ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS BANACH CENTER PUBLICATIONS, VOLUME 93 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2011

REMARKS ON F-PLANAR CURVES AND THEIR GENERALIZATIONS

JAROSLAV HRDINA

Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology Technická 2896/2, 616 69 Brno, Czech Republic E-mail: hrdina@fme.vutbr.cz

Abstract. Generalized planar curves (A-curves) are more general analogues of F-planar curves and geodesics. In particular, several well known geometries are described by more than one affinor. The best known example is the almost quaternionic geometry. A new approach to this topic (A-structures) was started in our earlier papers. In this paper we expand the concept of A-structures to projective A-structures.

1. A-structures. The concept of planar curves is a generalization of a geodesics on a smooth manifold equipped with certain structure. In [MS] authors proved a set of facts about structures equipped with two different affinors. A manifold equipped with an affine connection and a set of affinors $A = \{F_1, \ldots, F_l\}$ is called an A-structure and a curve satisfying $\nabla_{\dot{c}}\dot{c} \in \langle F_1, \ldots, F_l \rangle$ is called A-planar. There are some very well known structures equipped with more than one affinor based on quaternions.

DEFINITION 1.1. Let M be a smooth manifold such that $\dim(M) = m$. Let A be a smooth ℓ -dimensional ($\ell < m$) vector subbundle in $T^*M \otimes TM$ such that the identity affinor $E = id_{TM}$ restricted to T_xM belongs to $A_xM \subset T_x^*M \otimes T_xM$ at each point $x \in M$. We say that M is equipped with an ℓ -dimensional A-structure.

An almost quaternionic structure $(A = \langle E, I, J, K \rangle, I^2 = J^2 = -id_{TM}, K = IJ, IJ = -JI)$ and almost complex structure $(A = \langle E, J \rangle, J^2 = -id_{TM})$ are the best known examples of A-structures. Another one is e.g. an almost product structure $(A = \langle E, J \rangle, J^2 = id_{TM})$ or an almost para-quaternionic structure $(A = \langle E, I, J, K \rangle, I^2 = J^2 = id_{TM}, K = IJ, IJ = JI)$ etc.

2010 Mathematics Subject Classification: Primary 53B10; Secondary 53B05, 57N16. Key words and phrases: linear connection, geodesics, F-planar, A-planar, almost complex structure, almost quaternionic structure, almost product structure, projective structure. The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc93-0-19

Classically, an *F*-planar curve is a curve $c : \mathbb{R} \to M$ satisfying the condition

$$\nabla_{\dot{c}}\dot{c} \in \langle \dot{c}, F(\dot{c}) \rangle.$$

Clearly geodesics are *F*-planar curves for all affinors *F*, because $\nabla_{\dot{c}}\dot{c} \in \langle \dot{c} \rangle \subset \langle \dot{c}, F(\dot{c}) \rangle$. DEFINITION 1.2. Let *M* be a smooth manifold equipped with an *A*-structure and a linear connection ∇ . A smooth curve $c : \mathbb{R} \to M$ is said to be *A*-planar if

$$\nabla_{\dot{c}}\dot{c} \in A(\dot{c}).$$

DEFINITION 1.3. Let M be a smooth manifold equipped with an A-structure and a linear connection ∇ . Let \overline{M} be another manifold with a linear connection $\overline{\nabla}$ and a B-structure. A diffeomorphism $f: M \to \overline{M}$ is called (A, B)-planar if each A-planar curve c on M is mapped by f onto the B-planar curve f_*c on M.

Now, we shall prove some basic facts about A-planar curves and their morphisms.

DEFINITION 1.4. For any tangent vector $X \in T_x M$ we shall write $A_x(X)$ for the vector subspace

$$A_x(X) = \{F(X) | F \in A_x M\} \subset T_x M$$

and call it the A-hull of the vector X. Similarly, the A-hull of a vector field is a subbundle in TM obtained pointwise.

For example, A-hull for an almost quaternionic structure is

 $A_x(X) = \{ aX + bI(X) + cJ(X) + dK(X) | a, b, c, d \in \mathbb{R} \}.$

DEFINITION 1.5. Let (M, A) be a smooth manifold M equipped with an ℓ -dimensional A-structure. We say that the A-structure has weak generic rank ℓ if for each $x \in M$ the subset of vectors $X \in T_x M$ such that the A-hull $A_x(X)$ generates a vector subspace of dimension ℓ is open and dense.

We denote

$$\mathcal{V} := \{ X \in T_x M | \dim A(X) = \ell \}.$$

The affinor J on an almost product structure has eigenvalues ± 1 . Clearly, if $JX = \lambda X$, then $X = J^2 X = \lambda J X = \lambda^2 X$, and thus $\lambda = \pm 1$ and $T_x M = V^+ \oplus V^-$. Hence $X + FX \in V^+$ and $X - FX \in V^-$ and one can easily see that

$$\dim A(X + FX) = 1, \ \dim A(2X + FX) = 2.$$

LEMMA 1.6. Every A-structure (M, A) on a manifold M, dim $M \ge \dim A$, where A is an algebra with inversion, has weak generic rank dim A.

Proof. Consider X such that $X \notin \mathcal{V}$, therefore $\exists F \in A = \langle E, G \rangle$, FX = 0, and $F^{-1}FX = 0$ implies X = 0.

LEMMA 1.7. Every two dimensional A-structure (M, A) on a manifold M, dim $M \ge 2$, has weak generic rank 2.

Proof. Consider X such that $X \notin \mathcal{V}$, therefore $\exists F \in A = \langle E, G \rangle$, FX = aX + bG(X) = 0, i.e. the vector X has to be an eigenvector of G and the vector X has to belong to one of finitely many k-dimensional $(k < \dim M)$ subspaces. Finally, the complement \mathcal{V} is open and dense.

LEMMA 1.8. Let (M, A) be a para-quaternionic structure on a manifold of dimension dim M > 4. Then the A-structure $A = \langle E, F, G, FG \rangle$ has weak generic rank 4.

Proof. Recall from linear algebra that two commuting diagonalizable linear maps are simultaneously diagonalizable, i.e. for two commuting product structures we have

10

0

$$F = \begin{pmatrix} E_{m_F} & 0\\ 0 & -E_{n_F} \end{pmatrix}, G = \begin{pmatrix} E_{m_G} & 0\\ 0 & -E_{n_G} \end{pmatrix}, FG = \begin{pmatrix} E_{k_1} & 0 & 0\\ 0 & -E_{k_2} & 0\\ 0 & 0 & E_{k_3} \end{pmatrix}$$

Let $X \notin \mathcal{V}$, i.e. $\exists H$ such that HX = 0, where

$$H := \begin{pmatrix} c_1 E_{k_1} & 0 & 0\\ 0 & c_2 E_{k_2} & 0\\ 0 & 0 & c_3 E_{k_3} \end{pmatrix}$$

for all $c_1, c_2, c_3 \in \mathbb{R}$. Vector X has to be a vector inside ker H, i.e. has to belong to one of finitely many k-dimensional ($k < \dim M$) subspaces. Finally, the complement \mathcal{V} is open and dense. \blacksquare

We have proved that an almost product structure and an almost complex structure have weak generic rank 2 together with the fact that an almost quaternionic structure and an almost para-quaternionic structure have weak generic rank 4.

DEFINITION 1.9. Let (M, A) be a smooth manifold M equipped with an ℓ -dimensional A-structure. We say that the A-structure has generic rank ℓ if for each $x \in M$ the subset of vectors $(X,Y) \in T_x M \oplus T_x M$ such that the A-hulls $A_x(X)$ and $A_x(Y)$ generate a vector subspace $A_x(X) \oplus A_x(Y)$ of dimension 2ℓ is open and dense.

THEOREM 1.10 ([HS08]). Let (M, A) be a smooth manifold of dimension n with ℓ -dimensional A-structure such that $2\ell \leq \dim M$. If A_x is an algebra (i.e. for all $f, g \in A_x$, fg = $f \circ g \in A_x$ for all $x \in M$ and A has weak generic rank ℓ , then the structure has generic rank ℓ .

Now, we know that an almost product structure and an almost complex structure have a generic rank 2 (on a manifold M, $\dim M \ge 4$) together with fact that an almost quaternionic structure and an almost para-quaternionic structure have a generic rank 4 (on a manifold M, dim $M \ge 8$).

2. Projective A-structures. Let M be a smooth manifold equipped with an A-structure and a linear connection ∇ . The connection is said to be an *A*-connection if it belongs to the class of connections

$$[\nabla]_A = \nabla + \sum_{i=1}^{k=\dim A} \Upsilon_i \odot F_i, \tag{1}$$

where $\langle F_1, \ldots, F_k \rangle = A$ as a vector space, \odot is symmetric tensor product and Υ_i are one forms on M.

THEOREM 2.1. Let $(M, A = \langle E, J \rangle)$ be an almost complex structure and ∇ be a linear connection preserving J, i.e. $\nabla J = 0$. Then the class of A-connections $[\nabla]_A$ equals the

class

$$[\nabla] = \nabla + \Upsilon \odot E - (\Upsilon \circ J) \odot J, \tag{2}$$

where Υ is any one form on M.

Proof. First, let us consider the difference tensor $P(X, Y) = \overline{\nabla}_X(Y) - \nabla_X(Y)$ and one can see that its value is symmetric in each tangent space because both connections share the same torsion. Since both ∇ and $\overline{\nabla}$ preserve J, the difference tensor P is complex linear in the second variable. By symmetry it is thus complex bilinear and we can compute:

$$\begin{split} \tilde{\nabla}_X Y - \nabla_X Y &= \Upsilon_1(X)JY + \Upsilon_1(Y)X - \Upsilon_2(X)JY - \Upsilon_2(Y)X, \\ \tilde{\nabla}_{JX}JY - \nabla_{JX}JY &= J^2(\tilde{\nabla}_X Y - \nabla_X Y) = -(\tilde{\nabla}_X Y - \nabla_X Y), \\ -(\tilde{\nabla}_X Y - \nabla_X Y) &= \Upsilon_1(JX)JY + \Upsilon_1(JY)JX - \Upsilon_2(JX)Y - \Upsilon_2(JY)X. \end{split}$$

The sum of the first and third row implies

$$-\Upsilon_1(X)Y - \Upsilon_1(Y)X - \Upsilon_2(X)JY - \Upsilon_2(Y)JX$$
$$= \Upsilon_1(JX)JY + \Upsilon_1(JY)JX - \Upsilon_2(JX)Y - \Upsilon_2(JY)X.$$

Thus $(\Upsilon_2(X) + \Upsilon_1(JX)) = 0$ because we can suppose that X, Y, JX, JY are linearly independent without loss of generality.

THEOREM 2.2. Let $(M, Q = \langle I, J, K \rangle)$ be an almost quaternionic structure and ∇ be a linear connection preserving I, J, K, i.e. $\nabla I = \nabla J = \nabla K = 0$. Then the class of connections $[\nabla]_A$ equals the class

$$[\nabla] = \nabla + \Upsilon \odot E - (\Upsilon \circ I) \odot I - (\Upsilon \circ J) \odot J - (\Upsilon \circ K) \odot K,$$
(3)

where Υ is any one form on M.

Proof. First, let us consider the difference tensor $P(X, Y) = \nabla_X(Y) - \nabla_X(Y)$ and one can see that its value is symmetric in each tangent space because both connections share the same torsion. Since both ∇ and $\overline{\nabla}$ preserve I, J, K the difference tensor P is quaternionic linear in the second variable. By symmetry it is thus quaternionic bilinear and we can compute:

$$\begin{split} P(X,Y) &= \Upsilon_1(X)Y + \Upsilon_1(Y)X + \Upsilon_2(X)IY + \Upsilon_2(Y)IX + \Upsilon_3(X)JY \\ &+ \Upsilon_3(Y)JX + \Upsilon_4(X)KY + \Upsilon_4(Y)KX, \\ P(IX,IY) &= \Upsilon_1(IX)IY + \Upsilon_1(IY)IX - \Upsilon_2(IX)Y - \Upsilon_2(IY)X + \Upsilon_3(IX)KY \\ &+ \Upsilon_3(IY)KX - \Upsilon_4(IX)JY - \Upsilon_4(IY)JX, \\ P(JX,JY) &= \Upsilon_1(JX)JY + \Upsilon_1(JY)JX - \Upsilon_2(JX)KY - \Upsilon_2(JY)KX \\ &- \Upsilon_3(JX)Y - \Upsilon_3(JY)X + \Upsilon_4(JX)IY - \Upsilon_4(JY)IX, \\ P(KX,KY) &= \Upsilon_1(KX)KY + \Upsilon_1(KY)KX + \Upsilon_2(KX)JY - \Upsilon_2(KY)JX \\ &- \Upsilon_3(KX)IY - \Upsilon_3(KY)IX - \Upsilon_4(KX)Y - \Upsilon_4(KY)X. \end{split}$$

The sum of three times the first row and the last three rows implies a system of linear equations because we can suppose that X, Y, IX, IY, JX, JY, KX, KY are linearly independent without loss of generality:

$$\begin{split} -3\Upsilon_1(X) &- \Upsilon_2(IX) - \Upsilon_3(JX) - \Upsilon_4(KX) = 0, \\ -3\Upsilon_2(X) &+ \Upsilon_1(IX) + \Upsilon_4(JX) - \Upsilon_3(KX) = 0, \\ -3\Upsilon_3(X) - \Upsilon_4(IX) + \Upsilon_1(JX) + \Upsilon_2(KX) = 0, \\ -3\Upsilon_4(X) + \Upsilon_3(IX) - \Upsilon_2(JX) + \Upsilon_1(KX) = 0. \end{split}$$

Hence

$$\begin{aligned} -3\Upsilon_1(IX) + \Upsilon_2(X) - \Upsilon_3(KX) + \Upsilon_4(JX) &= 0, \\ 3\Upsilon_2(X) - \Upsilon_1(IX) - \Upsilon_4(JX) + \Upsilon_3(KX) &= 0, \end{aligned}$$

and finally

$$\Upsilon_2(X) = -\Upsilon_1(IX).$$

One can compute that $\Upsilon_3(X) = -\Upsilon_1(JX), \ \Upsilon_4(X) = -\Upsilon_1(KX)$ in the same way.

THEOREM 2.3. Let $(M, A = \langle E, P \rangle)$ be an almost product structure and ∇ be a linear connection preserving P, i.e. $\nabla P = 0$. Then the class of connections $[\nabla]_A$ equals the class $[\nabla]_A$.

$$[\nabla] = \nabla + \Upsilon \odot E + (\Upsilon \circ P) \odot P, \tag{4}$$

where Υ is any one form on M.

Proof. First, let us consider the difference tensor $P(X, Y) = \overline{\nabla}_X(Y) - \nabla_X(Y)$ and one can see that its value is symmetric in each tangent space because both connections share the same torsion. Since both ∇ and $\overline{\nabla}$ preserve P, the difference tensor P is complex linear in the second variable. By symmetry it is thus complex bilinear and we can compute:

$$\begin{split} \tilde{\nabla}_X Y - \nabla_X Y &= \Upsilon_1(X)Y + \Upsilon_1(Y)X + \Upsilon_2(X)PY + \Upsilon_2(Y)PX, \\ \tilde{\nabla}_X Y - \nabla_X Y &= \tilde{\nabla}_{PX}PY - \nabla_{PX}PY = \Upsilon_1(PX)PY + \Upsilon_1(PY)PX \\ &+ \Upsilon_2(PX)Y + \Upsilon_2(PY)X \end{split}$$

and therefore

$$\begin{split} &\Upsilon_1(X)Y + \Upsilon_1(Y)X + \Upsilon_2(X)PY + \Upsilon_2(Y)PX \\ &= \Upsilon_1(PX)PY + \Upsilon_1(PY)PX + \Upsilon_2(PX)Y + \Upsilon_2(PY)X \end{split}$$

Thus $(\Upsilon_2(X) - \Upsilon_1(PX)) = 0$ because we can suppose that X, Y, PX, PY are linearly independent without loss of generality.

THEOREM 2.4. Let $(M, A = \langle E, I, J, K \rangle)$ be an almost para-quaternionic structure and ∇ be a linear connection preserving I, J, and K then the class of connections $[\nabla]_A$ equals the class

$$[\nabla] = \nabla + \Upsilon \odot E + (\Upsilon \circ I) \odot I + (\Upsilon \circ J) \odot J + (\Upsilon \circ K) \odot K,$$
(5)

where Υ is any one form on M.

Proof. First, let us consider the difference tensor $P(X, Y) = \overline{\nabla}_X(Y) - \nabla_X(Y)$ and one can see that its value is symmetric in each tangent space because both connections share the same torsion. Since both ∇ and $\overline{\nabla}$ preserve *I.J.K*, the difference tensor *P* is complex

linear in the second variable. By symmetry it is thus quaternionic bilinear and we can compute:

$$\begin{split} P(X,Y) &= \Upsilon_1(X)Y + \Upsilon_1(Y)X + \Upsilon_2(X)IY + \Upsilon_2(Y)IX \\ &+ \Upsilon_3(X)JY + \Upsilon_3(Y)JX + \Upsilon_4(X)KY + \Upsilon_4(Y)KX, \\ P(IX,IY) &= \Upsilon_1(IX)IY + \Upsilon_1(IY)IX + \Upsilon_2(IX)Y + \Upsilon_2(IY)X \\ &+ \Upsilon_3(IX)KY + \Upsilon_3(IY)KX + \Upsilon_4(IX)JY + \Upsilon_4(IY)JX, \\ P(JX,JY) &= \Upsilon_1(JX)JY + \Upsilon_1(JY)JX + \Upsilon_2(JX)KY - \Upsilon_2(JY)KX \\ &+ \Upsilon_3(JX)Y + \Upsilon_3(JY)X + \Upsilon_4(JX)IY + \Upsilon_4(JY)IX, \\ P(KX,KY) &= \Upsilon_1(KX)KY + \Upsilon_1(KY)KX + \Upsilon_2(KX)JY + \Upsilon_2(KY)JX \\ &+ \Upsilon_3(KX)IY + \Upsilon_3(KY)IX + \Upsilon_4(KX)Y + \Upsilon_4(KY)X. \end{split}$$

The sum of three times the first row and the next three rows together implies a system of linear equations because X, Y, IX, IY, JX, JY, KX, KY are linearly independent without loss of generality:

$$\begin{split} &3\Upsilon_1(X) + \Upsilon_2(IX) + \Upsilon_3(JX) + \Upsilon_4(KX) = 0, \\ &3\Upsilon_2(X) + \Upsilon_1(IX) + \Upsilon_4(JX) + \Upsilon_3(KX) = 0, \\ &3\Upsilon_3(X) + \Upsilon_4(IX) + \Upsilon_1(JX) + \Upsilon_2(KX) = 0, \\ &3\Upsilon_4(X) + \Upsilon_3(IX) + \Upsilon_2(JX) + \Upsilon_1(KX) = 0. \end{split}$$

Hence

$$\Im\Upsilon_1(IX) + \Upsilon_2(X) + \Upsilon_3(KX) + \Upsilon_4(JX) = 0$$

and

$$\Upsilon_2(X) = \Upsilon_1(IX) + \Upsilon_3(KX) + \Upsilon_4(JX).$$

Finally one can compute that $\Upsilon_3(X) = \Upsilon_1(JX), \ \Upsilon_4(X) = \Upsilon_1(KX)$ in the same way. \blacksquare

DEFINITION 2.5. Let M be a smooth manifold of dimension m. A projective A-structure on M is a triple $(M, A, [\nabla]_A)$, where the couple (M, A) is an A-structure and $[\nabla]_A$ is a class of A-connections

$$[\nabla]_A = \nabla + \sum_{i=1}^{k=\dim A} \Upsilon \odot F_i,$$

for any one form Υ .

For almost complex, product, quaternionic and para-quaternionic structures the class of A-connections $[\nabla]_A$ looks as follows:

$$\begin{split} [\nabla]_A &= \nabla + \Upsilon \odot E - (\Upsilon \circ J) \odot J, \\ [\nabla]_A &= \nabla + \Upsilon \odot E + (\Upsilon \circ P) \odot P, \\ [\nabla]_A &= \nabla + \Upsilon \odot E - (\Upsilon \circ I) \odot I - (\Upsilon \circ J) \odot J - (\Upsilon \circ K) \odot K, \\ [\nabla]_A &= \nabla + \Upsilon \odot E + (\Upsilon \circ I) \odot I + (\Upsilon \circ J) \odot J + (\Upsilon \circ K) \odot K. \end{split}$$

THEOREM 2.6. Let $(M, A, [\nabla]_A)$ be a smooth projective A-structure. A curve $c : \mathbb{R} \to M$ is A-planar with respect to at least one A-connection $\overline{\nabla}$ on M if and only if $c : \mathbb{R} \to M$ is a geodesic of some A-connection. Moreover this happens if and only if c is A-planar with respect to all A-connections.

Proof. Consider a curve $c : \mathbb{R} \to M$ such that $\nabla_{\dot{c}} \dot{c} \in A(\dot{c})$, where $\nabla \in [\nabla]_A$. Then

$$\begin{split} \bar{\nabla}_{\dot{c}}\dot{c} &= \nabla_{\dot{c}}\dot{c} + \sum_{i=1}^{\dim A} 2\Upsilon_i^1(\dot{c})F_i(\dot{c}), \\ \bar{\nabla}_{\dot{c}}\dot{c} &= \sum_{i=1}^{\dim A} \xi_iF_i(\dot{c}) + \sum_{i=1}^{\dim A} 2\Upsilon_i^1(\dot{c})F_i(\dot{c}), \\ \bar{\nabla}_{\dot{c}}\dot{c} &= \sum_{i=1}^{\dim A} (2\Upsilon_i^1(\dot{c}) + \xi_i)F_i(\dot{c}). \end{split}$$

The set of equations $2\Upsilon_i^1(\dot{c}) + \xi_i = 0$ has solutions, i.e. there exists $\Upsilon_i^1 \in \Omega^1(M)$ such that c is a geodesic curve for the A-connection $\overline{\nabla}$. The rest of the proof is easy.

THEOREM 2.7. Let M be a smooth manifold of dimension 2n, where n > 1 and let $(M, A, [\nabla])$ be a projective A-structure on M of dimension n with generic rank n, where A is an algebra. Let $\overline{\nabla}$ be a linear connection on M such that ∇ and $\overline{\nabla}$ preserve any $F \in A$ and they have the same torsion. If any geodesic of ∇ is A-planar for $\overline{\nabla}$, then $\overline{\nabla}$ lies in the projective equivalence class of ∇ .

Proof. First, let us consider the difference tensor $P(X,Y) = \overline{\nabla}_X(Y) - \nabla_X(Y)$ and one can see that its value is symmetric in each tangent space because both connections share the same torsion. Since both ∇ and $\overline{\nabla}$ preserve A, the difference tensor P is A-linear in the second variable. By symmetry it is thus A-bilinear.

Consider a curve $c : \mathbb{R} \to M$ such that $X = \dot{c} \in \mathcal{V}$ and such that c is geodesics with respect to ∇ and A-planar with respect to $\overline{\nabla}$. In this case the deformation $P(X, X) := \overline{\nabla}_X(X) - \nabla_X(X)$ equals $\sum_{i=1}^{k=\dim A} \Upsilon_i(X) F_i(X)$, and

$$\begin{split} P(X,Y) &= \frac{1}{2} \Big(\sum_{i=1}^{k=\dim A} \Upsilon_i(X+Y) F_i(X+Y) - \sum_{i=1}^{k=\dim A} \Upsilon_i(X) F_i(X) - \sum_{i=1}^{k=\dim A} \Upsilon_i(Y) F_i(Y) \Big) \\ &= \frac{1}{2} \Big(\sum_{i=1}^{k=\dim A} \Upsilon_i(X+Y) F_i(X) \\ &+ \sum_{i=1}^{k=\dim A} \Upsilon_i(X+Y) F_i(Y) - \sum_{i=1}^{k=\dim A} \Upsilon_i(X) F_i(X) - \sum_{i=1}^{k=\dim A} \Upsilon_i(Y) F_i(Y) \Big) \\ &= \frac{1}{2} \Big(\sum_{i=1}^{k=\dim A} (\Upsilon_i(X+Y) - \Upsilon_i(X)) F_i(X) \\ &+ \sum_{i=1}^{k=\dim A} (\Upsilon_i(X+Y) - \Upsilon_i(Y)) F_i(Y) \Big) \end{split}$$

by polarization.

It is clear by construction that $\Upsilon_i(tX) = t\Upsilon_i(X)$ for $t \in \mathbb{R}$ and that P(sX, tY) = stP(X, Y) for any $s, t \in \mathbb{R}$. Assuming that X and Y are A-linearly independent we compare the coefficients of X in the expansions of P(sX, tY) = stP(X, Y) as above to get

$$s\Upsilon_i(sX+tY)-s\Upsilon_i(sX)=st(\Upsilon_i(X+Y)-\Upsilon_i(X)).$$

Dividing by s and putting t = 1 and taking the limit $s \to 0$, we conclude that $\Upsilon_1(X+Y) = \Upsilon_1(X) + \Upsilon_1(Y)$.

We have proved that the form Υ_i is linear in X and

$$(X,Y) \to \sum_{i=1}^{k=\dim A} (\Upsilon_i(Y)F_i(X) + \Upsilon_i(X)F_i(Y))$$

is a symmetric A-bilinear map which agrees with P(X, Y). If both arguments coincide, it always agrees with P by polarization and $\overline{\nabla}$ lies in the projective equivalence class $[\nabla]_A$.

THEOREM 2.8 ([HS06]). Let (M, A), (M', A') be smooth manifolds of dimension m equipped with A-structure and A'-structure of the same generic rank $\ell \leq 2m$ and assume that the A-structure satisfies the property

$$\forall X \in T_x M, \, \forall F \in A, \, \exists c_X \mid \dot{c}_X = X, \, \nabla_{\dot{c}_X} \dot{c}_X = \beta(X) F(X), \tag{6}$$

where $\beta(X) \neq 0$. If $f: M \to M'$ is an (A, A')-planar mapping. Then f is a morphism of A-structures, i.e. $f^*A' = A$.

THEOREM 2.9. Let $(M, A, [\nabla]_A)$, $(M', A', [\nabla]_{A'})$ be smooth manifolds of dimension m equipped with projective A-structure and projective A'-structure of the same generic rank $\ell \leq 2m$, where A, A' are algebras. If $f: M \to M'$ is an (A, A')-planar mapping. Then f is a morphism of A-structures, i.e. $f^*A' = A$.

Proof. We have to prove (6). Let us consider $F \in A$, an A-connection ∇ , and a curve $c : \mathbb{R} \to M$ such that $\dot{c} = X$ and $\nabla_X X = 0$ for any $X \in T_x M$ exists. We shall find a connection $\overline{\nabla} \in [\nabla]_A$ such that $\overline{\nabla}_X X = \beta(X)F(X)$, but the connection $\overline{\nabla} = \nabla + \beta \otimes F$ belongs to $[\nabla]_A$ directly.

COROLLARY 2.10. Let $(M, A, [\nabla])$, $(M', A, [\overline{\nabla}]_A)$ be smooth manifolds of dimension 2mequipped with projective A-structures of the generic rank m. Let $f: M \to M'$ be a diffeomorphism between two projective A-structures. Then f is a morphism of A-structures if and only if it preserves the class of unparameterized geodesics of all A-connections on Mand M'.

The corollary above holds for an almost product structure on a manifold M, dim $M \ge 4$, an almost complex structure on a manifold M, dim $M \ge 4$, an almost quaternionic structure on a manifold M, dim $M \ge 8$ and an almost para-quaternionic structure on a manifold M, dim $M \ge 8$.

Acknowledgments. This research was supported by the Ministry of Education, Youth and Sports of the Czech Republic, research plan MSM 0021630518.

References

- [HS06] J. Hrdina and J. Slovák, Generalized planar curves and quaternionic geometry, Global Analysis and Geometry 29 (2006), 349–360.
- [HS08] J. Hrdina and J. Slovák, Morphisms of almost product projective geometries, in: Differential Geometry and Applications, World Scientific, 2008, 243–251.
- [H09] J. Hrdina, Almost complex projective structures and their morphisms, Archivum Mathematicum 45 (2009), 325–334.
- [MS] J. Mikeš and N. S. Sinyukov, On quasiplanar mappings of spaces of affine connection, Sov. Math. 27 (1983), 63–70.

Received February 2, 2010; Revised January 28, 2011