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Abstract. Operadic Lax representations for the harmonic oscillator are used to construct the

quantum counterparts of three-dimensional real Lie algebras. The Jacobi operators of these

quantum algebras are explicitly calculated.

1. Introduction and outline of the paper. In Hamiltonian formalism, a mechanical
system is described by the canonical variables qi, pi and their time evolution is prescribed
by the Hamiltonian equations

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

. (1)

By a Lax representation [3] of a mechanical system one means such a pair (L,M) of
matrices (linear operators) L,M that the above Hamiltonian system may be represented
as the Lax equation

dL

dt
= ML− LM. (2)

Thus, from the algebraic point of view, mechanical systems may be represented by linear
operators, i.e by linear maps V → V of a vector space V . In particular, representation
of the physical observables by linear operators is used in quantum mechanics and their
time evolution is described by the Heisenberg equations. As a generalization of this one
can pose the following question [4]: how can the time evolution of the linear operations
(multiplications) V ⊗n → V be described?

2010 Mathematics Subject Classification: Primary 81R05; Secondary 18D50.

Key words and phrases: operad, 3D real Lie algebras, harmonic oscillator, Lax representation,
quantization.

The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc93-0-16 [199] c© Instytut Matematyczny PAN, 2011



200 E. PAAL AND J. VIRKEPU

The algebraic operations (multiplications) can be seen as an example of the operadic
variables [1]. If an operadic system depends on time one can speak about operadic dynam-
ics [4]. The latter may be introduced by simple and natural analogy with the Hamiltonian
dynamics. In particular, the time evolution of the operadic variables may be given by the
operadic Lax equation. In [5, 6, 8], the low-dimensional binary operadic Lax representa-
tions for the harmonic oscillator were constructed. In [7] it was shown how the operadic
Lax representations are related to the conservation of energy.

In [9], the operadic Lax representations were used to construct the quantum counter-
parts of the real three-dimensional Lie algebras in Bianchi classification over the harmonic
oscillator. In this paper, the Jacobi operators of these quantum algebras are explicitly
calculated.

2. Endomorphism operad and Gerstenhaber brackets. Let K be a unital asso-
ciative commutative ring, V be a unital K-module, and EnV := EndnV := Hom(V ⊗n, V )
(n ∈ N). For an operation f ∈ EnV , we refer to n as the degree of f and often write (when
it does not cause confusion) f instead of deg f . For example, (−1)f := (−1)n, EfV := EnV
and ◦f := ◦n. Also, it is convenient to use the reduced degree |f | := n − 1. Throughout
this paper, we assume that ⊗ := ⊗K .

Definition 2.1 (endomorphism operad [1]). For f ⊗ g ∈ EfV ⊗ E
g
V define the partial

compositions

f ◦i g := (−1)i|g|f ◦ (id⊗iV ⊗g ⊗ id⊗(|f |−i)
V ) ∈ Ef+|g|

V , 0 ≤ i ≤ |f |.

The sequence EV := {EnV }n∈N, equipped with the partial compositions ◦i, is called the
endomorphism operad of V .

Definition 2.2 (total composition [1]). The total composition ◦ : EfV ⊗ E
g
V → E

f+|g|
V is

defined by

f ◦ g :=
|f |∑
i=0

f ◦i g ∈ Ef+|g|
V , | ◦ | = 0.

The pair Com EV := {EV , ◦} is called the composition algebra of EV .

Definition 2.3 (Gerstenhaber brackets [1]). The Gerstenhaber brackets [·, ·] are defined
in Com EV as a graded commutator by

[f, g] := f ◦ g − (−1)|f ||g|g ◦ f = −(−1)|f ||g|[g, f ], |[·, ·]| = 0.

The commutator algebra of Com EV is denoted as Com−EV := {EV , [·, ·]}. One can
prove (e.g. [1]) that Com−EV is a graded Lie algebra. The Jacobi identity reads

(−1)|f ||h|[f, [g, h]] + (−1)|g||f |[g, [h, f ]] + (−1)|h||g|[h, [f, g]] = 0.

3. Operadic Lax pair. Assume that K := R or K := C and operations are differen-
tiable. Dynamics in operadic systems (operadic dynamics) may be introduced by

Definition 3.1 (operadic Lax pair [4]). Allow a classical dynamical system to be de-
scribed by the Hamiltonian system (1). An operadic Lax pair is a pair (µ,M) of homo-
geneous operations µ,M ∈ EV such that the Hamiltonian system (1) may be represented
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as the operadic Lax equation

dµ

dt
= [M,µ] := M ◦ µ− (−1)|M ||µ|µ ◦M.

The pair (L,M) is also called an operadic Lax representations of/for Hamiltonian system
(1).

Remark 3.2. Evidently, the degree constraints |M | = |L| = 0 give rise to ordinary Lax
equation (2) [3]. In this paper we assume that |M | = 0.

The Hamiltonian of the harmonic oscillator (HO) is

H(q, p) =
1
2

(p2 + ω2q2).

Thus, the Hamiltonian system of HO reads

dq

dt
=
∂H

∂p
= p,

dp

dt
= −∂H

∂q
= −ω2q. (3)

If µ is a linear algebraic operation we can use the above Hamilton equations to obtain

dµ

dt
=
∂µ

∂q

dq

dt
+
∂µ

∂p

dp

dt
= p

∂µ

∂q
− ω2q

∂µ

∂p
= [M,µ].

Therefore, we get the following linear partial differential equation for µ(q, p):

p
∂µ

∂q
− ω2q

∂µ

∂p
= [M,µ]. (4)

By integrating (4) one can get collections of operations called [4] the operadic (Lax
representations for/of) harmonic oscillator.

4. 3D binary anti-commutative operadic Lax representations for harmonic
oscillator.

Lemma 4.1. Matrices

L :=

 p ωq 0
ωq −p 0
0 0 1

 , M :=
ω

2

0 −1 0
1 0 0
0 0 0

 .

represent a 3D Lax representation for the harmonic oscillator.

Definition 4.2 (quasi-canonical coordinates). For the harmonic oscillator define its
quasi-canonical coordinates A± by

A2
+ −A2

− = 2p, A+A− = ωq. (5)

Theorem 4.3 (see [8]). Let Cν ∈ R (ν = 1, . . . , 9) be arbitrary real-valued parameters,
such that

C2
2 + C2

3 + C2
5 + C2

6 + C2
7 + C2

8 6= 0. (6)

Let M be defined as in Lemma 4.1 and µ : V ⊗ V → V be an anti-commutative binary
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operation in a 3D real vector space V with the structure functions

µ1
11 = µ1

22 = µ1
33 = µ2

11 = µ2
22 = µ2

33 = µ3
11 = µ3

22 = µ3
33 = 0

µ1
23 = −µ1

32 = C2p− C3ωq − C4

µ2
13 = −µ2

31 = C2p− C3ωq + C4

µ1
31 = −µ1

13 = C2ωq + C3p− C1

µ2
23 = −µ2

32 = C2ωq + C3p+ C1

µ1
12 = −µ1

21 = C5A+ + C6A−

µ2
12 = −µ2

21 = C5A− − C6A+

µ3
13 = −µ3

31 = C7A+ + C8A−

µ3
23 = −µ3

32 = C7A− − C8A+

µ3
12 = −µ3

21 = C9

(7)

Then (µ,M) is an operadic Lax pair for the harmonic oscillator.

5. Initial conditions. Now specify the coefficients Cν in Theorem 4.3 by the initial
conditions

µ|t=0 =
◦
µ, p|t=0 = p0, q|t=0 = 0.

Denoting E := H|t=0, the latter together with (5) yield the initial conditions for A±:
(
A2

+ +A2
−
)∣∣
t=0

= 2
√

2E(
A2

+ −A2
−
)∣∣
t=0

= 2p0

A+A−|t=0 = 0

⇐⇒


p0> 0

A2
+

∣∣
t=0

= 2p0

A−|t=0 = 0

∨


p0 < 0

A+|t=0 = 0

A2
−
∣∣
t=0

= −2p0

In what follows assume that p0 > 0 and A+|t=0 =
√

2p0. The other cases can be treated
similarly. Note that in this case p0 =

√
2E. From (7) we get the following linear system:

C1 = 1
2

(
◦
µ2

23 −
◦
µ1

31

)
, C2 = 1

2p0

(
◦
µ2

13 +
◦
µ1

23

)
, C3 = 1

2p0

(
◦
µ2

23 +
◦
µ1

31

)
C4 = 1

2

(
◦
µ2

13 −
◦
µ1

23

)
, C5 = 1√

2p0

◦
µ1

12, C6 = − 1√
2p0

◦
µ2

12

C7 = 1√
2p0

◦
µ3

13, C8 = − 1√
2p0

◦
µ3

23, C9 =
◦
µ3

12

(8)

6. Bianchi classification of 3D real Lie algebras. We use the Bianchi classification
of 3D real Lie algebras [2]. The structure equations of the latter can be presented as
follows:

[e1, e2] = −αe2 + n3e3, [e2, e3] = n1e1, [e3, e1] = n2e2 + αe3.

The values of the parameters α, n1, n2, n3 and the corresponding structure constants are
presented in Table 1.

7. Dynamical deformations of 3D real Lie algebras. By using the structure con-
stants of the 3D real Lie algebras in the Bianchi classification, Theorem 4.3 and relations
(8) one can propose that the time evolution of the 3D real Lie algebras is prescribed [7]
as given in Table 2.
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Table 1. 3D real Lie algebras in Bianchi classification. Here a > 0

Bianchi type α (n1, n2, n3)
◦
µ1

12
◦
µ2

12
◦
µ3

12
◦
µ1

23
◦
µ2

23
◦
µ3

23
◦
µ1

31
◦
µ2

31
◦
µ3

31

I 0 (0, 0, 0) 0 0 0 0 0 0 0 0 0

II 0 (1, 0, 0) 0 0 0 1 0 0 0 0 0

VII 0 (1, 1, 0) 0 0 0 1 0 0 0 1 0

VI 0 (1,−1, 0) 0 0 0 1 0 0 0 −1 0

IX 0 (1, 1, 1) 0 0 1 1 0 0 0 1 0

VIII 0 (1, 1,−1) 0 0 −1 1 0 0 0 1 0

V 1 (0, 0, 0) 0 −1 0 0 0 0 0 0 1

IV 1 (0, 0, 1) 0 −1 1 0 0 0 0 0 1

VIIa a (0, 1, 1) 0 −a 1 0 0 0 0 1 a

IIIa=1 1 (0, 1,−1) 0 −1 −1 0 0 0 0 1 1

VIa6=1 a (0, 1,−1) 0 −a −1 0 0 0 0 1 a

Table 2. Time evolution of 3D real Lie algebras. Here p0 =
√

2E

Dynamical
Bianchi type µ1

12 µ2
12 µ3

12 µ1
23 µ2

23 µ3
23 µ1

31 µ2
31 µ3

31

It 0 0 0 0 0 0 0 0 0

IIt 0 0 0 p+p0
2p0

ωq
2p0

0 ωq
2p0

p−p0
−2p0

0

VIIt 0 0 0 1 0 0 0 1 0

VIt 0 0 0 p
p0

ωq
p0

0 ωq
p0

− p
p0

0

IXt 0 0 1 1 0 0 0 1 0

VIIIt 0 0 −1 1 0 0 0 1 0

Vt A−√
2p0

−A+√
2p0

0 0 0
−A−√

2p0
0 0

A+√
2p0

IVt A−√
2p0

−A+√
2p0

1 0 0
−A−√

2p0
0 0

A+√
2p0

VIIta
aA−√

2p0

−aA+√
2p0

1 p−p0
−2p0

ωq
−2p0

−aA−√
2p0

ωq
−2p0

p+p0
2p0

aA+√
2p0

IIIta=1
A−√
2p0

−A+√
2p0

−1 p−p0
−2p0

ωq
−2p0

−A−√
2p0

ωq
−2p0

p+p0
2p0

A+√
2p0

VIta6=1
aA−√

2p0

−aA+√
2p0

−1 p−p0
−2p0

ωq
−2p0

−aA−√
2p0

ωq
−2p0

p+p0
2p0

aA+√
2p0

8. Quantum counterparts of 3D real Lie algebras. Let now the harmonic oscillator
be quantized, i.e its canonical coordinates satisfy the CCR

[q̂, q̂] = 0 = [p̂, p̂], [p̂, q̂] = ~/i.
Then the classical observables A±(q, p) will be quantized as well and their quantum
counterparts are denoted by Â± := A±(q̂, p̂). As a result, the quantum counterparts of
the 3D real Lie algebras can be listed as presented in Table 3.
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Table 3. Quantum counterparts of 3D real Lie algebras over the harmonic oscillator

Quantum
Bianchi type µ̂1

12 µ̂2
12 µ̂3

12 µ̂1
23 µ̂2

23 µ̂3
23 µ̂1

31 µ̂2
31 µ̂3

31

I~ 0 0 0 0 0 0 0 0 0

II~ 0 0 0 p̂+p0
2p0

ωq̂
2p0

0 ωq̂
2p0

p̂−p0
−2p0

0

VII~ 0 0 0 1 0 0 0 1 0

VI~ 0 0 0 p̂
p0

ωq̂
p0

0 ωq̂
p0

− p̂
p0

0

IX~ 0 0 1 1 0 0 0 1 0

VIII~ 0 0 −1 1 0 0 0 1 0

V~ Â−√
2p0

−Â+√
2p0

0 0 0
−Â−√

2p0
0 0

Â+√
2p0

IV~ Â−√
2p0

−Â+√
2p0

1 0 0
−Â−√

2p0
0 0

Â+√
2p0

VII~
a

aÂ−√
2p0

−aÂ+√
2p0

1 p̂−p0
−2p0

ωq̂
−2p0

−aÂ−√
2p0

ωq̂
−2p0

p̂+p0
2p0

aÂ+√
2p0

III~
a=1

Â−√
2p0

−Â+√
2p0

−1 p̂−p0
−2p0

ωq̂
−2p0

−Â−√
2p0

ωq̂
−2p0

p̂+p0
2p0

Â+√
2p0

VI~
a 6=1

aÂ−√
2p0

−aÂ+√
2p0

−1 p̂−p0
−2p0

ωq̂
−2p0

−aÂ−√
2p0

ωq̂
−2p0

p̂+p0
2p0

aÂ+√
2p0

One can easily check that I~, II~, VII~, VI~, IX~, VIII~ are Lie algebras. Thus, in
what follows, we will only focus on the algebras V~, IV~, VII~

a, III~
a=1, VI~

a 6=1, and present
the latter more compactly in a separate table.

Let β, γ, a, b be real-valued parameters from Table 4 and let A~ denote an entry from
the first column of Table 3. Algebras V~, IV~, VII~

a, III~
a=1, VI~

a 6=1 from Table 3 can be
presented as Table 5.

Table 4. Values of β, γ, a, b for quantum algebras A~. Here a > 0

A~ β γ a b

V~ 0 0 1 0

IV~ 0 0 1 1

VII~
a 1 1 a 1

III~
a=1 1 1 1 1

VI~
a6=1 1 1 a 6= 1 −1

Table 5. A~

Quantum
Bianchi type µ̂1

12 µ̂2
12 µ̂3

12 µ̂1
23 µ̂2

23 µ̂3
23 µ̂1

31 µ̂2
31 µ̂3

31

A~ aÂ−√
2p0

−aÂ+√
2p0

b −γ(p̂−p0)
2p0

−βωq̂
2p0

−aÂ−√
2p0

−βωq̂
2p0

γ(p̂+p0)
2p0

aÂ+√
2p0

Let AHO denote the state space of the quantum harmonic oscillator and {e1, e2, . . .}
be its basis. By using Table 5 we define the structure equations in AHO by
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[ei, ej ]~ := µ̂sijes,

where the structure operators µ̂sij for i, j, s ≤ 3 are defined by Table 5 and µ̂sij := 0 for
i, j, s > 3. For x, y ∈ AHO, their quantum multiplication is defined by

[x, y]~ := µ̂ijkx
jykei = µ̂1

jkx
jyke1 + µ̂2

jkx
jyke2 + µ̂3

jkx
jyke3,

where we omitted the trivial terms, because µ̂ijk = 0 for i > 3.

9. Jacobi operators. For x, y, z ∈ AHO, their quantum Jacobi operator is defined by

Ĵ~(x; y; z) := [x, [y, z]~]~ + [y, [z, x]~]~ + [z, [x, y]~]~

= Ĵ1
~(x; y; z)e1 + Ĵ2

~(x; y; z)e2 + Ĵ3
~(x; y; z)e3,

where we again omitted the trivial terms, because Ĵ i~ = 0 for i > 3. In [9] the quantum
Jacobi operators were presented for all real three-dimensional Lie algebras. In this paper,
we present a calculation of the Jacobi operators. Denote

(x, y, z) :=

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣ , ξ± := βωq̂Â∓ ± γ(p̂∓ p0)Â±.

Then we have

Theorem 9.1. The Jacobi operator components of A~ read

Ĵ1
~(x; y; z) = −a(x, y, z)√

2p3
0

ξ̂+,

Ĵ2
~(x; y; z) = −a(x, y, z)√

2p3
0

ξ̂−,

Ĵ3
~(x; y; z) =

a2(x, y, z)
p0

[Â+, Â−].

Proof. As an example, calculate Ĵ1
~(x; y; z). First find the products [x, y]~, [y, z]~ and

[z, x]~ in A~. Denote ∆ := (x, y, z) and let ∆ij be the cofactor (signed minor) of the
element of ∆ in the i-th row and j-th column. Calculate

[x, y]~ = [x, y]i~ei = µ̂ijkx
jykei

=
(
µ̂1

12∆33 − µ̂1
13∆32 + µ̂1

23∆31
)
e1 +

(
µ̂2

12∆33 − µ̂2
13∆32 + µ̂2

23∆31
)
e2

+
(
b∆33 − µ̂3

13∆32 + µ̂3
23∆31

)
e3

=

(
aÂ−√

2p0
∆33 − β ωq̂

2p0
∆32 − γ p̂− p0

2p0
∆31

)
e1

+

(
−aÂ+√

2p0
∆33 + γ

p̂+ p0

2p0
∆32 − β ωq̂

2p0
∆31

)
e2

+

(
b∆33 +

aÂ+√
2p0

∆32 − aÂ−√
2p0

∆31

)
e3.
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In the same way, we can see that

[y, z]~ = [y, z]i~ei = µ̂ijky
jzkei

=

(
aÂ−√

2p0
∆13 − β ωq̂

2p0
∆12 − γ p̂− p0

2p0
∆11

)
e1

+

(
−aÂ+√

2p0
∆13 + γ

p̂+ p0

2p0
∆12 − β ωq̂

2p0
∆11

)
e2

+

(
b∆13 +

aÂ+√
2p0

∆12 − aÂ−√
2p0

∆11

)
e3

and also

[z, x]~ = [z, x]i~ei = µ̂ijkz
jxjei

=

(
aÂ−√

2p0
∆23 − β ωq̂

2p0
∆22 − γ p̂− p0

2p0
∆21

)
e1

+

(
−aÂ+√

2p0
∆23 + γ

p̂+ p0

2p0
∆22 − β ωq̂

2p0
∆21

)
e2

+

(
b∆23 +

aÂ+√
2p0

∆22 − aÂ−√
2p0

∆21

)
e3.

Now calculate the first component of the Jacobi operator:

Ĵ1
~(x; y; z) = [x, [y, z]~]1~ + [y, [z, x]~]1~ + [z, [x, y]~]1~

= µ̂1
jkx

j [y, z]k~ + µ̂1
jky

j [z, x]k~ + µ̂1
jkz

j [x, y]k~
= µ̂1

12

(
x1[y, z]2~ − x2[y, z]1~

)
+ µ̂1

13

(
x1[y, z]3~ − x3[y, z]1~

)
+ µ̂1

23

(
x2[y, z]3~ − x3[y, z]2~

)
+ µ̂1

12

(
y1[z, x]2~ − y2[z, x]1~

)
+ µ̂1

13

(
y1[z, x]3~ − y3[z, x]1~

)
+ µ̂1

23

(
y2[z, x]3~ − y3[z, x]2~

)
+ µ̂1

12

(
z1[x, y]2~ − z2[x, y]1~

)
+ µ̂1

13

(
z1[x, y]3~ − z3[x, y]1~

)
+ µ̂1

23

(
z2[x, y]3~ − z3[x, y]2~

)
=

aÂ−√
2p0

{
x1

(
−aÂ+√

2p0
∆13 + γ

p̂+ p0

2p0
∆12 − β ωq̂

2p0
∆11

)

− x2

(
aÂ−√

2p0
∆13 − β ωq̂

2p0
∆12 − γ p̂− p0

2p0
∆11

)}

+ β
ωq̂

2p0

{
x1

(
b∆13 +

aÂ+√
2p0

∆12 − aÂ−√
2p0

∆11

)

− x3

(
aÂ−√

2p0
∆13 − β ωq̂

2p0
∆12 − γ p̂− p0

2p0
∆11

)}
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− γ p̂− p0

2p0

{
x2

(
b∆13 +

aÂ+√
2p0

∆12 − aÂ−√
2p0

∆11

)

− x3

(
−aÂ+√

2p0
∆13 + γ

p̂+ p0

2p0
∆12 − β ωq̂

2p0
∆11

)}

+
aÂ−√

2p0

{
y1

(
−aÂ+√

2p0
∆23 + γ

p̂+ p0

2p0
∆22 − β ωq̂

2p0
∆21

)

− y2

(
aÂ−√

2p0
∆23 − β ωq̂

2p0
∆22 − γ p̂− p0

2p0
∆21

)}

+ β
ωq̂

2p0

{
y1

(
b∆23 +

aÂ+√
2p0

∆22 − aÂ−√
2p0

∆21

)

− y3

(
aÂ−√

2p0
∆23 − β ωq̂

2p0
∆22 − γ p̂− p0

2p0
∆21

)}

− γ p̂− p0

2p0

{
y2

(
b∆23 +

aÂ+√
2p0

∆22 − aÂ−√
2p0

∆21

)

− y3

(
−aÂ+√

2p0
∆23 + γ

p̂+ p0

2p0
∆22 − β ωq̂

2p0
∆21

)}

+
aÂ−√

2p0

{
z1

(
−aÂ+√

2p0
∆33 + γ

p̂+ p0

2p0
∆32 − β ωq̂

2p0
∆31

)

− z2

(
aÂ−√

2p0
∆33 − β ωq̂

2p0
∆32 − γ p̂− p0

2p0
∆31

)}

+ β
ωq̂

2p0

{
z1

(
b∆33 +

aÂ+√
2p0

∆32 − aÂ−√
2p0

∆31

)

− z3

(
aÂ−√

2p0
∆33 − β ωq̂

2p0
∆32 − γ p̂− p0

2p0
∆31

)}

− γ p̂− p0

2p0

{
z2

(
b∆33 +

aÂ+√
2p0

∆32 − aÂ−√
2p0

∆31

)

− z3

(
−aÂ+√

2p0
∆33 + γ

p̂+ p0

2p0
∆32 − β ωq̂

2p0
∆31

)}
.

Now open the parentheses and rearrange the terms. Then we have

Ĵ1
~(x; y; z) =− aÂ−√

2p0

aÂ+√
2p0

(
x1∆13 + y1∆23 + z1∆33

)︸ ︷︷ ︸
0

+
aÂ−√

2p0
γ
p̂+ p0

2p0

(
x1∆12 + y1∆22 + z1∆32

)︸ ︷︷ ︸
0
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− aÂ−√
2p0

β
ωq̂

2p0

(
x1∆11 + y1∆21 + z1∆31

)︸ ︷︷ ︸
(x,y,z)

− aÂ−√
2p0

aÂ−√
2p0

(
x2∆13 + y2∆23 + z2∆33

)︸ ︷︷ ︸
0

+
aÂ−√

2p0
β
ωq̂

2p0

(
x2∆12 + y2∆22 + z2∆32

)︸ ︷︷ ︸
(x,y,z)

+
aÂ−√

2p0
γ
p̂− p0

2p0

(
x2∆11 + y2∆21 + z2∆31

)︸ ︷︷ ︸
0

+ β
ωq̂

2p0
b
(
x1∆13 + y1∆23 + z1∆33

)︸ ︷︷ ︸
0

+ β
ωq̂

2p0

aÂ+√
2p0

(
x1∆12 + y1∆22 + z1∆32

)︸ ︷︷ ︸
0

− β ωq̂
2p0

aÂ−√
2p0

(
x1∆11 + y1∆21 + z1∆31

)︸ ︷︷ ︸
(x,y,z)

− β ωq̂
2p0

aÂ−√
2p0

(
x3∆13 + y3∆23 + z3∆33

)︸ ︷︷ ︸
(x,y,z)

+ β
ωq̂

2p0
β
ωq̂

2p0

(
x3∆12 + y3∆22 + z3∆32

)︸ ︷︷ ︸
0

+ β
ωq̂

2p0
γ
p̂− p0

2p0

(
x3∆11 + y3∆21 + z3∆31

)︸ ︷︷ ︸
0

− γ p̂− p0

2p0
b
(
x2∆13 + y2∆23 + z2∆33

)︸ ︷︷ ︸
0

− γ p̂− p0

2p0

aÂ+√
2p0

(
x2∆12 + y2∆22 + z2∆32

)︸ ︷︷ ︸
(x,y,z)

+ γ
p̂− p0

2p0

aÂ−√
2p0

(
x2∆11 + y2∆21 + z2∆31

)︸ ︷︷ ︸
0

− γ p̂− p0

2p0

aÂ+√
2p0

(
x3∆13 + y3∆23 + z3∆33

)︸ ︷︷ ︸
(x,y,z)

+ γ
p̂− p0

2p0
γ
p̂+ p0

2p0

(
x3∆12 + y3∆22 + z3∆32

)︸ ︷︷ ︸
0
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− γ p̂− p0

2p0
β
ωq̂

2p0

(
x3∆11 + y3∆21 + z3∆31

)︸ ︷︷ ︸
0

=− a(x, y, z)√
2p3

0

(βωq̂Â− + γ(p̂− p0)Â+).

The remaining operators Ĵ2
~(x; y; z) and Ĵ3

~(x; y; z) can be calculated in the same way.

Remark 9.2. By the direct calculations one can see that the Jacobi operators of II~ and
VI~ turn out to be zero.
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