], y]. For h all cubic relations are consequences of the quadratic relations. For in-
stance,

[x, [x, y]] = [x, [z, w]] = [[w, x], z] + [[x, z], w] = 0.

With U the enveloping algebra of g and V the enveloping algebra of h, the minimal
resolutions of k are respectively

U ← U(−1)4 ←U(−2)5 ⊕ U(−3)2

←U(−3)2 ⊕ U(−4)5← U(−5)4 ← U(−6),

V ← V (−1)4 ←V (−2)5 ← V (−4)5← V (−5)4 ←↩ V (−6).

Thus the two Artin-Schelter regular algebras U and V have the same Hilbert series, but
different Betti numbers.

This result can also be obtained easily by considering the rank of the relevant differ-
ential in the Chevalley-Eilenberg resolution (the part from U(−3)4 ← U(−3)4). In our
examples, this map has rank two or four. The eager reader is encouraged to check that
there are also examples with rank three.

Remark 4.3. We shall be concerned with the classification of Hilbert series of algebras
of dimension five generated by two variables. This occurs in cases e) and f) As mentioned
above there is only one type of resolution of enveloping algebras for each Hilbert function.
They are in case e) and f) respectively

A← A(−1)2 ←A(−4)3 ← A(−6)3← A(−9)2 ← A(−10),

A← A(−1)2 ← A(−3)⊕A(−5)2

← A(−6)2 ⊕A(−8) ← A(−10)2 ← A(−11).

In the introduction we asked the question of how large l could be in the last term
A(−l) in the minimal resolution of k, for a given global dimension. By the remark above
we see that l = 11 may occur for global dimension five. For enveloping algebras this is
the largest l as the following shows.

Proposition 4.4. For an enveloping algebra of a graded Lie algebra of dimension d, the
highest possible twist l of the last term in a minimal resolution of k is 1 +

(
d
2

)
.
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Proof. The highest possible twist is the degree of ∧dim gg as we see from the Chevalley-
Eilenberg complex. If hg is the Hilbert function of g, then this is

∑
i · hg(i). Since g is

generated in degree one, clearly hg(1) ≥ 2 and if hg(i) = 0 for some i, it is zero for every
successive argument. This gives that

l ≤ 1 · 2 + 2 · 1 + 3 · 1 + · · ·+ (d− 1) · 1 = 1 +
(
d

2

)
.

On the other hand there does actually exist an (infinite dimensional) graded Lie algebra
with Hilbert function values

2, 1, 1, · · · , 1, · · · .

It is the quotient of Lie(x, y) by the bigraded ideal generated by all Lie monomials of
bidegree (a, b) with a ≥ 2. The quotient Lie algebra ĝ has a standard basis consisting of
y and the Lie monomials Li of bidegree (1, i− 1) for i ≥ 1 defined inductively by L1 = x

and Li = [Li−1, y].
The quotient of ĝ by Ld will then be a finite dimensional Lie algebra with l = 1+

(
d
2

)
.

We shall see in the next section that for global dimension five, l = 11 is not the largest
twist. In fact we exhibit an algebra where l = 12.

5. An extremal algebra of dimension five. We now give our first main result,
namely an AS-regular algebra of dimension five which has a Hilbert series not occur-
ring for enveloping algebras generated in degree one. This shows that the numerical
classes of AS-regular algebras generated in degree one extend beyond that of enveloping
algebras.

Definition 5.1. Let A be the quotient algebra of the tensor algebra k〈x, y〉 by the ideal
generated by the commutator relations

[x2, y], [x, y3], [x, yRy], (11)

where R is yxyx+ xy2x+ xyxy.

Theorem 5.2. The algebra A is AS-regular. Its resolution is

A d1←− A(−1)2 d2←−A(−3)⊕A(−4)⊕A(−7)
d3←−A(−5)⊕A(−8)⊕A(−9) d4←− A(−11)2 d5←− A(−12)

where the differentials are

d1 =
[
x y

]
,

d2 =
[
xy y3 yRy

−x2 −y2x −Ryx

]
,

d3 =

 y2 Ry 0
−x 0 −yR
0 −x y2

 ,
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d4 =

−yRy xyR

y3 −xy2

yx −x2

 ,
d5 =

[
x

y

]
.

The Hilbert series of A is
1

(1− t)2(1− t2)(1− t3)(1− t5)
.

Remark 5.3. The algebra is bigraded. If we list the bidegrees of the generators the
resolution takes the following form.

A
(0, 0)

← A2

(1, 0)
(0, 1)

← A3

(2, 1)
(1, 3)
(3, 4)

← A3

(2, 3)
(4, 4)
(3, 6)

← A2

(4, 7)
(5, 6)

← A
(5, 7)

.

The two-variable Hilbert series of the algebra is
1

(1− t)(1− u)(1− tu)(1− tu2)(1− t2u3)
.

Remark 5.4. The algebra may be deformed by letting the third relation be

[x, yRy] + t[x, y2x2y2]. (12)

This will again give an AS-regular algebra with the same resolution type. In addition we
may deform the commutator relations

[x2, y] x2y − pyx2, [x, y3] xy3 − qy3x

which must then be accompanied by a suitable deformation of the relation (12) above.
According to our computations these deformations give all algebras giving a bigraded
resolution of the form in Remark 5.3.

To prove the form of the Hilbert series and that the complex above gives a resolution
of A, we invoke Bergman’s diamond lemma [5].

Diamond lemma, specialized to two variables. S is a set of pairs σ = (Wσ, fσ), where
Wσ is a monomial and fσ a polynomial in k〈x, y〉. A reduction based on S consists of
exchanging the monomial Wσ with the polynomial fσ. If we have two pairs σ, τ such
that Wσ = AB and Wτ = BC, there is a choice of reducing the monomial ABC starting
with σ or τ . This is called an overlap ambiguity. The similar case of inclusion ambiguity
will not play any role for the application we have in mind. The ambiguity is resolvable if
there are further reductions of the results of these two choices, giving a common answer.
The elements of k〈x, y〉 that cannot be reduced by S are called irreducible. An element
is called uniquely reducible if it can be reduced, in a finite number of steps, to an irre-
ducible element, and this irreducible element is unique. We also need a partial order on
monomials such that i) B < B′ implies ABC < AB′C for all monomials A,C, ii) any
monomial appearing with a nonzero coefficient in fσ is < Wσ, and iii) the ordering has
the descending chain condition.
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Theorem 5.5 (Bergman’s diamond lemma). Under the assumptions above, the following
are equivalent:

a) All ambiguities of S are resolvable.
b) All elements of k〈x, y〉 are uniquely reducible under S.
c) The irreducible elements form a set of representatives for

k〈x, y〉/(Wσ − fσ)σ∈S.

Under these conditions, products in A can be formed by multiplying the corresponding
irreducible representatives, and then reducing the answer.

Using this theorem, we will say that an element of A is written in standard form if it
is written as an irreducible element in k〈x, y〉.

Proof of Theorem 5.2. That the differentials give a complex is straightforward to see
except perhaps for the product of the first row in d3 and second row in d4. This product
is

−y2xyR+Ryxy2.

But this becomes zero in A because it may be verified to be equal to

[x, yRy]y + y[x, yRy].

We choose a monomial ordering as follows. First, if degm1 < degm2 then m1 < m2.
If degm1 = degm2, write m1 = z1z2 · · · zn, m2 = w1w2 · · ·wn where each zi, wj is either
x or y. Let li(m1) count the number of ys among z1 · · · zi, and similarly for li(m2). If
li(m1) ≥ li(m2) for each i, then m1 ≤ m2. The needed properties are easily verified.

Now let
A = xy, B = xy2, C = AB = xyxy2.

With this monomial ordering, the three relations (11) for the algebra must be divided by
choosing

W1 = x2y, W2 = xy3, W3 = A2B,

f1 = yx2, f2 = y3x, f3 = −(ABA+BA2 − yCx− yBAx− y2A2x).

The overlap ambiguities can be resolved, except for one. Consider for instance the overlap
x2y3 = W1y

2 = xW2. By first replacing W1 by yx2 we get yx2y2. It is easy to see that
this can be reduced further, by replacing W1 by yx2 twice, to y3x2. If we on the other
hand start by replacing W2 by y3x we get xy3x. Replacing W2 by y3x once more, we
obtain the same irreducible polynomial as before. Thus this ambiguity is resolved. The
only ambiguity that cannot be resolved is

xyxyxy3 = W3y = xyxyW2.

By reducing W3y and xyxyW2 as much as possible, we come to an equation expressing
xyxy2xy2 in terms of smaller monomials (in terms of the chosen ordering). Therefore
we must introduce a fourth reduction, with W4 = CB = AB2. This introduces further
ambiguities, but a routine computation shows that they are all resolvable. By using the
reductions by W1 and W2 the words can be reduced to the form

ynyMxnx
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where M is a tensor monomial in A and B. By also using the reductions by W3 and W4,
we see that the standard monomials become

ynyBnBCnCAnAxnx .

Immediate consequences are the following.

hA The Hilbert series of A is as stated in the theorem.
x, y Multiplication by x (from the left or from the right) is injective: since x2 is central

and the normal form shows that multiplication by it is injective, so is multiplication
by x. Similarly for y since y3 is central.

d5 The last map in the alleged resolution is injective, since each of its two terms is
injective.

So far we know that the Hilbert series of the complex equals the Hilbert series of the
A-module k, therefore it is enough to check exactness at all but one of the terms. We
know 1. that d5 is injective, and 2. the image of d2 equals the kernel of d1.

3. The image of d5 equals the kernel of d4: let an element in ker d4 be written as [f, g]T ,
where all monomials appearing are in standard form. From d5 we can alter g by any
multiple y · −. That is to say, we can assume that no monomial occurring in g starts
with y. The second relation imposed by d4 then gives the relation

y3f +Bg ≡ 0.

All monomials appearing are on standard form! Since all monomials in the first term
start with y, and none in the second does, we see that f = 0, and hence g = 0 (modulo
im d5). So im d5 = ker d4.

4. The image of d4 equals the kernel of ker d3: an element in ker d3 can be written
[f, g, h]T , where all monomials appearing are in standard form. From d4 we can alter g by
any multiple y3 ·− and B ·−. In other words, we can assume that no monomial appearing
in g starts with y3 or B. The last condition imposed by d3 is that −xg+y2h = 0. We will
first rule out the possibility that g contains monomials starting with y2. In that case, xg
contains monomials starting with xy2 = B, and these cannot be countered by terms in
y2h, all of whose monomials start with y2. Then we exclude the possibility that g contains
monomials not starting with y. Since no monomials in g start with B, any such monomial
would either start with xy or just be a power of x (the latter being trivially ruled out).
If a monomial in g starts with xy, then xg would start with x2y. But x2 is central, so
can be moved to the right, and any such monomial would give a contribution of y times
something not starting with y, and so cannot be countered by anything from y2h. The
only case not excluded so far is g = yg′, where no monomial in g′ starts with y.

Consider the first relation imposed by d3:

0 = y2f +Ryg = y2f + yA2g +BAg +ABg. (13)

Note that
ABg = xyxy3g′ = y3xyg′
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so when reduced to standard form, it will have all terms starting with y. But BAg = B2g′

is on standard form and starts with x. Monomials here cannot be countered by any other
terms in relation (13). Therefore g′, and hence g, must be zero. The third condition
imposed by d3 then shows that h is zero, and hence also f . This concludes the proof that
the alleged resolution is indeed the resolution of k as an A-module.

6. Necessary conditions. In this section we show that there are three possible Hilbert
series of AS-regular algebras of global dimension five with two generators, under the
natural extra conditions that the algebra is an integral domain and that its Gelfand-
Kirillov dimension is greater or equal to 2. The arguments are of a numerical nature and
concern the possible resolution types. There will be five possible resolutions but these
give only three distinct Hilbert series.

Lemma 6.1. Let A be a regular algebra with Hilbert series hA(t). Suppose h(t) = p(t) ·
hA(t) is a power series with non-negative coefficients. If p(t) = (1 − t)r · q(t) where
q(1) 6= 0, then q(1) > 0.

Proof. This follows exactly as in the proof of Proposition 2.21 in [3].

We now suppose that A is a regular algebra of global dimension 5 having two gener-
ators in degree one. The minimal resolution of k will then have length 5 and must have
the form

A
d1←− A(−1)2 d2←− ⊕ni=1A(−ai)

d3←− ⊕ni=1A(ai − l)
d4←− A(−l + 1)2 d5←− A(−l) (14)

where we order a1 ≤ a2 ≤ · · · ≤ an.

Theorem 6.2. Let A be a regular algebra of global dimension five with resolution as
above. Suppose A is an integral domain and has GKdim A ≥ 2. Then ai+1 + an+1−i < l

for i = 1, . . . , n− 1.

Proof. Suppose for some r that ar+1 +an+1−r ≥ l. We may assume that r+1 ≤ n+1−r
or 2r ≤ n. Let us suppose that r is chosen maximal for these conditions. We get −ar+1 ≤
an+1−r − l. We then get a subcomplex of the resolution (14):

A
δ1←− A(−1)2 δ2←− ⊕ri=1A(−ai)

δ3←− ⊕ri=1A(an+1−i − l). (15)

Now the power series in Z[[t, t−1]] have a partial order defined by h(t) ≥ g(t) if each
coefficient hi ≥ gi. Consider now the map A(−ai)→ A(−1)2 coming from the map d2. It
cannot be zero since the resolution is minimal. For a general quotient A(−1)2 → A(−1),
the composition A(−ai) → A(−1) is injective, since A is an integral domain. Hence
A(−a1) maps injectively into im δ2 and so

him δ2 ≥ hA(−a1).

Now there is a sequence (with possible cohomology in the middle):

0→ im δ3 → ⊕ri=1A(−ai)→ im δ2 → 0,

which gives
r∑
i=1

hA(−ai) ≥ him δ3 + him δ2 ≥ him δ3 + hA(−a1)
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or
r∑
i=2

hA(−ai) ≥ him δ3 .

The short exact sequence

0→ ker δ3 → ⊕ri=1A(an+1−i − l)→ im δ3 → 0

then gives

hker δ3 ≥
r∑
i=1

hA(an+1−i−l) −
r∑
i=2

hA(−ai).

Since ker δ3 ⊆ ker d3 = im d4 we get

2hA(−l+1) − hA(−l) ≥
r∑
i=1

hA(an+1−i−l) −
r∑
i=2

hA(−ai),

which gives (
− tl + 2tl−1 −

r∑
i=1

tl−an+1−i +
r∑
i=2

tai

)
· hA ≥ 0.

According to Lemma 6.1 the derivative of the first expression will have a value at t = 1
which is zero or negative, so

−l + 2(l − 1)−
r∑
i=1

(l − an+1−i) +
r∑
i=2

ai ≤ 0,

r∑
i=1

ai +
r∑
i=1

an+1−i ≤ (r − 1)l + 2 + a1. (16)

Since GKdim A ≥ 2 we have by Lemma 6.4 that
n∑
i=1

ai =
n− 1

2
· l + 2. (17)

Together with (16) above we get
n−r∑
i=r+1

ai ≥
n− 2r + 1

2
· l − a1.

Suppose first that n is even. Since

ai + an+1−i ≤ ai+1 + an+1−i ≤ l − 1

for r + 1 ≤ i ≤ n/2 we get
n− 2r

2
(l − 1) ≥ n− 2r + 1

2
l − a1,

a1 ≥ l/2 +
n− 2r

2
.

Since the ai are nondecreasing we get by (17)
n− 1

2
l + 2 ≥ l

2
· n.

This gives l ≤ 4 which is impossible for a resolution of length 5.
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Suppose then n = 2k + 1 is odd. Again since ai + an+1−i ≤ l − 1 for r + 1 ≤ i ≤ n/2
we get

n− 2r − 1
2

(l − 1) + ak+1 ≥
n− 2r + 1

2
l − a1, (18)

ak+1 + a1 −
n− 2r − 1

2
≥ l. (19)

Therefore
ak+i + ai ≥ ak+1 + a1 ≥ l

for i = 1, . . . , k. Together with (17) this gives
n− 1

2
· l + 2 ≥ a2k+1 + k · l.

Therefore a2k+1 ≤ 2 and so

l ≤ a1 + ak+1 ≤ 2a2k+1 ≤ 4

which is not possible.

Corollary 6.3. We have ai + an+1−i < l for i = 1, . . . , n− 1.

Proof. Follows since ai ≤ ai+1.

Lemma 6.4. Let A be a regular algebra with resolution (14).

1. If GKdim A ≥ 2 then

2
n∑
i=1

ai = (n− 1)l + 4. (20)

2. If GKdim A ≥ 4 then

4
n∑
i=1

a3
i − 6l

n∑
i=1

a2
i + l3(n− 1) + 12l − 8 = 0. (21)

Proof. By the resolution (14) we have

hA(t) = 1/q(t)

where

q(t) = 1− 2t+
n∑
i=1

tai −
n∑
i=1

tl−an+1−i + 2tl−1 − tl.

By Stephenson-Zhang [18], the Gelfand-Kirillov dimension is the order of the pole of
hA(t) at t = 1. That GKdim A ≥ 2 is then equivalent to q′(1) = 0, giving 1. That GKdim
A ≥ 4 is equivalent to q(3)(1) = 0 giving 2.

Remark 6.5. Note that given 1. it follows that q′′(1) = 0 which gives GKdim A ≥ 3,
and given 2. it follows that q(4)(1) = 0 which gives GKdim A ≥ 5.

Now we come to the main result of this section.

Theorem 6.6. Let A be a regular algebra of global dimension 5, having the resolution
(14). If A is an integral domain and GKdim A ≥ 4, then either

1. n = 3 and (a1, a2, a3) is (3, 5, 5), (4, 4, 4) or (3, 4, 7),
2. n = 4 and (a1, a2, a3, a4) is (4, 4, 4, 5), or
3. n = 5 and (a1, a2, a3, a4, a5) is (4, 4, 4, 5, 5).



REGULAR ALGEBRAS OF DIMENSION FIVE 35

Proof. Let us analyse the expression (21) from Lemma 6.4. Given n and l we can vary
the ai’s. We want to investigate when the expression on the left side of (21) is minimal.
To do this let us first consider

4(a3 + b3)− 6l(a2 + b2) (22)

where we keep a + b constant equal to, say 2s. Let a = s − α and b = s + α. Then the
above expression becomes

4(2s3 + 6sα2)− 6l(2s2 + 2α2) = 8s3 − 12ls2 + 12α2(2s− l).
When a + b = 2s < l we see that (22) will decrease when a and b diverge. When
a+ b = 2s > l, (22) will decrease when a and b converge. This observation motivates the
strategy of proof.

We will now find the minimum of the expression (21) under suitable conditions. Sup-
pose first that n is odd, equal to 2k + 1 ≥ 5, so k ≥ 2. By (20)

n∑
i=1

ai = kl + 2.

Since now ai+1 + an+1−i ≤ l − 1 for i = 1, . . . , k we get that

kl + 2 = a1 +
k∑
i=1

(ai+1 + an+1−i) ≤ a1 + k(l − 1)

giving a1 ≥ 2 + k. We will now show that when the ai’s are integers and fulfil

1. 2 + k ≤ a1 ≤ · · · ≤ an,
2. ai + an+1−i ≤ l − 1 for i = 1, . . . , k + 1,
3.
∑n
i=1 ai = kl + 2,

the expression (21) takes its minimal value when

a1 = · · · = ak+1 = 2 + k, ak+2 = · · · = a2k+1 = l − k − 3.

It is clear that only a finite number of integers ai fulfil these conditions, and suppose they
have values such that (21) has its minimum value.

a. Suppose ai = 2 + k for i < n. Let l = 2k+ 5 + t. Inserting this in condition 3. gives

an = k(t+ 1) + 2,

so in particular t ≥ 0. Now

(k + 2) + k(t+ 1) + 2 = a1 + an ≤ l − 1 = 2k + 4 + t.

giving kt ≤ t. Since k ≥ 2 we must have t = 0. But then ai = 2 + k = l − k − 3 for all i.
b. Otherwise let j < n be minimal such that aj > 2 +k. Suppose that aj +an ≤ l−1.

Then we can decrease aj by 1, increase an by 1, still have conditions 1, 2, and 3 fulfilled
and (21) will decrease. This is against assumption.

c. Hence aj + an ≥ l. If j ≤ k + 1 we have aj + an+1−j ≤ l − 1 where n+ 1− j ≥ j.
Let n′ be maximal such that aj + an′ ≤ l− 1. Then we can decrease aj by 1 and increase
an′ by 1, keep the conditions 1, 2, and 3, and (21) will decrease. Against assumption.

d. Hence j ≥ k + 2. Now we have a1 = · · · = ak+1 = 2 + k and

ai + an+1−i ≤ l − 1
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for i = 1, . . . , k. If one of these inequalities was strict we would by (20) get

kl + 2 < k(l − 1) + (2 + k)

which is equivalent to 2 < 2. Hence each ai = l − 3− k for i ≥ k + 2.
The value of the expression (21) then becomes

4[(k + 1)(2 + k)3 + k(l − k − 3)3]− 6l[(k + 1)(2 + k)2 + k(l − k − 3)2] + 2kl3 + 12l − 8

which after some reductions becomes

(k + 2)[6l(k − 1)− 4(2k2 + 5k − 3)]. (23)

Since l − k − 3 = an ≥ a1 = 2 + k we get l ≥ 2k + 5, so the expression above is greater
than or equal to

(k + 2)[6(2k + 5)(k − 1)− 4(2k2 + 5k − 3)] = (k + 2)[4k2 − 2k − 18].

For k ≥ 3 this is positive. For k = 2 the expression (23) becomes

4[6l − 60].

For l ≥ 11 this gives that the minimum value of (21) under our conditions is positive.
Since l ≥ 2k+5 = 9 when k = 2, we must look at two values of l. When l = 10 conditions
1. and 3., give the possible values a1 = a2 = a3 = 4 and a4 = a5 = 5 and this is in fact a
solution to (21). When l = 9, all the ai’s would have to be 4 to fulfil 1. and 2. But this
is not a solution to (21).

Suppose now that n = 2k is even ≥ 4. The equation (20) then gives l = 2u even. Since
ai+1 + an+1−i ≤ l − 1 for i = 1, . . . , k we get

u(n− 1) + 2 ≤ a1 +
(
n− 2

2

)
(l − 1) + ak+1 ≤ a1 +

(
n− 1

2

)
(l − 1)

giving

a1 ≥ 2 +
n− 1

2
= k + 3/2

which implies ai ≥ 2 + k. Since a1 + an ≤ l− 1 we get l ≥ 2k+ 5 and so l ≥ 2k+ 6 since
l is even. Hence u ≥ k + 3.

We will now show that when the ai are integers and fulfil

1. 2 + k ≤ a1 ≤ · · · ≤ an,
2. ai + an+1−i ≤ l − 1,
3. 2ak+1 ≤ l − 1,
4.
∑n
i=1 ai = (n− 1)u+ 2,

then the expression (21) has its minimum value when

a1 = · · · = ak = 2 + k,

ak+1 = u− 1,

ak+2 = · · · = a2k = 2u− k − 3.

a. Suppose ai = 2+k for i < n. Let u = k+2+ t where t ≥ 1. Inserting into condition
4. we get

an = (2k − 1)t+ 2.
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This gives
(2 + k) + (2k − 1)t+ 2 = a1 + an ≤ l − 1 = 2k + 3 + 2t,

which reduces to (2k−3)t ≤ k−1. Since k ≥ 2 and t ≥ 1 this has the only solution k = 2
and t = 1, and so u = 5. Then a3 = 4 = u− 1 and a4 = 5 = 2u− k − 3.

b. Otherwise let j < n be minimal such that aj > 2 + k. Suppose aj + an ≤ l − 1.
Then we can decrease aj by 1 and increase an by 1, still have conditions 1.-4., and (21)
will decrease, contrary to assumption.

c. So aj + an ≥ l. Suppose j ≤ k. Since aj + an+1−j ≤ l− 1 where now n+ 1− j > j,
let n′ be maximal such that aj + an′ ≤ l − 1. If n′ = k + 1 we must have j = k. This
would violate Theorem 6.2 (with i = k − 1). So n′ ≥ k + 2. Then we may decrease aj
by 1, increase an′ by 1, still have conditions 1.-4., and (21) will decrease, contrary to
assumption.

d. So j ≥ k + 1. We then have a1 = · · · = ak = 2 + k and ai + an+1−i ≤ l − 1 for
i = 1, . . . , k− 1, and also ak+1 ≤ u− 1. If one of these inequalities are strict, we get from
condition 4. that

(2k − 1)u+ 2 < (k − 1)(l − 1) + (2 + k) + (u− 1) (24)

which reduces to 2 < 2. Hence ak+1 = u− 1 and ai = l − 3− k for i ≥ k + 2.
The minimal value of (21) is then

4[(k − 1)(2u− k − 3)3 + (u− 1)3 + k(2 + k)3]

− 6 · 2u[(k − 1)(2u− k − 3)2 + (u− 1)2 + k(2 + k)2] + (2k − 1)l3 + 12l − 8

= 4[3u2 + u(3k2 − 3k − 21)− (2k3 + 6k2 − 8k − 24)]. (25)

If we keep k fixed and take the derivative with respect to u we get 24u+4(3k2−3k−21).
For k ≥ 3 this is positive for u ≥ 1. Since u ≥ k + 3, the expression (25) is therefore
greater than or equal to

4(k3 + 3k2 − 4k − 12) = 4(k + 2)(k + 3)(k − 2)

which is positive when k ≥ 3. When k = 2 the expression (25) is 4(3u2 − 15). For u ≥ 6
this is positive. When u = 5 this is 0. We get from conditions 1.-4. that a1 = a2 = a3 = 4
and a4 = 5 and this is also a solution to (21).

Suppose now that n = 2. Again l = 2u must be even. The equations (20) and (21)
(with a = a1 and b = a2) then become:

a+ b = u+ 2,

(a3 + b3)− 3u(a2 + b2) + 2u3 + 6u− 2 = 0.

If we put b = u+ 2− a the second equation becomes

3[u2(a− 2)− u(a2 − 2) + 2(a− 1)2] = 0. (26)

Now 2a ≤ u + 2 or u ≥ 2a − 2. Taking the derivative of the above with respect to u we
get

2u(a2 − 2)− (a2 − 2) ≥ 4(a− 1)(a2 − 2)− (a2 − 2),
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which is positive for a ≥ 3. Hence in this case (26) is (since u ≥ 2a− 2) greater than or
equal to

3(a− 1)[4(a− 1)(a− 2)− 2(a2 − 2) + 2(a− 1)]

which is easily seen to be positive for a ≥ 4. Hence a ≤ 3. If a = 3, (26) becomes
3(u2 − 7u + 8) which does not have integer solutions. If a = 2 it becomes 3(−2u + 2)
which is nonzero since u ≥ 2a− 2 = 2.

Suppose now that n = 3. The equations (20) and (21) then become:

a1 + a2 + a3 = l + 2,

2(a3
1 + a3

2 + a3
3)− 3l(a2

1 + a2
2 + a2

3) + l3 + 6l − 4 = 0.

If we substitute the first expression for l into the second equation we get (assuming that
not both a1 = 3 and a2 = 3, a case easily ruled out)

a3 = 2 +
a1 + a2 − 2

(a1 − 2)(a2 − 2)− 1
.

We know that a2 + a3 ≤ l − 1. Since the sum of the ai is l + 2 we get a1 ≥ 3.
If a1 = 3 then a2+1

a2−3 must be an integer. This gives (a2, a3) either (4, 7) or (5, 5) when
a2 ≤ a3 . If a1 = 4 then a2+2

2a2−5 is an integer which gives a2 = 4 and a3 = 4 when the
sequence is nondecreasing. If a1 ≥ 5 and a2 ≥ 5, we get a3 < 5 and do not have a
nondecreasing sequence.

We know that in all three cases when n = 3 there are algebras with these resolution
types. However the cases when n = 4 and n = 5 are open.

Question. Is there an Artin-Schelter regular algebra A with minimal resolution

A← A(−1)2 ← A(−4)3 ⊕A(−5)← A(−5)⊕A(−6)3 ← A(−9)2 ←↩ A(−10)?

Is there one with an additional summand A(−5) at steps two and three?
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