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Abstract. We construct an invariant of the bi-Lipschitz equivalence of analytic function
germs (Rn, 0) → (R, 0) that varies continuously in many analytic families. This shows that the
bi-Lipschitz equivalence of analytic function germs admits continuous moduli. For a germ f the
invariant is given in terms of the leading coefficients of the asymptotic expansions of f along the
sets where the size of |x| |grad f(x)| is comparable to the size of |f(x)|.

Introduction. Consider a one parameter family of germs ft(x, y) : (R2, 0)→ (R, 0),
t ∈ R, given by

ft(x, y) = f(x, y, t) = x3 − 3txy4 + y6.(0.1)

We shall show that if t 6= t′, t, t′ > 0, then ft and ft′ are not bi-Lipschitz equivalent,
that is, there is no germ of bi-Lipschitz homeomorphism h : (R2, 0) → (R2, 0) such that
ft ◦ h = ft′ . This shows in particular that the bi-Lipschitz classification of real analytic
function germs admits continuous moduli. The existence of such moduli for complex
analytic function germs was shown by the authors in [2]. We recall that, on the other
hand, the bi-Lipschitz equivalence of complex or real analytic set germs does not admit
moduli by [6] and [7], [8].

In order to distinguish bi-Lipschitz types of complex analytic function germs of two
complex variables f : (C2, 0) → (C, 0) we construct in [2] a numerical invariant that is
given in terms of the leading coefficients of the asymptotic expansions of f along the
branches of generic polar curve of f . This construction is recalled in Section 4 below. The
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real case, though similar, is more delicate. Firstly we cannot simply use the invariants of
the complexification. For instance the family (0.1) for t < 0 is bi-Lipschitz trivial but the
family of complexification admits continuous moduli. This is due to the fact that polar
curves ∂f/∂x = 3(x2 − ty4) = 0, t < 0, that are responsible for the complex invariant,
are invisible in the reals.

Given an analytic function germ f : (Rn, 0) → (R, 0), we associate to f a family of
germs of sets (V (f), 0) ⊂ (Rn, 0) defined by the condition that |x| |grad f(x)| is compara-
ble to the size of |f(x)| on V (f), see Sections 1 and 2 below. The sets V (f) are preserved
by bi-Lipschitz equivalence and give rise to a numerical invariant, see Section 3 and The-
orem 5.1 below. This invariant is, in general, difficult to compute since it is not enough
to use the branches of polar curve as in the complex case. Nevertheless, if n = 2, then
one may use the complexification to simplify the computation, see Proposition 5.3 below.
We compute some examples in Section 6 and show, in particular, that in the family (0.1),
t > 0, our invariant changes continuously.

Notation and convention. We often write r instead of |x| which is the Euclidean norm
of x. We use the standard notation ϕ = o(ψ) or ϕ = O(ψ) to compare the asymptotic
behavior of ϕ and ψ, usually when we approach 0. We write ϕ ∼ ψ if ϕ = O(ψ) and
ψ = O(ϕ), and ϕ ' ψ if ϕ/ψ tends to 1. The gradient of a function f will be denoted
by ∇f .

1. Characteristic exponents. Given an analytic function germ f : (Rn, 0) →
(R, 0), following [5] we associate to f a finite set of positive rationals L(f) ⊂ Q+, called
the characteristic exponents of f , that are defined as follows. The radial component of ∇f
is defined on Rn \ {0} and equals

∂f

∂r

∂

∂r
=
( n∑

i=1

xi
|x|

∂f

∂xi

) n∑

i=1

xi
|x|

∂

∂xi

We shall often write ∂rf instead of ∂f/∂r. The gradient ∇f splits into the orthogonal
sum of its radial and spherical ∇′f = ∇f − (∂f/∂r)(∂/∂r) components.

Consider the germs at the origin of the sets

W ε :=
{
x : f(x) 6= 0, ε|∇′f | ≤ |∂rf |

}
,

where ε > 0. Note that W ε ⊂W ε′ for ε′ < ε.
Let γ : ([0, 1), 0)→ (Rn, 0) be the germ of a real analytic curve. In order to simplify

the notation we reparametrize γ by the distance to the origin γ(r) = γ(t(r)) so that
|γ(t(r))| = r. Then γ(r) is a fractional power series (Puiseux expansion). We shall say
for short that γ(r) is an analytic arc at the origin. In the spherical coordinates we write

γ(r) = rθ(r),

where θ(r) is a fractional power series, |θ(r)| = 1. Then the tangent vector to γ(r)

decomposes into the orthogonal sum of its radial and spherical components as follows

γ′(r) = θ(r) + rθ′(r),
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and rθ′(r) = o(1). We have a Puiseux expansion

f(γ(r)) = aγr
lγ + . . . ,(1.1)

alγ 6= 0, lγ ∈ Q+, and then by differentiating

df

dr
(γ(r)) = ∂rf + 〈∇′f, rθ′(r)〉.(1.2)

Suppose, moreover, that γ(r) ∈ W ε for r > 0. Then ∂rf is dominant in the right-hand
side term of (1.2) and hence

∂rf = lγaγr
lγ−1 + o(rlγ−1).

Consequently, along any real analytic arc γ in W ε, (r∂rf/f)(x) tends to a positive ratio-
nal lγ . The set of all such limits being subanalytic and contained in Q+ has to be finite
and, see Section 4 of [5] for details, is independent of ε for ε > 0 and sufficiently small.

Proposition 1.1 ([5], Proposition 4.2). There exists a finite subset of positive ratio-
nals L = {l1, . . . , lk} ⊂ Q+ such that for any ε > 0

r∂rf

f
(x)→ L as W ε 3 x→ 0.

In particular, as a germ at the origin, each W ε is the disjoint union

W ε =
⋃

li∈L
W ε
li ,

where we may define W ε
li

=
{
x ∈W ε :

∣∣r∂rf/f − li
∣∣ ≤ rδ

}
, for δ > 0 sufficiently small.

Moreover, there exist constants 0 < cε < Cε, which depend on ε, and such that

cε <
|f |
rli

< Cε on W ε
li .(1.3)

The smallest characteristic exponent minl∈L l equals the multiplicity mf of f at the
origin.

2. The sets V . Let δ > 0. Consider the germ at the origin of

V δ :=
{
x : f(x) 6= 0, δr|∇f | ≤ |f | ≤ δ−1r|∇f |

}
.

By Bochnak-Łojasiewicz Inequality [1] for any 0 < c < mf , where mf denote the
multiplicity of f at the origin,

c|f(x)| ≤ r|∇f(x)|.(2.1)

Hence if 0 < δ < mf the second inequality of the definition of V δ always holds. Let L be
the set of characteristic exponents of f and let lmax = maxl∈L l.

Proposition 2.1.

(i) W ε ⊂ V δ, if δ < 1
4 (lmax)−1 min{1, ε}, 0 < δ < mf .

(ii) V δ ⊂W ε, if ε < δmf .

Proof. (i) On W ε we have |f | ≥ 1
2 (lmax)−1r|∂rf | ≥ 1

2ε(lmax)−1r|∇′f | and consequently
|f | ≥ 1

4 (lmax)−1 min{1, ε}r|∇f | as required.
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(ii) Let γ(r) = rθ(r) be an analytic arc, γ(r) ∈ V δ for r 6= 0. By rθ′(r) = o(1) we have
always 〈∇′f, rθ′(r)〉 = o

(
r|∇f(γ(r))|

)
, and hence, since f is of the same size as r|∇f |

on γ, 〈∇′f, rθ′(r)〉 = o
(
f(γ(r))

)
. Therefore, by (1.2), r|∂rf | ' lγ |f |. Finally this implies

r|∂rf | ' lγ |f | ≥ δlγr|∇′f |
and (ii) follows easily.

The equisingularity type of germs (V δ, 0) does not depend on δ for δ > 0 and suffi-
ciently small. In what follows we shall talk simply of the sets V , or V (f), meaning V δ

for δ > 0 and small. Moreover, we may choose representatives of the germs by taking

V δ,r := {x : |x| < r, x ∈ V δ},
where 0 < r � δ � 1. For instance, by a connected component Ṽ of V we mean a
connected component Ṽ δ,r of V δ,r. One may show that for r > 0 sufficiently small the
connectivity of Ṽ δ,r is equivalent to the connectivity of Ṽ δ,r ∩ Sr′ , where Sr denotes the
sphere centered at the origin and of radius 0 < r′ < r.

Proposition 2.1 allows us to use the sets V δ instead of W ε to define the characteristic
exponents of f . In particular, by Propositions 1.1 and 2.1, each connected component
of V δ is contained in one of W ε

l and hence to each connected component of V we may
associate a unique characteristic exponent.

Given subanalytic (X, 0) ⊂ (Rn, 0), by the tangent cone of X at the origin we mean

C0(X) := {(t−1x, t) ∈ Rn × R : t > 0, x ∈ X} ∩ (Rn × {0})
that we consider as a subset of Rn. It is a semi-cone that is it is stable by multiplication
by positive reals. By the Łojasiewicz Inequality, as the germ at the origin, X is contained
in a cuspidal neighborhood of C0(X), that is, there is η > 0 such that

X ⊂
{
x ∈ Rn : dist(x,C0(X)) < |x|1+η

}
.(2.2)

Let V ′ be a connected component of V such that the tangent cone C0(V ′) is a half-line.
Suppose that V ′ is L-regular in the sense of [7]. Then there is M > 0 such that for any
x, x′ ∈ V ′ there is a continuous subanalytic curve ξ(t) connecting x and x′ in V ′ and of
length less than or equal to M |x−x′|. Suppose |x| = |x′| = r. Then, by (2.2) for X = V ′,
|ξ(t) − x| ≤ M |x − x′| ≤ M ′r1+η and |ξ(t)| ≥ r −M ′r1+η ≥ 1

2r for r small. By the
definition of V δ,

∣∣∣ d
dt
f(ξ(t))

∣∣∣ =
∣∣〈∇f, ξ′(t)〉

∣∣ ≤ |∇f | |ξ′(t)| ≤ δ−1 |f(ξ(t))| |ξ′(t)|
|ξ(t)| .

Hence ∣∣∣ d
dt

ln
∣∣f(ξ(t))

∣∣
∣∣∣ ≤ 2δ−1

r
|ξ′(t)|.

By integration,
∣∣ln |f(x)| − ln |f(x′)|

∣∣ ≤ 2δ−1r−1 length(ξ) ≤ 2δ−1Mrη, which gives
∣∣∣ f(x)

f(x′)

∣∣∣ ≤ eM̃rη .(2.3)

If V ′ is not L-regular it is a union of finitely many L-regular sets [7], [4], [8] and this can
be used to show (2.3) for any connected V ′. Hence, by symmetry and the fact that the
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sign of f is constant on V ′, for small r

1− Crη ≤ f(x)

f(x′)
≤ 1 + Crη.

This shows the following.

Proposition 2.2. Let V ′ be a connected component of V such that C0(V ′) is a half-
line. Let l = lV ′ be the characteristic component associated to V ′. Then there is a 6= 0

such that

f(x) = arl +O(rl+δ)

for all x ∈ V ′ and an exponent δ > 0.
We shall call the constant a the leading coefficient associated to V ′ and the term arl

the leading term of f on V ′.

3. Invariants of bi-Lipschitz equivalence. Let f, g : (Rn, 0) → (R, 0) be two
analytic function germs. Let h : (Rn, 0) → (Rn, 0) be the germ of a bi-Lipschitz homeo-
morphism such that f = g ◦ h. Fix L ≥ 1, a common Lipschitz constant of h and h−1.
Then

L−1
∣∣∇g(h(x))

∣∣ ≤ |∇f(x)| ≤ L
∣∣∇g(h(x))

∣∣.
This shows that for δ > 0

V L
2δ(g) ⊂ h(V δ(f)) ⊂ V L−2δ(g).(3.1)

We shortly say that the sets V are preserved by bi-Lipschitz equivalence. The sets V pro-
vide a numerical invariant of bi-Lipschitz equivalence that changes continuously in some
analytic families of analytic function germs. We shall construct this invariant below. The
property (3.1) shows, in particular, that h gives a one-to-one correspondence between
the connected components of V (f) and V (g) and it is easy to see that the associated
characteristic exponents are preserved. In what follows we restrict ourselves to the com-
ponents whose tangent cones are half-lines. Note that this property is also preserved by
bi-Lipschitz homeomorphisms.

Suppose that two such connected components V1(f), V2(f) of V (f) are tangent, i.e.
their tangent cones at the origin coincide, and that their characteristic exponents are
equal to l ∈ Q+. By Proposition 2.2

f(x) = air
l + o(rl) for x ∈ Vi(f),(3.2)

i = 1, 2. Denote by V1(g), V2(g) the corresponding connected components of V (g). Then

f(x) = g(h(x)) = bi|h(x)|l + o
(
|h(x)|l

)
for x ∈ Vi(f),(3.3)

where bi is the leading coefficient of the expansion of g(xi) on Vi(g). For i = 1, 2, choose
an analytic arc xi(r) so that xi(r) ∈ Vi(f) for r > 0. By tangency of V1(f) and V2(f)

there is η > 0 such that

|x1(r)− x2(r)| = O(r1+η).

Similarly, since V1(g), V2(g) have to be tangent,
∣∣h(x1(r))− h(x2(r))

∣∣ = O
(
|h(x1(r))|1+η

)
= O(r1+η).
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Thus the limit
f(x1(r))

f(x2(r))
→ a1

a2
as r → 0

has to be equal to the limit
g(h(x1(r)))

g(h(x2(r)))
→ b1

b2
as r → 0.

Corollary 3.1. The quotient of leading coefficients associated to V1(f) and V2(f)

is a bi-Lipschitz invariant.

Remark 3.2. The leading coefficients themselves are not bi-Lipschitz invariants.
They may be changed, for instance, by a linear map h(x) = Ax.

4. Complex case. We recall the main result of [2]. Let f(x, y) : (C2, 0)→ (C, 0) be
a germ of analytic function with Taylor expansion:

f(x, y) = Hk(x, y) +Hk+1(x, y) + . . . ,(4.1)

k being the multiplicity of f at the origin. We shall assume f(x, y) is mini-regular in x

of order k, that is, that Hk(1, 0) 6= 0. We also assume, for simplicity, that f(x, y) has no
multiple roots.

By a (complex ) analytic arc we mean a fractional power a series of the form

λ : x = λ(y) := c1y
n1/N + c2y

n2/N + . . . , ci ∈ C,(4.2)

where N ≤ n1 < n2 < . . . are positive integers having no common divisor, such that
λ(tN ) has positive radius of convergence. We can identify λ with the analytic arc λ : x =

c1t
n1 + c2t

n2 + . . ., y = tN , |t| small, which is not tangent to the x-axis (since n1/N ≥ 1).
A polar arc x = γ(y) is a branch of the polar curve Γ : ∂f/∂x = 0. Since f is

mini-regular in x, x = γ(y) is not tangent to the x-axis and it is an arc in our sense. Let
γ be a polar arc. We associate to γ two numbers: l = l(γ) ∈ Q+ and a = a(γ) ∈ C∗ given
by the expansion

f(γ(y), y) = ayl + . . . .(4.3)

If l > k then the polar arc has to be tangent to the singular locus of the tangent cone
C0(X), X = f−1(0), given by Sing(C0(X)) := {∂Hk/∂x = ∂Hk/∂y = 0}. We call such
polar arcs tangential.

Fix a line Λ ⊂ Sing(C0(X)). Let Γ(Λ) denote the set of polar arcs tangent to Λ.
Associate to Λ the set of formal expressions

I(Λ) = {a(γ)yl(γ) : γ ∈ Γ(Λ)}/C∗,
where C∗ acts by multiplication on y:

{a1y
l1 , . . . , amy

lm} ∼ {(a1c
l1)yl1 , . . . , (amc

lm)ylm}.(4.4)

By the invariant Inv(f) of f we mean the set of all I(Λ), where Λ runs over all lines in
Sing(C0(X)). Inv(f) is well-defined and does not depend on the choice of local coordi-
nates. The main result of [2] is the following.

Theorem 4.1. Let f1, f2 be two functions germs (C2, 0) → (C, 0). If f1 and f2 are
bi-Lipschitz equivalent then Inv(f1) = Inv(f2).
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5. From complex to real. Let f(x, y) : (R2, 0) → (R, 0) be an analytic function
germ. Similarly to the complex case we suppose that f is mini-regular in x, that is,
Hk(1, 0) 6= 0 for Hk given by the Taylor expansion (4.1) of f at the origin and that the
complexification of f has no multiple roots.

Consider a connected component V ′ of V (f) and suppose that the associated char-
acteristic exponent l = l(V ′) > k. Then V ′ is tangent to C0(X) = {Hk(x, y) = 0},
X = f−1(0), that is, C0(V ′) is a half-line contained in C0(X). Indeed, if γ(r) is an
analytic arc at the origin not tangent to C0(X) then

∣∣f(γ(r))
∣∣ ∼ rk,

∣∣∇f(γ(r))
∣∣ ∼ rk−1.

If γ(r) is tangent to C0(X) but not tangent to Sing(C0(X)) then
∣∣f(γ(r))

∣∣ = o(rk),
∣∣∇f(γ(r))

∣∣ ∼ rk−1.

and hence γ does not intersect V . That shows that C0(V ′) has to be contained in
Sing(C0(X)).

Fix a half-line λ ⊂ Sing(C0(X)). Let V(λ) denote the set of connected components
of V tangent to λ. For such a component V ′ we denote by l(V ′), resp. a(V ′), the char-
acteristic exponent, resp. the leading coefficient, associated to V ′. We associate to λ the
set of formal expressions

I(λ) =
{
a(V ′)rl(V

′) : V ′ ∈ V(λ)
}
/R>0,(5.1)

where c ∈ R>0 acts by multiplication on r as in (4.4). By the invariant Inv(f) of f
we mean the set of all I(λ), where λ runs over all half-lines in Sing(C0(X)). The argu-
ment at the end of Section 3 above, see also [2], Section 4, gives the following analog of
Theorem 4.1.

Theorem 5.1. Let f1, f2 be two function germs (R2, 0) → (R, 0). If f1 and f2 are
bi-Lipschitz equivalent then Inv(f1) = Inv(f2).

Let γ : x = γ(y) be a real polar arc, that is, a half-branch of the real polar curve
Γ(f) : ∂f/∂x = 0 given by a Puiseux expansion x = γ(y), y ≥ 0. Its tangent half-line at
the origin is spanned by (γ′(0), 1). Write

f(γ(y), y) = ayl + o(yl).(5.2)

Then, along γ,

alyl−1 + . . . =
df

dy
= γ′(y) ∂f/∂x+ ∂f/∂y = ∂f/∂y.(5.3)

Since r ' |(γ′(0), 1)| |y| on γ, this shows that (γ(y), y) ∈ V for y > 0. Thus we obtain the
following.

Proposition 5.2. Γ(f) \ {0} ⊂ V .

Moreover, the exponent l of (5.2) is the characteristic exponent associated to the
connected component V ′ of V that contains γ. If l > k then the leading coefficient
associated to V ′ equals a|(γ′(0), 1)|−l. This allows us to recover partly Inv(f) using the
half-branches of the polar curve. But unlike as in the complex case it may happen that
some part of invariant cannot be seen on the real polar curve. Then we may use the
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complexification of f . Note that one may similarly define the set V for complex analytic
functions. It is a bi-Lipschitz invariant by the same argument. And, using the Newton
algorithm as in [2], Section 5, one may show that any connected component of V contains
a complex polar arc.

Let Λ be the complexification of a real line in Sing(C0(X)). The real part of Λ contains
two half-lines that we may distinguish using the given system of coordinates: λ+ is the one
that is the graph of a linear function over y ≥ 0 and λ− is the graph of the same function
over y ≤ 0. Then the invariants I(λ±) of f and the leading terms of the complexification
along the polar arcs in Γ(Λ) are related by the following result.

Proposition 5.3.

I(λ±) ⊂ {a(γ)yl(γ) : γ ∈ Γ(Λ)}/R>0,

where we identify r with ±y.

Proof. We show the formula for λ+ equal to the positive y-axis. Choose an analytic
arc ξ in V ∪ {0} tangent to the y-axis. Then the complexification of ξ is an analytic
arc that we denote also by ξ : x = ξ(y). Let fC denote the complexification of f . Since
V (f) is contained in V (fC) so is (ξ(y), y), for y 6= 0. By assumptions, ord0 ξ(y) > 1,
ord0 f(ξ(y), y) > k. Then there is a complex polar arc tangent to the y-axis and with
the same leading term of the asymptotic expansion of f , see the first case of proof of
Theorem 5.3 of [2]. This shows the proposition.

6. Examples.

Example 6.1 (Compare [2], Section 3). Let ft(x, y) = x3 − 3txy4 + y6, t > 0,
1− 4t3 6= 0. The polar curve ∂f/∂x = 3(x2 − ty4) = 0 has two analytic branches
x = ±

√
ty2 and

ft(±
√
ty2, y) = (1∓ 2t3/2)y6.

We have two characteristic exponents l = 3 and l = 6. For λ being the positive or negative
y-axis the invariant equals

I(λ) = {1 + 2t3/2, 1− 2t3/2}/R>0.

Thus if ft and ft′ are bi-Lipschitz equivalent then (1 + 2t3/2)/(1− 2t3/2) is equal to
(1 + 2t′3/2)/(1− 2t′3/2) or (1− 2t′3/2)/(1 + 2t′3/2). The latter is impossible for t, t′ > 0

and the former implies t = t′.

Example 6.2. Let ft(x, y) = x3 + 3txy4 + y6, t > 0. The polar curve ∂f/∂x =

3(x2 + ty4) = 0 has no real branch. There is only one characteristic exponent l = 3.
Indeed, another possibility allowed by the complexification of f is l = 6. But |∇f | ≥
∂f/∂x = 3(x2 + ty4) is much bigger than r6−1.

Actually one may show that ft is Lipschitz trivial. It can be trivialized by the Kuo
vector field

~v(x, y, t) = ∂/∂t− ∂f/∂t

|∇ft|2
∇ft,

where ∇ft denotes the gradient only in x, y variables. Then ~v is Lipschitz and its flow
gives a bi-Lipschitz trivialization of ft.
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Example 6.3. The functions ft(x, y) of Example 6.1 are Newton nondegenerate
and the family ft admits a simultaneous toric resolution. Consider f(x, y) = x3 + y6,
g(x, y) = x3 − y6. These two functions can also be embedded in a family that can be
simultaneously resolved by a toric resolution, see [3], and hence they are blow-analytically
equivalent. But they are not bi-Lipschitz equivalent. Indeed, in both cases the polar curves
∂f/∂x = ∂g/∂x = 3x2 = 0 reduces to the y-axis and f(0, y) = y6, g(0, y) = −y6. For the
characteristic exponent l = 6, by Proposition 5.3, there is only one leading coefficient,
that is, positive for f and negative for g. Thus, by Theorem 5.1, f is not bi-Lipschitz
equivalent to g.
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