REMARKS ON F-PLANAR CURVES AND THEIR GENERALIZATIONS

JAROSLAV HRDINA
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology Technická 2896/2, 61669 Brno, Czech Republic
E-mail: hrdina@fme.vutbr.cz

Abstract

Generalized planar curves (A-curves) are more general analogues of F-planar curves and geodesics. In particular, several well known geometries are described by more than one affinor. The best known example is the almost quaternionic geometry. A new approach to this topic (A-structures) was started in our earlier papers. In this paper we expand the concept of A-structures to projective A-structures.

1. A-structures. The concept of planar curves is a generalization of a geodesics on a smooth manifold equipped with certain structure. In [MS] authors proved a set of facts about structures equipped with two different affinors. A manifold equipped with an affine connection and a set of affinors $A=\left\{F_{1}, \ldots, F_{l}\right\}$ is called an A-structure and a curve satisfying $\nabla_{\dot{c}} \dot{c} \in\left\langle F_{1}, \ldots, F_{l}\right\rangle$ is called A-planar. There are some very well known structures equipped with more than one affinor based on quaternions.

Definition 1.1. Let M be a smooth manifold such that $\operatorname{dim}(M)=m$. Let A be a smooth ℓ-dimensional $(\ell<m)$ vector subbundle in $T^{*} M \otimes T M$ such that the identity affinor $E=i d_{T M}$ restricted to $T_{x} M$ belongs to $A_{x} M \subset T_{x}^{*} M \otimes T_{x} M$ at each point $x \in M$. We say that M is equipped with an ℓ-dimensional A-structure.

An almost quaternionic structure $\left(A=\langle E, I, J, K\rangle, I^{2}=J^{2}=-i d_{T M}, K=I J\right.$, $I J=-J I)$ and almost complex structure $\left(A=\langle E, J\rangle, J^{2}=-i d_{T M}\right)$ are the best known examples of A-structures. Another one is e.g. an almost product structure ($A=\langle E, J\rangle$, $\left.J^{2}=i d_{T M}\right)$ or an almost para-quaternionic structure $\left(A=\langle E, I, J, K\rangle, I^{2}=J^{2}=i d_{T M}\right.$, $K=I J, I J=J I)$ etc.

2010 Mathematics Subject Classification: Primary 53B10; Secondary 53B05, 57N16.
Key words and phrases: linear connection, geodesics, F-planar, A-planar, almost complex structure, almost quaternionic structure, almost product structure, projective structure.
The paper is in final form and no version of it will be published elsewhere.

Classically, an F-planar curve is a curve $c: \mathbb{R} \rightarrow M$ satisfying the condition

$$
\nabla_{\dot{c}} \dot{c} \in\langle\dot{c}, F(\dot{c})\rangle
$$

Clearly geodesics are F-planar curves for all affinors F, because $\nabla_{\dot{c}} \dot{c} \in\langle\dot{c}\rangle \subset\langle\dot{c}, F(\dot{c})\rangle$. Definition 1.2. Let M be a smooth manifold equipped with an A-structure and a linear connection ∇. A smooth curve $c: \mathbb{R} \rightarrow M$ is said to be A-planar if

$$
\nabla_{\dot{c}} \dot{c} \in A(\dot{c})
$$

Definition 1.3. Let M be a smooth manifold equipped with an A-structure and a linear connection ∇. Let \bar{M} be another manifold with a linear connection $\bar{\nabla}$ and a B-structure. A diffeomorphism $f: M \rightarrow \bar{M}$ is called (A, B)-planar if each A-planar curve c on M is mapped by f onto the B-planar curve $f_{\star} c$ on M.

Now, we shall prove some basic facts about A-planar curves and their morphisms.
Definition 1.4. For any tangent vector $X \in T_{x} M$ we shall write $A_{x}(X)$ for the vector subspace

$$
A_{x}(X)=\left\{F(X) \mid F \in A_{x} M\right\} \subset T_{x} M
$$

and call it the A-hull of the vector X. Similarly, the A-hull of a vector field is a subbundle in $T M$ obtained pointwise.

For example, A-hull for an almost quaternionic structure is

$$
A_{x}(X)=\{a X+b I(X)+c J(X)+d K(X) \mid a, b, c, d \in \mathbb{R}\}
$$

Definition 1.5. Let (M, A) be a smooth manifold M equipped with an ℓ-dimensional A-structure. We say that the A-structure has weak generic rank ℓ if for each $x \in M$ the subset of vectors $X \in T_{x} M$ such that the A-hull $A_{x}(X)$ generates a vector subspace of dimension ℓ is open and dense.

We denote

$$
\mathcal{V}:=\left\{X \in T_{x} M \mid \operatorname{dim} A(X)=\ell\right\}
$$

The affinor J on an almost product structure has eigenvalues ± 1. Clearly, if $J X=$ λX, then $X=J^{2} X=\lambda J X=\lambda^{2} X$, and thus $\lambda= \pm 1$ and $T_{x} M=V^{+} \oplus V^{-}$. Hence $X+F X \in V^{+}$and $X-F X \in V^{-}$and one can easily see that

$$
\operatorname{dim} A(X+F X)=1, \operatorname{dim} A(2 X+F X)=2
$$

Lemma 1.6. Every A-structure (M, A) on a manifold M, $\operatorname{dim} M \geq \operatorname{dim} A$, where A is an algebra with inversion, has weak generic rank $\operatorname{dim} A$.

Proof. Consider X such that $X \notin \mathcal{V}$, therefore $\exists F \in A=\langle E, G\rangle, F X=0$, and $F^{-1} F X=$ 0 implies $X=0$.
Lemma 1.7. Every two dimensional A-structure (M, A) on a manifold M, $\operatorname{dim} M \geq 2$, has weak generic rank 2.
Proof. Consider X such that $X \notin \mathcal{V}$, therefore $\exists F \in A=\langle E, G\rangle, F X=a X+b G(X)=0$, i.e. the vector X has to be an eigenvector of G and the vector X has to belong to one of finitely many k-dimensional $(k<\operatorname{dim} M)$ subspaces. Finally, the complement \mathcal{V} is open and dense.

Lemma 1.8. Let (M, A) be a para-quaternionic structure on a manifold of dimension $\operatorname{dim} M>4$. Then the A-structure $A=\langle E, F, G, F G\rangle$ has weak generic rank 4 .

Proof. Recall from linear algebra that two commuting diagonalizable linear maps are simultaneously diagonalizable, i.e. for two commuting product structures we have

$$
F=\left(\begin{array}{cc}
E_{m_{F}} & 0 \\
0 & -E_{n_{F}}
\end{array}\right), G=\left(\begin{array}{cc}
E_{m_{G}} & 0 \\
0 & -E_{n_{G}}
\end{array}\right), F G=\left(\begin{array}{ccc}
E_{k_{1}} & 0 & 0 \\
0 & -E_{k_{2}} & 0 \\
0 & 0 & E_{k_{3}}
\end{array}\right) .
$$

Let $X \notin \mathcal{V}$, i.e. $\exists H$ such that $H X=0$, where

$$
H:=\left(\begin{array}{ccc}
c_{1} E_{k_{1}} & 0 & 0 \\
0 & c_{2} E_{k_{2}} & 0 \\
0 & 0 & c_{3} E_{k_{3}}
\end{array}\right)
$$

for all $c_{1}, c_{2}, c_{3} \in \mathbb{R}$. Vector X has to be a vector inside ker H, i.e. has to belong to one of finitely many k-dimensional $(k<\operatorname{dim} M)$ subspaces. Finally, the complement \mathcal{V} is open and dense.

We have proved that an almost product structure and an almost complex structure have weak generic rank 2 together with the fact that an almost quaternionic structure and an almost para-quaternionic structure have weak generic rank 4.

Definition 1.9. Let (M, A) be a smooth manifold M equipped with an ℓ-dimensional A-structure. We say that the A-structure has generic rank ℓ if for each $x \in M$ the subset of vectors $(X, Y) \in T_{x} M \oplus T_{x} M$ such that the A-hulls $A_{x}(X)$ and $A_{x}(Y)$ generate a vector subspace $A_{x}(X) \oplus A_{x}(Y)$ of dimension 2ℓ is open and dense.

Theorem 1.10 ([HS08). Let (M, A) be a smooth manifold of dimension n with ℓ-dimensional A-structure such that $2 \ell \leq \operatorname{dim} M$. If A_{x} is an algebra (i.e. for all $f, g \in A_{x}, f g=$ $f \circ g \in A_{x}$) for all $x \in M$ and A has weak generic rank ℓ, then the structure has generic rank ℓ.

Now, we know that an almost product structure and an almost complex structure have a generic rank 2 (on a manifold M, $\operatorname{dim} M \geq 4$) together with fact that an almost quaternionic structure and an almost para-quaternionic structure have a generic rank 4 (on a manifold $M, \operatorname{dim} M \geq 8$).
2. Projective A-structures. Let M be a smooth manifold equipped with an A-structure and a linear connection ∇. The connection is said to be an A-connection if it belongs to the class of connections

$$
\begin{equation*}
[\nabla]_{A}=\nabla+\sum_{i=1}^{k=\operatorname{dim} A} \Upsilon_{i} \odot F_{i} \tag{1}
\end{equation*}
$$

where $\left\langle F_{1}, \ldots, F_{k}\right\rangle=A$ as a vector space, \odot is symmetric tensor product and Υ_{i} are one forms on M.

Theorem 2.1. Let $(M, A=\langle E, J\rangle)$ be an almost complex structure and ∇ be a linear connection preserving J, i.e. $\nabla J=0$. Then the class of A-connections $[\nabla]_{A}$ equals the
class

$$
\begin{equation*}
[\nabla]=\nabla+\Upsilon \odot E-(\Upsilon \circ J) \odot J, \tag{2}
\end{equation*}
$$

where Υ is any one form on M.
Proof. First, let us consider the difference tensor $P(X, Y)=\bar{\nabla}_{X}(Y)-\nabla_{X}(Y)$ and one can see that its value is symmetric in each tangent space because both connections share the same torsion. Since both ∇ and $\bar{\nabla}$ preserve J, the difference tensor P is complex linear in the second variable. By symmetry it is thus complex bilinear and we can compute:

$$
\begin{aligned}
\tilde{\nabla}_{X} Y-\nabla_{X} Y & =\Upsilon_{1}(X) J Y+\Upsilon_{1}(Y) X-\Upsilon_{2}(X) J Y-\Upsilon_{2}(Y) X \\
\tilde{\nabla}_{J X} J Y-\nabla_{J X} J Y & =J^{2}\left(\tilde{\nabla}_{X} Y-\nabla_{X} Y\right)=-\left(\tilde{\nabla}_{X} Y-\nabla_{X} Y\right), \\
-\left(\tilde{\nabla}_{X} Y-\nabla_{X} Y\right) & =\Upsilon_{1}(J X) J Y+\Upsilon_{1}(J Y) J X-\Upsilon_{2}(J X) Y-\Upsilon_{2}(J Y) X .
\end{aligned}
$$

The sum of the first and third row implies

$$
\begin{gathered}
-\Upsilon_{1}(X) Y-\Upsilon_{1}(Y) X-\Upsilon_{2}(X) J Y-\Upsilon_{2}(Y) J X \\
=\Upsilon_{1}(J X) J Y+\Upsilon_{1}(J Y) J X-\Upsilon_{2}(J X) Y-\Upsilon_{2}(J Y) X .
\end{gathered}
$$

Thus $\left(\Upsilon_{2}(X)+\Upsilon_{1}(J X)\right)=0$ because we can suppose that $X, Y, J X, J Y$ are linearly independent without loss of generality.

THEOREM 2.2. Let $(M, Q=\langle I, J, K\rangle)$ be an almost quaternionic structure and ∇ be a linear connection preserving I, J, K, i.e. $\nabla I=\nabla J=\nabla K=0$. Then the class of connections $[\nabla]_{A}$ equals the class

$$
\begin{equation*}
[\nabla]=\nabla+\Upsilon \odot E-(\Upsilon \circ I) \odot I-(\Upsilon \circ J) \odot J-(\Upsilon \circ K) \odot K, \tag{3}
\end{equation*}
$$

where Υ is any one form on M.
Proof. First, let us consider the difference tensor $P(X, Y)=\bar{\nabla}_{X}(Y)-\nabla_{X}(Y)$ and one can see that its value is symmetric in each tangent space because both connections share the same torsion. Since both ∇ and $\bar{\nabla}$ preserve I, J, K the difference tensor P is quaternionic linear in the second variable. By symmetry it is thus quaternionic bilinear and we can compute:

$$
\begin{aligned}
P(X, Y) & =\Upsilon_{1}(X) Y+\Upsilon_{1}(Y) X+\Upsilon_{2}(X) I Y+\Upsilon_{2}(Y) I X+\Upsilon_{3}(X) J Y \\
& +\Upsilon_{3}(Y) J X+\Upsilon_{4}(X) K Y+\Upsilon_{4}(Y) K X, \\
P(I X, I Y) & =\Upsilon_{1}(I X) I Y+\Upsilon_{1}(I Y) I X-\Upsilon_{2}(I X) Y-\Upsilon_{2}(I Y) X+\Upsilon_{3}(I X) K Y \\
& +\Upsilon_{3}(I Y) K X-\Upsilon_{4}(I X) J Y-\Upsilon_{4}(I Y) J X, \\
P(J X, J Y) & =\Upsilon_{1}(J X) J Y+\Upsilon_{1}(J Y) J X-\Upsilon_{2}(J X) K Y-\Upsilon_{2}(J Y) K X \\
& -\Upsilon_{3}(J X) Y-\Upsilon_{3}(J Y) X+\Upsilon_{4}(J X) I Y-\Upsilon_{4}(J Y) I X, \\
P(K X, K Y) & =\Upsilon_{1}(K X) K Y+\Upsilon_{1}(K Y) K X+\Upsilon_{2}(K X) J Y-\Upsilon_{2}(K Y) J X \\
& -\Upsilon_{3}(K X) I Y-\Upsilon_{3}(K Y) I X-\Upsilon_{4}(K X) Y-\Upsilon_{4}(K Y) X .
\end{aligned}
$$

The sum of three times the first row and the last three rows implies a system of linear equations because we can suppose that $X, Y, I X, I Y, J X, J Y, K X, K Y$ are linearly
independent without loss of generality:

$$
\begin{aligned}
& -3 \Upsilon_{1}(X)-\Upsilon_{2}(I X)-\Upsilon_{3}(J X)-\Upsilon_{4}(K X)=0 \\
& -3 \Upsilon_{2}(X)+\Upsilon_{1}(I X)+\Upsilon_{4}(J X)-\Upsilon_{3}(K X)=0 \\
& -3 \Upsilon_{3}(X)-\Upsilon_{4}(I X)+\Upsilon_{1}(J X)+\Upsilon_{2}(K X)=0 \\
& -3 \Upsilon_{4}(X)+\Upsilon_{3}(I X)-\Upsilon_{2}(J X)+\Upsilon_{1}(K X)=0
\end{aligned}
$$

Hence

$$
\begin{array}{r}
-3 \Upsilon_{1}(I X)+\Upsilon_{2}(X)-\Upsilon_{3}(K X)+\Upsilon_{4}(J X)=0 \\
3 \Upsilon_{2}(X)-\Upsilon_{1}(I X)-\Upsilon_{4}(J X)+\Upsilon_{3}(K X)=0
\end{array}
$$

and finally

$$
\Upsilon_{2}(X)=-\Upsilon_{1}(I X) .
$$

One can compute that $\Upsilon_{3}(X)=-\Upsilon_{1}(J X), \Upsilon_{4}(X)=-\Upsilon_{1}(K X)$ in the same way.
Theorem 2.3. Let $(M, A=\langle E, P\rangle)$ be an almost product structure and ∇ be a linear connection preserving P, i.e. $\nabla P=0$. Then the class of connections $[\nabla]_{A}$ equals the class $[\nabla]_{A}$.

$$
\begin{equation*}
[\nabla]=\nabla+\Upsilon \odot E+(\Upsilon \circ P) \odot P, \tag{4}
\end{equation*}
$$

where Υ is any one form on M.
Proof. First, let us consider the difference tensor $P(X, Y)=\bar{\nabla}_{X}(Y)-\nabla_{X}(Y)$ and one can see that its value is symmetric in each tangent space because both connections share the same torsion. Since both ∇ and $\bar{\nabla}$ preserve P, the difference tensor P is complex linear in the second variable. By symmetry it is thus complex bilinear and we can compute:

$$
\begin{aligned}
\tilde{\nabla}_{X} Y-\nabla_{X} Y & =\Upsilon_{1}(X) Y+\Upsilon_{1}(Y) X+\Upsilon_{2}(X) P Y+\Upsilon_{2}(Y) P X \\
\tilde{\nabla}_{X} Y-\nabla_{X} Y & =\tilde{\nabla}_{P X} P Y-\nabla_{P X} P Y=\Upsilon_{1}(P X) P Y+\Upsilon_{1}(P Y) P X \\
& +\Upsilon_{2}(P X) Y+\Upsilon_{2}(P Y) X
\end{aligned}
$$

and therefore

$$
\begin{gathered}
\Upsilon_{1}(X) Y+\Upsilon_{1}(Y) X+\Upsilon_{2}(X) P Y+\Upsilon_{2}(Y) P X \\
=\Upsilon_{1}(P X) P Y+\Upsilon_{1}(P Y) P X+\Upsilon_{2}(P X) Y+\Upsilon_{2}(P Y) X
\end{gathered}
$$

Thus $\left(\Upsilon_{2}(X)-\Upsilon_{1}(P X)\right)=0$ because we can suppose that $X, Y, P X, P Y$ are linearly independent without loss of generality.

Theorem 2.4. Let ($M, A=\langle E, I, J, K\rangle$) be an almost para-quaternionic structure and ∇ be a linear connection preserving I, J, and K then the class of connections $[\nabla]_{A}$ equals the class

$$
\begin{equation*}
[\nabla]=\nabla+\Upsilon \odot E+(\Upsilon \circ I) \odot I+(\Upsilon \circ J) \odot J+(\Upsilon \circ K) \odot K \tag{5}
\end{equation*}
$$

where Υ is any one form on M.
Proof. First, let us consider the difference tensor $P(X, Y)=\bar{\nabla}_{X}(Y)-\nabla_{X}(Y)$ and one can see that its value is symmetric in each tangent space because both connections share the same torsion. Since both ∇ and $\bar{\nabla}$ preserve I.J.K, the difference tensor P is complex
linear in the second variable. By symmetry it is thus quaternionic bilinear and we can compute:

$$
\begin{aligned}
P(X, Y) & =\Upsilon_{1}(X) Y+\Upsilon_{1}(Y) X+\Upsilon_{2}(X) I Y+\Upsilon_{2}(Y) I X \\
& +\Upsilon_{3}(X) J Y+\Upsilon_{3}(Y) J X+\Upsilon_{4}(X) K Y+\Upsilon_{4}(Y) K X, \\
P(I X, I Y) & =\Upsilon_{1}(I X) I Y+\Upsilon_{1}(I Y) I X+\Upsilon_{2}(I X) Y+\Upsilon_{2}(I Y) X \\
& +\Upsilon_{3}(I X) K Y+\Upsilon_{3}(I Y) K X+\Upsilon_{4}(I X) J Y+\Upsilon_{4}(I Y) J X, \\
P(J X, J Y) & =\Upsilon_{1}(J X) J Y+\Upsilon_{1}(J Y) J X+\Upsilon_{2}(J X) K Y-\Upsilon_{2}(J Y) K X \\
& +\Upsilon_{3}(J X) Y+\Upsilon_{3}(J Y) X+\Upsilon_{4}(J X) I Y+\Upsilon_{4}(J Y) I X, \\
P(K X, K Y) & =\Upsilon_{1}(K X) K Y+\Upsilon_{1}(K Y) K X+\Upsilon_{2}(K X) J Y+\Upsilon_{2}(K Y) J X \\
& +\Upsilon_{3}(K X) I Y+\Upsilon_{3}(K Y) I X+\Upsilon_{4}(K X) Y+\Upsilon_{4}(K Y) X .
\end{aligned}
$$

The sum of three times the first row and the next three rows together implies a system of linear equations because $X, Y, I X, I Y, J X, J Y, K X, K Y$ are linearly independent without loss of generality:

$$
\begin{aligned}
& 3 \Upsilon_{1}(X)+\Upsilon_{2}(I X)+\Upsilon_{3}(J X)+\Upsilon_{4}(K X)=0, \\
& 3 \Upsilon_{2}(X)+\Upsilon_{1}(I X)+\Upsilon_{4}(J X)+\Upsilon_{3}(K X)=0, \\
& 3 \Upsilon_{3}(X)+\Upsilon_{4}(I X)+\Upsilon_{1}(J X)+\Upsilon_{2}(K X)=0, \\
& 3 \Upsilon_{4}(X)+\Upsilon_{3}(I X)+\Upsilon_{2}(J X)+\Upsilon_{1}(K X)=0
\end{aligned}
$$

Hence

$$
3 \Upsilon_{1}(I X)+\Upsilon_{2}(X)+\Upsilon_{3}(K X)+\Upsilon_{4}(J X)=0
$$

and

$$
\Upsilon_{2}(X)=\Upsilon_{1}(I X)+\Upsilon_{3}(K X)+\Upsilon_{4}(J X)
$$

Finally one can compute that $\Upsilon_{3}(X)=\Upsilon_{1}(J X), \Upsilon_{4}(X)=\Upsilon_{1}(K X)$ in the same way.

Definition 2.5. Let M be a smooth manifold of dimension m. A projective A-structure on M is a triple $\left(M, A,[\nabla]_{A}\right)$, where the couple (M, A) is an A-structure and $[\nabla]_{A}$ is a class of A-connections

$$
[\nabla]_{A}=\nabla+\sum_{i=1}^{k=\operatorname{dim} A} \Upsilon \odot F_{i}
$$

for any one form Υ.
For almost complex, product, quaternionic and para-quaternionic structures the class of A-connections $[\nabla]_{A}$ looks as follows:

$$
\begin{aligned}
& {[\nabla]_{A}=\nabla+\Upsilon \odot E-(\Upsilon \circ J) \odot J,} \\
& {[\nabla]_{A}=\nabla+\Upsilon \odot E+(\Upsilon \circ P) \odot P} \\
& {[\nabla]_{A}=\nabla+\Upsilon \odot E-(\Upsilon \circ I) \odot I-(\Upsilon \circ J) \odot J-(\Upsilon \circ K) \odot K,} \\
& {[\nabla]_{A}=\nabla+\Upsilon \odot E+(\Upsilon \circ I) \odot I+(\Upsilon \circ J) \odot J+(\Upsilon \circ K) \odot K}
\end{aligned}
$$

THEOREM 2.6. Let $\left(M, A,[\nabla]_{A}\right)$ be a smooth projective A-structure. A curve $c: \mathbb{R} \rightarrow M$ is A-planar with respect to at least one A-connection $\bar{\nabla}$ on M if and only if $c: \mathbb{R} \rightarrow M$ is a geodesic of some A-connection. Moreover this happens if and only if c is A-planar with respect to all A-connections.

Proof. Consider a curve $c: \mathbb{R} \rightarrow M$ such that $\nabla_{\dot{c}} \dot{c} \in A(\dot{c})$, where $\nabla \in[\nabla]_{A}$. Then

$$
\begin{aligned}
\bar{\nabla}_{\dot{c}} \dot{c} & =\nabla_{\dot{c}} \dot{c}+\sum_{i=1}^{\operatorname{dim} A} 2 \Upsilon_{i}^{1}(\dot{c}) F_{i}(\dot{c}) \\
\bar{\nabla}_{\dot{c}} \dot{c} & =\sum_{i=1}^{\operatorname{dim} A} \xi_{i} F_{i}(\dot{c})+\sum_{i=1}^{\operatorname{dim} A} 2 \Upsilon_{i}^{1}(\dot{c}) F_{i}(\dot{c}), \\
\bar{\nabla}_{\dot{c}} \dot{c} & =\sum_{i=1}^{\operatorname{dim} A}\left(2 \Upsilon_{i}^{1}(\dot{c})+\xi_{i}\right) F_{i}(\dot{c})
\end{aligned}
$$

The set of equations $2 \Upsilon_{i}^{1}(\dot{c})+\xi_{i}=0$ has solutions, i.e. there exists $\Upsilon_{i}^{1} \in \Omega^{1}(M)$ such that c is a geodesic curve for the A-connection $\bar{\nabla}$. The rest of the proof is easy.

Theorem 2.7. Let M be a smooth manifold of dimension $2 n$, where $n>1$ and let $(M, A,[\nabla])$ be a projective A-structure on M of dimension n with generic rank n, where A is an algebra. Let $\bar{\nabla}$ be a linear connection on M such that ∇ and $\bar{\nabla}$ preserve any $F \in A$ and they have the same torsion. If any geodesic of ∇ is A-planar for $\bar{\nabla}$, then $\bar{\nabla}$ lies in the projective equivalence class of ∇.

Proof. First, let us consider the difference tensor $P(X, Y)=\bar{\nabla}_{X}(Y)-\nabla_{X}(Y)$ and one can see that its value is symmetric in each tangent space because both connections share the same torsion. Since both ∇ and $\bar{\nabla}$ preserve A, the difference tensor P is A-linear in the second variable. By symmetry it is thus A-bilinear.

Consider a curve $c: \mathbb{R} \rightarrow M$ such that $X=\dot{c} \in \mathcal{V}$ and such that c is geodesics with respect to ∇ and A-planar with respect to $\bar{\nabla}$. In this case the deformation $P(X, X):=$ $\bar{\nabla}_{X}(X)-\nabla_{X}(X)$ equals $\sum_{i=1}^{k=\operatorname{dim} A} \Upsilon_{i}(X) F_{i}(X)$, and

$$
\begin{aligned}
P(X, Y) & =\frac{1}{2}\left(\sum_{i=1}^{k=\operatorname{dim} A} \Upsilon_{i}(X+Y) F_{i}(X+Y)-\sum_{i=1}^{k=\operatorname{dim} A} \Upsilon_{i}(X) F_{i}(X)-\sum_{i=1}^{k=\operatorname{dim} A} \Upsilon_{i}(Y) F_{i}(Y)\right) \\
& =\frac{1}{2}\left(\sum_{i=1}^{k=\operatorname{dim} A} \Upsilon_{i}(X+Y) F_{i}(X)\right.
\end{aligned}
$$

$$
\left.+\sum_{i=1}^{k=\operatorname{dim} A} \Upsilon_{i}(X+Y) F_{i}(Y)-\sum_{i=1}^{k=\operatorname{dim} A} \Upsilon_{i}(X) F_{i}(X)-\sum_{i=1}^{k=\operatorname{dim} A} \Upsilon_{i}(Y) F_{i}(Y)\right)
$$

$$
=\frac{1}{2}\left(\sum_{i=1}^{k=\operatorname{dim} A}\left(\Upsilon_{i}(X+Y)-\Upsilon_{i}(X)\right) F_{i}(X)\right.
$$

$$
\left.+\sum_{i=1}^{k=\operatorname{dim} A}\left(\Upsilon_{i}(X+Y)-\Upsilon_{i}(Y)\right) F_{i}(Y)\right)
$$

by polarization.

It is clear by construction that $\Upsilon_{i}(t X)=t \Upsilon_{i}(X)$ for $t \in \mathbb{R}$ and that $P(s X, t Y)=$ $\operatorname{st} P(X, Y)$ for any $s, t \in \mathbb{R}$. Assuming that X and Y are A-linearly independent we compare the coefficients of X in the expansions of $P(s X, t Y)=s t P(X, Y)$ as above to get

$$
s \Upsilon_{i}(s X+t Y)-s \Upsilon_{i}(s X)=s t\left(\Upsilon_{i}(X+Y)-\Upsilon_{i}(X)\right)
$$

Dividing by s and putting $t=1$ and taking the limit $s \rightarrow 0$, we conclude that $\Upsilon_{1}(X+Y)=$ $\Upsilon_{1}(X)+\Upsilon_{1}(Y)$.

We have proved that the form Υ_{i} is linear in X and

$$
(X, Y) \rightarrow \sum_{i=1}^{k=\operatorname{dim} A}\left(\Upsilon_{i}(Y) F_{i}(X)+\Upsilon_{i}(X) F_{i}(Y)\right)
$$

is a symmetric A-bilinear map which agrees with $P(X, Y)$. If both arguments coincide, it always agrees with P by polarization and $\bar{\nabla}$ lies in the projective equivalence class $[\nabla]_{A}$.

Theorem 2.8 ([HS06]). Let (M, A), $\left(M^{\prime}, A^{\prime}\right)$ be smooth manifolds of dimension m equipped with A-structure and A^{\prime}-structure of the same generic rank $\ell \leq 2 m$ and assume that the A-structure satisfies the property

$$
\begin{equation*}
\forall X \in T_{x} M, \forall F \in A, \exists c_{X} \mid \dot{c}_{X}=X, \nabla_{\dot{c}_{X}} \dot{c}_{X}=\beta(X) F(X) \tag{6}
\end{equation*}
$$

where $\beta(X) \neq 0$. If $f: M \rightarrow M^{\prime}$ is an $\left(A, A^{\prime}\right)$-planar mapping. Then f is a morphism of A-structures, i.e. $f^{*} A^{\prime}=A$.

Theorem 2.9. Let $\left(M, A,[\nabla]_{A}\right),\left(M^{\prime}, A^{\prime},[\nabla]_{A^{\prime}}\right)$ be smooth manifolds of dimension m equipped with projective A-structure and projective A^{\prime}-structure of the same generic rank $\ell \leq 2 m$, where A, A^{\prime} are algebras. If $f: M \rightarrow M^{\prime}$ is an $\left(A, A^{\prime}\right)$-planar mapping. Then f is a morphism of A-structures, i.e. $f^{*} A^{\prime}=A$.

Proof. We have to prove (6). Let us consider $F \in A$, an A-connection ∇, and a curve $c: \mathbb{R} \rightarrow M$ such that $\dot{c}=X$ and $\nabla_{X} X=0$ for any $X \in T_{x} M$ exists. We shall find a connection $\bar{\nabla} \in[\nabla]_{A}$ such that $\bar{\nabla}_{X} X=\beta(X) F(X)$, but the connection $\bar{\nabla}=\nabla+\beta \otimes F$ belongs to $[\nabla]_{A}$ directly.

Corollary 2.10. Let $(M, A,[\nabla]),\left(M^{\prime}, A,[\bar{\nabla}]_{A}\right)$ be smooth manifolds of dimension $2 m$ equipped with projective A-structures of the generic rank m. Let $f: M \rightarrow M^{\prime}$ be a diffeomorphism between two projective A-structures. Then f is a morphism of A-structures if and only if it preserves the class of unparameterized geodesics of all A-connections on M and M^{\prime}.

The corollary above holds for an almost product structure on a manifold $M, \operatorname{dim} M \geq 4$, an almost complex structure on a manifold M, $\operatorname{dim} M \geq 4$, an almost quaternionic structure on a manifold $M, \operatorname{dim} M \geq 8$ and an almost para-quaternionic structure on a manifold $M, \operatorname{dim} M \geq 8$.

Acknowledgments. This research was supported by the Ministry of Education, Youth and Sports of the Czech Republic, research plan MSM 0021630518.

References

[HS06] J. Hrdina and J. Slovák, Generalized planar curves and quaternionic geometry, Global Analysis and Geometry 29 (2006), 349-360.
[HS08] J. Hrdina and J. Slovák, Morphisms of almost product projective geometries, in: Differential Geometry and Applications, World Scientific, 2008, 243-251.
[H09] J. Hrdina, Almost complex projective structures and their morphisms, Archivum Mathematicum 45 (2009), 325-334.
[MS] J. Mikeš and N. S. Sinyukov, On quasiplanar mappings of spaces of affine connection, Sov. Math. 27 (1983), 63-70.

Received February 2, 2010; Revised January 28, 2011

