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Abstract. We generalize the result of Lerman [Letters Math. Phys. 15 (1988)] concerning the
condition of fatness of the canonical connection in a certain principal fibre bundle. We also
describe new classes of symplectically fat bundles: twistor budles over spheres, bundles over
quaternionic Kähler homogeneous spaces and locally homogeneous complex manifolds.

1. Introduction. Let there be given a principal fiber bundle G → P → B with a con-
nection determined by a horizontal distribution H. Let θ and Ω be the connection form
and curvature form of the connection, respectively. The curvature form is a g-valued
2-form. Denote the pairing between g and its dual g∗ by 〈, 〉. By definition, a vector
u ∈ g∗ is fat if the 2-form

(X,Y )→ 〈Ω(X,Y ), u〉

is non-degenerate for all horizontal vector fields X,Y . Note that if a connection admits
at least one fat vector, it admits a whole coadjoint orbit of fat vectors. Indeed, since
R∗gΩ = Ad g−1Ω for any g ∈ G, we have

〈Ω(X,Y ), Adg u〉 = 〈Adg−1Ω(X,Y ), u〉 = 〈Ω(R∗gX,R
∗
gY ), u〉.

The role of fat bundles comes from the following theorem of Sternberg and Weinstein
[GLS], [L], [W].

Theorem 1. Let there be given a principal bundle

G→ P → B
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and a symplectic G-manifold F with hamiltonian G-action and moment map µ : F → g∗.
If there exists a connection in the principal bundle such that all vectors in µ(F ) ⊂ g∗ are
fat, then the total space of the associated bundle

F → P ×G F → B

admits a fiberwise symplectic structure.

In the sequel, we will call such bundles symplectically fat. Clearly, the theorem gives
a method to construct fiber bundles with fiberwise symplectic structures. The latter turns
out to be important in symplectic geometry. However, such bundles are scarce (compare
[C], [GLS]). In fact, known explicit constructions are fiberings of coadjoint orbits over
coadjoint orbits [GLS]. There are obstructions to fatness [DR], [W]. The aim of this paper
is to describe some new classes of fat bundles. Here are the main points of this note.

1. First, we consider the homogeneous situation, that is, fiber bundles of the form

H/V → K/V → K/H. (1)

We slightly modify a result of [L] showing that for any homogeneous space K/H
of semisimple Lie group K with rank K = rank H, the canonical connection in the
principal bundle

H → K → K/H

admits fat vectors (Proposition 1).
2. Proposition 1, although simple, yields not only coadjoint orbit hierarchy, but some

other interesting symplectically fat fiber bundles: twistor bundles over spheres and
homogeneous quaternionic Kähler manifolds (Proposition 2, Proposition 3);

3. The same method yields the structure of a symplectically fat fiber bundle on some
locally homogeneous complex manifolds in the sense of Griffiths and Schmid [GrS],
(Theorem 3, Corollary 2). A particular case of this was used in [ABCKT] to con-
struct an example of a pseudo-Kähler but non-Kähler manifold.

We complete this introduction with a remark that suggests at least one case, when the
fatness condition is easier to check.

Lemma 1. Assume that a principal fiber bundle G → P → B has a fat vector, say, u.
Then the associated bundle

O(u)→ P ×G O(u)→ B

is symplectically fat. Here O(u) denotes the coadjoint orbit of u ∈ g∗.

The lemma is straightforward, since we know that u ∈ g∗ generates the whole coadjoint
orbit of fat vectors, and the moment map for a coadjoint orbit is just an embedding
O(u) ↪→ g∗ [W].

2. Fatness of canonical connections in principal bundles K → K/H. In [L]
Lerman expressed the fatness condition, in terms of Lie algebra data, for the canonical
connection in the principal bundle

H → K → K/H
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provided that K is compact and semisimple, and K/H is a coadjoint orbit. In fact,
a weaker restriction that H is compact and has maximal rank in K is sufficient. For
that reason, we present a somewhat modified and generalized proof of Lerman’s result.
We don’t assume that K is compact, but we do assume that H is compact, and K is
semisimple. Let us start with several known facts from the Lie theory and introduce
notation. We denote by k the Lie algebra of a Lie group K. Symbol kc denotes the
complexification. Let t be a maximal abelian subalgebra in k. Then tc will be a Cartan
subalgebra in kc. We denote by ∆ = ∆(kc, tc) the root system of kc with respect to tc. Also,
if hc is a maximal rank subalgebra of kc, we choose tc in a way to get tc ⊂ hc ⊂ kc. Under
these choices the root system for (hc, tc) is a subsystem of ∆. Denote this subsystem
as ∆(h). Consider the orthogonal complement mc to hc with respect to the Killing form
(note that the decomposition k = h⊕m complexifies to kc = hc⊕mc). Thus, we have root
decompositions:

kc = tc +
∑
α∈∆

kα, hc = tc +
∑

α∈∆(h)

kα, mc =
∑

α∈∆\∆(h)

kα.

Since, by assumption, K is semisimple, the Killing form B is non-degenerate, hence we
can identify Lie algebra k with its dual k∗ via B. Denote this identification by u → Xu

(u ∈ k∗). Let C ⊂ tc be a closed Weyl chamber and let Cα denote its wall determined by
the root α.

Proposition 1. Let K be a semisimple Lie group, and H its compact subgroup of max-
imal rank. Then, for the canonical connection in the principal bundle

H → K → K/H

a vector u ∈ h∗ is fat if and only if Xu does not belong to the set

Ad(H)(∪α∈∆\∆(h)Cα ∩ t).

Proof. We know from the general theory of invariant connections that the curvature form
of the canonical connection in the given principal bundle has the form

Ω(X∗, Y ∗) = −1
2

[X,Y ]h, X, Y ∈ m.

Here X∗, Y ∗ denote the horizontal lifts of the vector fields on K/H determined by X,Y .
Hence the fatness condition is expressed as the non-degeneracy of the form

(X,Y )→ B(Xu, [X,Y ]h).

Here and throughout the paper, the subscript h denotes the projection onto the h-
summand with respect to a vector space decomposition with summand h. Recall that here
the pairing is given by the Killing form. Assume first that Xu ∈ t. Then, B(Xu,m) = 0.
Hence

B(Xu, [X,Y ]h) = B(Xu, [X,Y ]) = B([Xu, X], Y )

(the latter is a property of the Killing form). But B is non-degenerate, as also is its
restriction on h (since h is compact). Thus the latter form is non-degenerate if and only
if [Xu, X] 6= 0. This can be written as Ker adXu ∩m = 0, or, equivalently, as

zk(Xu) ∩m = 0. (2)
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Clearly, the latter can be equivalently complexified. However, since, by assumption,
Xu ∈ tc ⊂ hc, the equality [Xu, X] = 0 shows that either X ∈ tc, or α(Xu) = 0 for
some root α ∈ ∆. Taking into consideration the root decompositions above, we see that
(2) is equivalent to the fact that Xu cannot centralize any element in mc, and thus
α(Xu) 6= 0 if and only if α ∈ ∆ \∆(h). Thus, if Xu ∈ tc, it is fat if and only if it does not
belong to t∩Cα, for some α ∈ ∆\∆(h). The general case follows, since h =

⋃
h∈H Adh(t)

for compact H (all Cartan subalgebras of h are conjugate, and each point of h is touched
by a Cartan subalgebra [K]). Here we again identify adjoint and coadjoint actions.

Corollary 1. Let K be a semisimple Lie group of non-compact type, which is a real
form of a semisimple complex Lie group KC . Assume that V = K ∩ P is the compact
intersection of a parabolic subgroup P ⊂ KC with K. Let H be a maximal compact
subgroup in K containing V . Then the conclusions of Proposition 1 hold.

Proof. It is sufficient to show that rankK = rankH. Let kc be a complexification of k,
and let c ⊃ h be a maximal compact subalgebra in kc (it is a compact real form of kc). It
is shown in [GrS] that rank c = rank h. But this means that

rank k = rank kc = rank c = rank h

and rankK = rankH.

This modification of Lerman’s proof enables us to solve the problem of fatness com-
pletely in the case of canonical connection and fibers which are coadjoint orbits.

Theorem 2. The canonical connection in the bundle

H → K → K/H

determined by a semisimple Lie group K and a compact subgroup H admits fat vectors
if rank K = rank H. If K is compact, the converse is also true.

Proof. By Proposition 1, if rank K = rank H, there exist fat vectors (for example, those
which lie in the interior of the Weyl chamber). Assume that rank K > rank H. Assume
that there exists a fat vector u ∈ h∗. Then the whole orbit H/V ∼= O(u) ⊂ h∗ is fat.
One can check that the moment map of O is just an embedding O ↪→ h∗. Hence, the
associated bundle

O → K ×H O → K/H

admits a symplectic structure. But the total space of the latter bundle is

K ×H O(u) ∼= K ×H (H/V ) ∼= K/V.

Hence, K/V admits a symplectic structure, say, ω. Let [ω] ∈ H2(K/V,R) be the co-
homology class of ω. It is well known and easy to see that [ω] always contains also a
K-invariant representative, say ω̃. Since [ω]m 6= 0, for m = dim (K/V ), we have that nec-
essarily ω̃m is a nowhere vanishing m-form. Hence, ω̃ is non-degenerate. Finally, we have
a K-invariant symplectic form on K/V . By the classical Borel’s theorem, V = ZK(S),
where S is some torus in K. In particular, one must have rank K = rank V , a contradic-
tion with rank V = rank H < rank K (again, for the same reason, since coadjoint orbit
O(u) ∼= H/V is symplectic).
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Now our aim is to describe (semisimple) symplectic fiber bundles of the form

H/V → K/V → K/H

with symplectic fiber and total space. Note that K/H itself need not be symplectic.
This yields more symplectic fiber bundles than could be obtained by Thurston’s theorem
[McD], since we don’t require K/H to be symplectic. Note that any compact simply
connected homogeneous symplectic manifold is symplectomorphic to a coadjoint orbit
with its standard Kostant-Kirillov-Souriau symplectic form [CGR]. However, our results
are applicable only to coadjoint orbits O(u) of u determined by Proposition 1.

Remark 1. Note that one cannot extend the class of symplectic fat bundles by the fol-
lowing construction: take any symplectic K-manifold (F,K, ωF ) and require that µ(F ) =
O(u) for some fat u (for example, u from the interior of the Weyl chamber). The result
in [Bi] shows that only homogeneous spaces can have coadjoint orbits as images of the
moment map.

Here is an explicit example of the situation described in Theorem 2.

Example 1. For manifolds of the form F = H/T , where T is a maximal torus, the fiber
bundle

H/T → K/T → K/H

is always symplectically fat.

Proof. In [GS], it is shown that the image of the moment map µ : H/T → h∗ is of
the form O(u), where u belongs to the interior of the Weyl chamber (see the proof of
Proposition 2.2 there). By Theorem 2, the given bundle has to be symplectically fat.

3. Twistor bundles and locally homogeneous complex manifolds as fat bundles.
We see that fatness can be fully described for associated bundles over homogeneous spaces
K/H of equal rank pairs (K,H), with compact H. If H is a centralizer of a torus, K/H
is symplectic, and we get a hierarchy of coadjoint orbits [L]. However, if K/H is not
symplectic, then there are some interesting examples as well. In the sequel, for brevity,
we call the coadjoint orbit O(u) “admissible”, if u does not belong to walls, which are
“forbidden” by Proposition 1, that is, are hyperplanes determined by roots α ∈ ∆ \∆(h).

3.1. Twistors over spheres. There are various notions of twistor spaces (compare,
for example, [Be] and [OR]). Here we think of it simply as an associated bundle of
an SO(2n)-principal bundle over a 2n-manifold M with fiber SO(2n)/U(n). This is the
case, for example, when the twistor space T (M) consists of orthogonal orientation pre-
serving complex structures on tangent spaces to a 2n-dimensional Riemannian mani-
fold M :

T (M) = {Jx : TxM → TxM, J2
x = − id for allx ∈M}.

It is known that in some cases T (M) admits a symplectic structure [AGI], [R]
(e.g. M = S2n, or M is a particular quaternionic Kähler manifold). Our approach sug-
gests that there may be a unified explanation of these results since we show that twistor
bundles over spheres are symplectically fat.
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Let K/H = SO(2n+ 1)/SO(2n) = S2n. We see that

rank SO(2n+ 1) = rank SO(2n) = n.

Hence, the even dimensional sphere satisfies the assumptions of Theorem 2. Note that
SO(2n)/U(n) is known to be symplectic. Thus, it is a coadjoint orbit. Moreover, it is
symplectomorphic to a coadjoint orbit O(u) which satisfies the assumptions of Proposi-
tion 1. This can be checked as follows. On the Lie algebra level, we have the embedding
u(n)→ so(2n) of the form

A+ iB →
(
A B

−B A

)
,

where AT = −A, BT = B. Consider the complexifications of both algebras, and their
root systems. Let g = so(2n,C), h = uc. We calculate ∆ and ∆(h) with respect to the
Cartan subalgebra given by the matrices of the form(

0 diag(x1, ..., xn)
−diag(x1, ..., xn) 0

)
,

xi ∈ C. In this case ∆ consists of linear functionals of the form

αij = εi − εj (i 6= j), i, j = 1, ..., n,

βij = εi + εj ,−βij , (i < j), i, j = 1, ..., n,

where
εi(diag(x1, ..., xn,−x1, ...,−xn)) = xi − xj .

In the same way, ∆(h) consists of the functionals αij only. To do this, one modifies
standard formulas from [OV] which are derived for the Cartan subalgebra consisting of
the matrices

diag (x1, ..., xn,−x1, ...,−xn)

in the (equivalent) representation of so(2n,C) by matrices of the form(
X Y

Z −XT

)
with ZT = −Z, Y T = −Y , X ∈ gl(n).

It follows that the element

Xu =
(

0 xEn
−xEn 0

)
does not belong to the forbidden wall, since βij(Xu) 6= 0. One can check that in this rep-
resentation u(n) is a centralizer of Xu, and, therefore, SO(2n)/U(n) is symplectomorphic
to O(u), where u is dual to Xu. Hence, by Theorem 2, we get the following result.

Proposition 2. The twistor bundle

SO(2n)/U(n)→ SO(2n+ 1)/U(2n)→ S2n

over the even-dimensional sphere is a fat symplectic bundle.
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3.2. Bundles over quaternionic Kähler homogeneous spaces. We refer to [Be] for
basic facts on quaternionic Kähler manifolods. Recall that a Riemannian 4n-manifold is
called quaternionic Kähler if the holonomy group of the Riemannian metric is contained in
Sp(n)Sp(1). This class of manifolds is important in constructing Kähler-Einstein metrics.
For example, by Salamon’s theorem [Be], twistor bundles over compact quaternionic
Kähler manifolds of positive scalar curvature admit Kähler-Einstein metrics.

Proposition 3. Any homogeneous quaternionic Kähler symmetric Riemannian mani-
fold K/H of non-zero Ricci curvature is a base of a fat symplectic fiber bundle for any
coadjoint orbit H/V ∼= O(u), with admissible u.

Proof. The classification of compact quaternionic Kähler Riemannian symmetric mani-
folds of non-zero Ricci curvature is known (see [Be]). All of them are irreducible, simply
connected and are divided into two classes according to the sign of the Ricci curvature.
If the Ricci curvature is positive, these manifolds are compact and are contained in the
following list:

Sp(n+ 1)/Sp(n)Sp(1), SU(n+ 2)/S(U(n)U(2)),

SO(n+ 4)/SO(n)SO(4), G2/SO(4),

F4/Sp(3)/Sp(1), E6/SU(6)Sp(1),

E7/Spin(12)Sp(1), E8/E7Sp(1).

If the Ricci curvature is negative, they are non-compact, and are dual to symmetric spaces
from the list. Clearly, all these homogeneous spaces are formed by equal rank pairs.

3.3. Locally homogeneous complex manifolds. Assume that we are given a Lie
group G which is semisimple of non-compact type and which is a real form of a complex
semisimple Lie group Gc. Let P be a parabolic subgroup in Gc, and let K be a maximal
compact subgroup in G. Choose a cocompact lattice Γ ⊂ G. Assume that P ∩K = V is
compact. Then we get a fiber bundle

K/V → Γ\G/V → Γ\G/K

over locally symmetric Riemannian space Γ\G/K with structure group K. Following
Griffiths-Schmid [GrS], we will call Γ\G/V locally-homogeneous complex manifold. The
latter is indeed complex, since G/V ⊂ Gc/P is an open subvariety of a complex projective
variety Gc/P , and therefore, inherits the G-invariant complex structure.

Theorem 3. A locally homogeneous complex manifold Γ\G/V fibers over locally symmet-
ric Riemannian homogeneous space Γ\G/K with fiber K/V . If K/V is symplectomorphic
to a coadjoint orbit O(u) with admissible u, the corresponding bundle is fat. In particular,
for such V , G/V is symplectic.

Proof. First, V is a centralizer of a torus in K. This follows, since it is shown in [GrS]
that K/V is Kähler, and Borel’s theorem applies. We use Corollary 1 and get
rank G = rank K. We get that the fiber bundle

K/V → G/V → G/K
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is fat, applying Theorem 2, and the assumption that K/V ∼= O(u) for admissible u to
the pair (G,K). Now, if Γ is a lattice in G, we have a commutative diagram of principal
bundles

K −−−−→ G −−−−→ G/Ky y y
K −−−−→ Γ\G −−−−→ Γ\G/K

where the second and the third arrows are coverings. Hence, fatness condition, which
depends on tangent spaces only, is satisfied for the second row in the diagram, as required,
and the proof follows.

Corollary 2. The following twistor bundle over locally symmetric homogeneous space
is fat:

SO(2n)/U(n)→ Γ\SO(2n, p)/(U(n)× SO(p))→

Γ\SO(2n, p)/(SO(2n)× SO(p)), n > 1, p > 2.

Proof. The proof follows from Theorem 2 and the proof of Proposition 2. The latter is
used to show that the fiber is an admissible coadjoint orbit.

Remark 2. The following question was posed in [W]: are there symplectic fat bundles
whose total spaces do not carry Kähler structures? Corollary 2 yields a positive answer,
since

T = Γ\SO(2n, p)/(SO(2n)× SO(p))

is non-Kähler. The latter follows, since Γ is the fundamental group of T , and is a non-
Kähler group [ABCKT].
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