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Abstract. Generalized planar curves (A-curves) are more general analogues of F -planar curves

and geodesics. In particular, several well known geometries are described by more than one

affinor. The best known example is the almost quaternionic geometry. A new approach to this

topic (A-structures) was started in our earlier papers. In this paper we expand the concept of

A-structures to projective A-structures.

1. A-structures. The concept of planar curves is a generalization of a geodesics on
a smooth manifold equipped with certain structure. In [MS] authors proved a set of
facts about structures equipped with two different affinors. A manifold equipped with an
affine connection and a set of affinors A = {F1, . . . , Fl} is called an A-structure and a
curve satisfying ∇ċċ ∈ 〈F1, . . . , Fl〉 is called A-planar. There are some very well known
structures equipped with more than one affinor based on quaternions.

Definition 1.1. Let M be a smooth manifold such that dim(M) = m. Let A be a
smooth `-dimensional (` < m) vector subbundle in T ∗M ⊗ TM such that the identity
affinor E = idTM restricted to TxM belongs to AxM ⊂ T ∗xM⊗TxM at each point x ∈M.

We say that M is equipped with an `-dimensional A-structure.

An almost quaternionic structure (A = 〈E, I, J,K〉, I2 = J2 = −idTM , K = IJ ,
IJ = −JI) and almost complex structure (A = 〈E, J〉, J2 = −idTM ) are the best known
examples of A-structures. Another one is e.g. an almost product structure (A = 〈E, J〉,
J2 = idTM ) or an almost para-quaternionic structure (A = 〈E, I, J,K〉, I2 = J2 = idTM ,
K = IJ , IJ = JI) etc.
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Classically, an F -planar curve is a curve c : R→M satisfying the condition

∇ċċ ∈ 〈ċ, F (ċ)〉.

Clearly geodesics are F -planar curves for all affinors F , because ∇ċċ ∈ 〈ċ〉 ⊂ 〈ċ, F (ċ)〉.

Definition 1.2. Let M be a smooth manifold equipped with an A-structure and a linear
connection ∇. A smooth curve c : R→M is said to be A-planar if

∇ċċ ∈ A(ċ).

Definition 1.3. Let M be a smooth manifold equipped with an A-structure and a linear
connection ∇. Let M̄ be another manifold with a linear connection ∇̄ and a B-structure.
A diffeomorphism f : M → M̄ is called (A,B)-planar if each A-planar curve c on M is
mapped by f onto the B-planar curve f?c on M .

Now, we shall prove some basic facts about A-planar curves and their morphisms.

Definition 1.4. For any tangent vector X ∈ TxM we shall write Ax(X) for the vector
subspace

Ax(X) = {F (X)|F ∈ AxM} ⊂ TxM

and call it the A-hull of the vector X. Similarly, the A-hull of a vector field is a subbundle
in TM obtained pointwise.

For example, A-hull for an almost quaternionic structure is

Ax(X) = {aX + bI(X) + cJ(X) + dK(X)|a, b, c, d ∈ R}.

Definition 1.5. Let (M,A) be a smooth manifold M equipped with an `-dimensional
A-structure. We say that the A-structure has weak generic rank ` if for each x ∈ M the
subset of vectors X ∈ TxM such that the A-hull Ax(X) generates a vector subspace of
dimension ` is open and dense.

We denote
V := {X ∈ TxM |dimA(X) = `}.

The affinor J on an almost product structure has eigenvalues ±1. Clearly, if JX =
λX, then X = J2X = λJX = λ2X, and thus λ = ±1 and TxM = V + ⊕ V −. Hence
X + FX ∈ V + and X − FX ∈ V − and one can easily see that

dimA(X + FX) = 1, dimA(2X + FX) = 2.

Lemma 1.6. Every A-structure (M,A) on a manifold M , dimM ≥ dimA, where A is
an algebra with inversion, has weak generic rank dimA.

Proof. Consider X such that X /∈ V, therefore ∃F ∈ A = 〈E,G〉, FX = 0, and F−1FX =
0 implies X = 0.

Lemma 1.7. Every two dimensional A-structure (M,A) on a manifold M , dimM ≥ 2,
has weak generic rank 2.

Proof. Consider X such that X /∈ V, therefore ∃F ∈ A = 〈E,G〉, FX = aX+bG(X) = 0,
i.e. the vector X has to be an eigenvector of G and the vector X has to belong to one of
finitely many k-dimensional (k < dimM) subspaces. Finally, the complement V is open
and dense.
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Lemma 1.8. Let (M,A) be a para-quaternionic structure on a manifold of dimension
dimM > 4. Then the A-structure A = 〈E,F,G, FG〉 has weak generic rank 4.

Proof. Recall from linear algebra that two commuting diagonalizable linear maps are
simultaneously diagonalizable, i.e. for two commuting product structures we have

F =
(
EmF

0
0 −EnF

)
, G =

(
EmG

0
0 −EnG

)
, FG =

Ek1 0 0
0 −Ek2 0
0 0 Ek3

 .

Let X /∈ V, i.e. ∃H such that HX = 0, where

H :=

c1Ek1 0 0
0 c2Ek2 0
0 0 c3Ek3


for all c1, c2, c3 ∈ R. Vector X has to be a vector inside kerH, i.e. has to belong to one of
finitely many k-dimensional (k < dimM) subspaces. Finally, the complement V is open
and dense.

We have proved that an almost product structure and an almost complex structure
have weak generic rank 2 together with the fact that an almost quaternionic structure
and an almost para-quaternionic structure have weak generic rank 4.

Definition 1.9. Let (M,A) be a smooth manifold M equipped with an `-dimensional
A-structure. We say that the A-structure has generic rank ` if for each x ∈M the subset
of vectors (X,Y ) ∈ TxM ⊕ TxM such that the A-hulls Ax(X) and Ax(Y ) generate a
vector subspace Ax(X)⊕Ax(Y ) of dimension 2` is open and dense.

Theorem 1.10 ([HS08]). Let (M,A) be a smooth manifold of dimension n with `-dimen-
sional A-structure such that 2` ≤ dimM . If Ax is an algebra (i.e. for all f, g ∈ Ax, fg =
f ◦ g ∈ Ax) for all x ∈M and A has weak generic rank `, then the structure has generic
rank `.

Now, we know that an almost product structure and an almost complex structure
have a generic rank 2 (on a manifold M , dimM ≥ 4) together with fact that an almost
quaternionic structure and an almost para-quaternionic structure have a generic rank 4
(on a manifold M , dimM ≥ 8).

2. Projective A-structures. LetM be a smooth manifold equipped with anA-structure
and a linear connection ∇. The connection is said to be an A-connection if it belongs to
the class of connections

[∇]A = ∇+
k=dim A∑

i=1

Υi � Fi, (1)

where 〈F1, . . . , Fk〉 = A as a vector space, � is symmetric tensor product and Υi are one
forms on M .

Theorem 2.1. Let (M,A = 〈E, J〉) be an almost complex structure and ∇ be a linear
connection preserving J , i.e. ∇J = 0. Then the class of A-connections [∇]A equals the
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class
[∇] = ∇+ Υ� E − (Υ ◦ J)� J, (2)

where Υ is any one form on M .

Proof. First, let us consider the difference tensor P (X,Y ) = ∇̄X(Y ) − ∇X(Y ) and one
can see that its value is symmetric in each tangent space because both connections share
the same torsion. Since both∇ and ∇̄ preserve J , the difference tensor P is complex linear
in the second variable. By symmetry it is thus complex bilinear and we can compute:

∇̃XY −∇XY = Υ1(X)JY + Υ1(Y )X −Υ2(X)JY −Υ2(Y )X,

∇̃JXJY −∇JXJY = J2(∇̃XY −∇XY ) = −(∇̃XY −∇XY ),

−(∇̃XY −∇XY ) = Υ1(JX)JY + Υ1(JY )JX −Υ2(JX)Y −Υ2(JY )X.

The sum of the first and third row implies

−Υ1(X)Y −Υ1(Y )X −Υ2(X)JY −Υ2(Y )JX

= Υ1(JX)JY + Υ1(JY )JX −Υ2(JX)Y −Υ2(JY )X.

Thus (Υ2(X) + Υ1(JX)) = 0 because we can suppose that X,Y, JX, JY are linearly
independent without loss of generality.

Theorem 2.2. Let (M,Q = 〈I, J,K〉) be an almost quaternionic structure and ∇ be
a linear connection preserving I, J,K, i.e. ∇I = ∇J = ∇K = 0. Then the class of
connections [∇]A equals the class

[∇] = ∇+ Υ� E − (Υ ◦ I)� I − (Υ ◦ J)� J − (Υ ◦K)�K, (3)

where Υ is any one form on M .

Proof. First, let us consider the difference tensor P (X,Y ) = ∇̄X(Y )−∇X(Y ) and one can
see that its value is symmetric in each tangent space because both connections share the
same torsion. Since both ∇ and ∇̄ preserve I, J,K the difference tensor P is quaternionic
linear in the second variable. By symmetry it is thus quaternionic bilinear and we can
compute:

P (X,Y ) = Υ1(X)Y + Υ1(Y )X + Υ2(X)IY + Υ2(Y )IX + Υ3(X)JY

+ Υ3(Y )JX + Υ4(X)KY + Υ4(Y )KX,

P (IX, IY ) = Υ1(IX)IY + Υ1(IY )IX −Υ2(IX)Y −Υ2(IY )X + Υ3(IX)KY

+ Υ3(IY )KX −Υ4(IX)JY −Υ4(IY )JX,

P (JX, JY ) = Υ1(JX)JY + Υ1(JY )JX −Υ2(JX)KY −Υ2(JY )KX

−Υ3(JX)Y −Υ3(JY )X + Υ4(JX)IY −Υ4(JY )IX,

P (KX,KY ) = Υ1(KX)KY + Υ1(KY )KX + Υ2(KX)JY −Υ2(KY )JX

−Υ3(KX)IY −Υ3(KY )IX −Υ4(KX)Y −Υ4(KY )X.

The sum of three times the first row and the last three rows implies a system of lin-
ear equations because we can suppose that X,Y, IX, IY, JX, JY,KX,KY are linearly
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independent without loss of generality:

−3Υ1(X)−Υ2(IX)−Υ3(JX)−Υ4(KX) = 0,

−3Υ2(X) + Υ1(IX) + Υ4(JX)−Υ3(KX) = 0,

−3Υ3(X)−Υ4(IX) + Υ1(JX) + Υ2(KX) = 0,

−3Υ4(X) + Υ3(IX)−Υ2(JX) + Υ1(KX) = 0.

Hence

−3Υ1(IX) + Υ2(X)−Υ3(KX) + Υ4(JX) = 0,

3Υ2(X)−Υ1(IX)−Υ4(JX) + Υ3(KX) = 0,

and finally
Υ2(X) = −Υ1(IX).

One can compute that Υ3(X) = −Υ1(JX), Υ4(X) = −Υ1(KX) in the same way.

Theorem 2.3. Let (M,A = 〈E,P 〉) be an almost product structure and ∇ be a linear
connection preserving P , i.e. ∇P = 0. Then the class of connections [∇]A equals the class
[∇]A.

[∇] = ∇+ Υ� E + (Υ ◦ P )� P, (4)

where Υ is any one form on M .

Proof. First, let us consider the difference tensor P (X,Y ) = ∇̄X(Y ) − ∇X(Y ) and one
can see that its value is symmetric in each tangent space because both connections share
the same torsion. Since both∇ and ∇̄ preserve P , the difference tensor P is complex linear
in the second variable. By symmetry it is thus complex bilinear and we can compute:

∇̃XY −∇XY = Υ1(X)Y + Υ1(Y )X + Υ2(X)PY + Υ2(Y )PX,

∇̃XY −∇XY = ∇̃PXPY −∇PXPY = Υ1(PX)PY + Υ1(PY )PX

+ Υ2(PX)Y + Υ2(PY )X

and therefore
Υ1(X)Y + Υ1(Y )X + Υ2(X)PY + Υ2(Y )PX

= Υ1(PX)PY + Υ1(PY )PX + Υ2(PX)Y + Υ2(PY )X

Thus (Υ2(X)−Υ1(PX)) = 0 because we can suppose that X,Y, PX,PY are linearly
independent without loss of generality.

Theorem 2.4. Let (M,A = 〈E, I, J,K〉) be an almost para-quaternionic structure and
∇ be a linear connection preserving I, J, and K then the class of connections [∇]A equals
the class

[∇] = ∇+ Υ� E + (Υ ◦ I)� I + (Υ ◦ J)� J + (Υ ◦K)�K, (5)

where Υ is any one form on M .

Proof. First, let us consider the difference tensor P (X,Y ) = ∇̄X(Y ) − ∇X(Y ) and one
can see that its value is symmetric in each tangent space because both connections share
the same torsion. Since both ∇ and ∇̄ preserve I.J.K, the difference tensor P is complex
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linear in the second variable. By symmetry it is thus quaternionic bilinear and we can
compute:

P (X,Y ) = Υ1(X)Y + Υ1(Y )X + Υ2(X)IY + Υ2(Y )IX

+ Υ3(X)JY + Υ3(Y )JX + Υ4(X)KY + Υ4(Y )KX,

P (IX, IY ) = Υ1(IX)IY + Υ1(IY )IX + Υ2(IX)Y + Υ2(IY )X

+ Υ3(IX)KY + Υ3(IY )KX + Υ4(IX)JY + Υ4(IY )JX,

P (JX, JY ) = Υ1(JX)JY + Υ1(JY )JX + Υ2(JX)KY −Υ2(JY )KX

+ Υ3(JX)Y + Υ3(JY )X + Υ4(JX)IY + Υ4(JY )IX,

P (KX,KY ) = Υ1(KX)KY + Υ1(KY )KX + Υ2(KX)JY + Υ2(KY )JX

+ Υ3(KX)IY + Υ3(KY )IX + Υ4(KX)Y + Υ4(KY )X.

The sum of three times the first row and the next three rows together implies a sys-
tem of linear equations because X,Y, IX, IY, JX, JY,KX,KY are linearly independent
without loss of generality:

3Υ1(X) + Υ2(IX) + Υ3(JX) + Υ4(KX) = 0,

3Υ2(X) + Υ1(IX) + Υ4(JX) + Υ3(KX) = 0,

3Υ3(X) + Υ4(IX) + Υ1(JX) + Υ2(KX) = 0,

3Υ4(X) + Υ3(IX) + Υ2(JX) + Υ1(KX) = 0.

Hence
3Υ1(IX) + Υ2(X) + Υ3(KX) + Υ4(JX) = 0

and
Υ2(X) = Υ1(IX) + Υ3(KX) + Υ4(JX).

Finally one can compute that Υ3(X) = Υ1(JX), Υ4(X) = Υ1(KX) in the same
way.

Definition 2.5. Let M be a smooth manifold of dimension m. A projective A-structure
on M is a triple (M,A, [∇]A), where the couple (M,A) is an A-structure and [∇]A is a
class of A-connections

[∇]A = ∇+
k=dim A∑

i=1

Υ� Fi,

for any one form Υ.

For almost complex, product, quaternionic and para-quaternionic structures the class
of A-connections [∇]A looks as follows:

[∇]A = ∇+ Υ� E − (Υ ◦ J)� J,
[∇]A = ∇+ Υ� E + (Υ ◦ P )� P,
[∇]A = ∇+ Υ� E − (Υ ◦ I)� I − (Υ ◦ J)� J − (Υ ◦K)�K,
[∇]A = ∇+ Υ� E + (Υ ◦ I)� I + (Υ ◦ J)� J + (Υ ◦K)�K.
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Theorem 2.6. Let (M,A, [∇]A) be a smooth projective A-structure. A curve c : R→M

is A-planar with respect to at least one A-connection ∇̄ on M if and only if c : R → M

is a geodesic of some A-connection. Moreover this happens if and only if c is A-planar
with respect to all A-connections.

Proof. Consider a curve c : R→M such that ∇ċċ ∈ A(ċ), where ∇ ∈ [∇]A. Then

∇̄ċċ = ∇ċċ+
dim A∑
i=1

2Υ1
i (ċ)Fi(ċ),

∇̄ċċ =
dim A∑
i=1

ξiFi(ċ) +
dim A∑
i=1

2Υ1
i (ċ)Fi(ċ),

∇̄ċċ =
dim A∑
i=1

(2Υ1
i (ċ) + ξi)Fi(ċ).

The set of equations 2Υ1
i (ċ) + ξi = 0 has solutions, i.e. there exists Υ1

i ∈ Ω1(M) such
that c is a geodesic curve for the A-connection ∇̄. The rest of the proof is easy.

Theorem 2.7. Let M be a smooth manifold of dimension 2n, where n > 1 and let
(M,A, [∇]) be a projective A-structure on M of dimension n with generic rank n, where
A is an algebra. Let ∇̄ be a linear connection on M such that ∇ and ∇̄ preserve any
F ∈ A and they have the same torsion. If any geodesic of ∇ is A-planar for ∇̄, then ∇̄
lies in the projective equivalence class of ∇.

Proof. First, let us consider the difference tensor P (X,Y ) = ∇̄X(Y ) − ∇X(Y ) and one
can see that its value is symmetric in each tangent space because both connections share
the same torsion. Since both ∇ and ∇̄ preserve A, the difference tensor P is A-linear in
the second variable. By symmetry it is thus A-bilinear.

Consider a curve c : R → M such that X = ċ ∈ V and such that c is geodesics with
respect to ∇ and A-planar with respect to ∇̄. In this case the deformation P (X,X) :=
∇̄X(X)−∇X(X) equals

∑k=dim A
i=1 Υi(X)Fi(X), and

P (X,Y ) =
1
2

( k=dim A∑
i=1

Υi(X + Y )Fi(X + Y )−
k=dim A∑

i=1

Υi(X)Fi(X)−
k=dim A∑

i=1

Υi(Y )Fi(Y )
)

=
1
2

( k=dim A∑
i=1

Υi(X + Y )Fi(X)

+
k=dim A∑

i=1

Υi(X + Y )Fi(Y )−
k=dim A∑

i=1

Υi(X)Fi(X)−
k=dim A∑

i=1

Υi(Y )Fi(Y )
)

=
1
2

( k=dim A∑
i=1

(Υi(X + Y )−Υi(X))Fi(X)

+
k=dim A∑

i=1

(Υi(X + Y )−Υi(Y ))Fi(Y )
)

by polarization.
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It is clear by construction that Υi(tX) = tΥi(X) for t ∈ R and that P (sX, tY ) =
stP (X,Y ) for any s, t ∈ R. Assuming that X and Y are A-linearly independent we
compare the coefficients of X in the expansions of P (sX, tY ) = stP (X,Y ) as above to
get

sΥi(sX + tY )− sΥi(sX) = st(Υi(X + Y )−Υi(X)).

Dividing by s and putting t = 1 and taking the limit s→ 0, we conclude that Υ1(X+Y ) =
Υ1(X) + Υ1(Y ).

We have proved that the form Υi is linear in X and

(X,Y )→
k=dim A∑

i=1

(Υi(Y )Fi(X) + Υi(X)Fi(Y ))

is a symmetric A-bilinear map which agrees with P (X,Y ). If both arguments coincide, it
always agrees with P by polarization and ∇̄ lies in the projective equivalence class [∇]A.

Theorem 2.8 ([HS06]). Let (M,A), (M ′, A′) be smooth manifolds of dimension m

equipped with A-structure and A′-structure of the same generic rank ` ≤ 2m and as-
sume that the A-structure satisfies the property

∀X ∈ TxM, ∀F ∈ A,∃cX | ċX = X, ∇ċX
ċX = β(X)F (X), (6)

where β(X) 6= 0. If f : M →M ′ is an (A,A′)-planar mapping. Then f is a morphism of
A-structures, i.e. f∗A′ = A.

Theorem 2.9. Let (M,A, [∇]A), (M ′, A′, [∇]A′) be smooth manifolds of dimension m

equipped with projective A-structure and projective A′-structure of the same generic rank
` ≤ 2m, where A, A′ are algebras. If f : M →M ′ is an (A,A′)-planar mapping. Then f

is a morphism of A-structures, i.e. f∗A′ = A.

Proof. We have to prove (6). Let us consider F ∈ A, an A-connection ∇, and a curve
c : R → M such that ċ = X and ∇XX = 0 for any X ∈ TxM exists. We shall find a
connection ∇̄ ∈ [∇]A such that ∇̄XX = β(X)F (X), but the connection ∇̄ = ∇+ β ⊗ F
belongs to [∇]A directly.

Corollary 2.10. Let (M,A, [∇]), (M ′, A, [∇̄]A) be smooth manifolds of dimension 2m
equipped with projective A-structures of the generic rank m. Let f : M →M ′ be a diffeo-
morphism between two projective A-structures. Then f is a morphism of A-structures if
and only if it preserves the class of unparameterized geodesics of all A-connections on M

and M ′.

The corollary above holds for an almost product structure on a manifoldM , dimM≥4,
an almost complex structure on a manifold M , dimM ≥ 4, an almost quaternionic
structure on a manifold M , dimM ≥ 8 and an almost para-quaternionic structure on a
manifold M , dimM ≥ 8.
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