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Abstract. In the first part (Sections 2 and 3), we give a survey of the recent results on

application of singularity theory for curves and surfaces in hyperbolic space. After that we

define the hyperbolic canal surface of a hyperbolic space curve and apply the results of the first

part to get some geometric relations between the hyperbolic canal surface and the centre curve.

1. Introduction. In [4], [5], [6] we have applied singularity theory to local differ-

ential geometry on curves and hypersurfaces in hyperbolic space. For hypersurfaces, we

have the notion of hyperbolic Gauss maps originally introduced by Epstein [3]. The orig-

inal definition of hyperbolic Gauss maps has been given in the Poincaré ball model of

hyperbolic space. It is, however, very hard to proceed the calculation because it has been

given in the intrinsic form. In [4] we adopted the model of hyperbolic space in Minkowski

space. Then the target of hyperbolic Gauss maps is the unit sphere in the lightcone.

Moreover, we have introduced the notion of hyperbolic Gauss indicatrices which are (sin-

gular) hypersurfaces in the lightcone. Hyperbolic Gauss indicatrices are much easier to

calculate comparing with hyperbolic Gauss maps and contain a lot of geometric informa-

tion of hypersurfaces. For example, we have shown the singularities of hyperbolic Gauss
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indicatrices describe the contact between hypersurfaces and horospheres.

In [5] we consider curves in hyperbolic space and define the notion of horospherical

surfaces of curves which are located in the lightcone. The singularities of horospherical

surfaces describe the contact between curves and hyperhorospheres.

In both papers [4], [5] we have introduced the notion of horospherical height functions

on curves (or hypersurfaces) as basic tools for the study of those subjects. We have applied

singularity theory for families of function germs to such functions and studied the contact

between curves (or hypersurfaces) and horospheres. In Sections 2 and 3, we give a survey

of the results in [4], [5]. In Section 4 we study horospherical surfaces as an application

of the theory of Legendrian singularities and show that the horospherical surface can

be considered as a wavefront. In [4] we have shown that the hyperbolic indicatrix of a

hypersurface can be also considered as a wavefront. We show that the Legendrian lift

of the horospherical surface of a curve and the Legendrian lift of the hyperbolic Gauss

indicatrix of the corresponding hyperbolic canal surface are Legendrian equivalent. In

Section 5 we apply the results of Sections 2–4 to hyperbolic space curves and show

that the contact between hyperbolic space curves and horospheres corresponds to the

contact between hyperbolic canal surfaces and horospheres (cf. Corollary 5.3, Theorems

5.6 and 5.7). In Section 6 we give as Appendix a quick survey on the theory of Legendrian

singularities which are used in Sections 4 and 5.

All maps considered here are of class C∞ unless otherwise stated.

2. Horospherical surfaces of curves in hyperbolic space. In this section we

give a survey on the explicit differential geometry for curves in H3
+(−1) due to [5].

We start to describe basic notions of hyperbolic 3-space. Here we adopt the model

of hyperbolic 3-space in Minkowski space. Let R4 be a 4-dimensional vector space. For

any x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) ∈ R4, the pseudo-scalar product of x and y is

defined by

〈x,y〉 = −x0y0 +
3∑

i=1

xiyi.

We call (R4, 〈 , 〉) Minkowski space and write R4
1 instead of (R4, 〈 , 〉). We say that a

non-zero vector x ∈ R4
1 is spacelike, lightlike or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0 or

〈x,x〉 < 0, respectively. For a vector v ∈ R4
1 and a real number c, we define a hyperplane

with pseudo-normal v by

HP (v, c) = {x ∈ R4
1 | 〈x,v〉 = c}.

We call HP (v, c) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane

if v is timelike, spacelike or lightlike, respectively.

We now define hyperbolic 3-space by

H3
+(−1) = {x ∈ R4

1 | 〈x,x〉 = −1, x0 ≥ 1}.
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For any x1,x2,x3 ∈ R4
1, we define a vector x1 ∧ x2 ∧ x3 by

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣

−e0 e1 e2 e3

x1
0 x1

1 x1
2 x1

3

x2
0 x2

1 x2
2 x2

3

x3
0 x3

1 x3
2 x3

3

∣∣∣∣∣∣∣∣
,

where e0, e1, e2, e3 form the canonical basis of R4
1. We can easily show that

〈x,x1 ∧ x2 ∧ x3〉 = det(x x1 x2 x3),

so that x1 ∧ x2 ∧ x3 is pseudo-orthogonal to any xi (i = 1, 2, 3).

We also define a set LCa = {x ∈ R4
1 | 〈x − a,x − a〉 = 0}, which is called a closed

lightcone with the vertex a. Let

LC∗+ = {x = (x0, x1, x2, x3) ∈ LC0 | x0 > 0};
we call it the future lightcone at the origin. We have three kinds of totally umbilic sur-

faces in H3
+(−1) which are given by intersections of H3

+(−1) and hyperplanes in R4
1.

A surface H3
+(−1) ∩HP (v, c) is called a sphere, an equidistant plane or a horosphere if

HP (v, c) is spacelike, timelike or lightlike, respectively. Especially we write a horosphere

as HS2(v, c) = H3
+(−1) ∩ HP (v, c). If we consider a lightlike vector v0 = (−1/c)v, we

have HS2(v, c) = HS2(v0,−1). We call v0 the polar vector of HS2(v0,−1).

Let γ : I −→ H3
+(−1) be a regular curve. Since H3

+(−1) is a Riemannian manifold,

we can reparametrise γ by the arc-length. Hence, we may assume that γ(s) is a unit

speed curve. So we have the tangent vector t(s) = γ ′(s) with ‖t(s)‖ = 1. In the case

when 〈t′(s), t′(s)〉 6= −1, we have a unit vector n(s) =
t′(s)− γ(s)

‖t′(s)− γ(s)‖ . Moreover, if e(s) =

γ(s)∧t(s)∧n(s), then we have a pseudo-orthonormal frame {γ(s), t(s),n(s), e(s)} of R4
1

along γ. By standard arguments, under the assumption that 〈t′(s), t′(s)〉 6= −1, we have

the following Frenet-Serre type formulae:




γ′(s) = t(s)

t′(s) = κh(s)n(s) + γ(s)

n′(s) = −κh(s)t(s) + τh(s)e(s)

e′(s) = −τh(s)n(s),

where κh(s) = ‖t′(s)− γ(s)‖ and τh(s) = −det(γ(s) γ ′(s) γ′′(s) γ′′′(s))
(κh(s))2

.

We can easily show that the condition 〈t′(s), t′(s)〉 6= −1 is equivalent to the condition

κh(s) 6= 0. Moreover, we can show that the curve γ(s) satisfies the condition κh(s) ≡ 0 if

and only if there exists a lightlike vector c such that γ(s)− c is a geodesic. Such a curve

is called an equidistant line. We can study many properties of hyperbolic space curves by

using this fundamental equation.

Let γ : I −→ H3
+(−1) be a unit speed curve. We now define a map

HS±γ : I × J −→ LC∗+

by HS±γ (s, θ) = γ(s) ± cos θn(s) + sin θ e(s). We call HS±γ the horospherical surface

of γ. In this section we only consider HS+
γ for simplifying the arguments. We define
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HSγ = HS+
γ . We also introduce a hyperbolic invariant

σh(s) =
(
(κ′h)2 − (κh)2(τh)2((κh)2 − 1)

)
(s).

In [5] we have shown the following theorem:

Theorem 2.1. Let γ : I −→ H3
+(−1) be a unit speed hyperbolic space curve with

κh 6= 0. Then:

(1) The horospherical surface HSγ of γ is singular at (s0, θ0) if and only if cos θ0 =

1/κh(s0).

(2) The horospherical surface HSγ of γ is locally diffeomorphic to the cuspidaledge

C × R at (s0, θ0) if cos θ0 = 1/κh(s0) and σh(s0) 6= 0.

(3) The horospherical surface HSγ of γ is locally diffeomorphic to the swallowtail

SW at (s0, θ0) if cos θ0 = 1/κh(s0), σh(s0) = 0 and σ′h(s0) 6= 0.

Here, C = {(x1, x2) | x2
1 = x3

2} is the ordinary cusp and SW = {(x1, x2, x3) | x1 =

3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} is the swallowtail (cf. Fig. 1).

cuspidaledge swallowtail

Figure 1.

By using a kind of transversality theorem, we have shown the following genericity

theorem:

Theorem 2.2. There exists an open and dense subset O ⊂ Emb (I,H3
+(−1)) such

that for any γ ∈ O, the horospherical surface HSγ of γ is locally diffeomorphic to the

cuspidaledge or the swallowtail at any singular point.

Here, Emb (I,H3
+(−1)) is the space of embeddings γ : I −→ H3

+(−1) equipped with

Whitney C∞-topology.

We now consider the geometric meaning of the invariant σh(s). Let v be a lightlike

vector and w be a spacelike vector. A hyperbolic space curve given by HS2(v,−1) ∩
HP (w, 0) is called a horocycle. We have shown the following proposition.

Proposition 2.3. Let γ : I −→ H3
+(−1) be a unit speed hyperbolic space curve with

κh ≥ 1. We consider the vector field along γ given by v(s) = γ(s) + cos θn(s) + sin θ e(s)

with cos θ = 1/κh(s).

(1) Suppose that κh(s) ≡ 1. Then the following conditions are equivalent :

(a) v(s) is a constant vector.

(b) τh(s) ≡ 0.
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(c) γ is a part of horocycle.

(2) Suppose that the set {s ∈ I | κh(s) = 1} consists of isolated points. Then the

following conditions are equivalent :

(a) v(s) is a constant vector.

(b) σh(s) ≡ 0.

(c) γ is located on a horosphere.

Let F : H3
+(−1) −→ R be a submersion and γ : I −→ H3

+(−1) be a regular curve. We

say that γ and F−1(0) have at least k-point contact for t = t0 if the function g(t) = F ◦γ(t)

satisfies g(t0) = g′(t0) = . . . = g(k−1)(t0) = 0. If γ and F−1(0) have at least k-point

contact for t = t0 and satisfy the condition that g(k)(t0) 6= 0, then we say that γ and

F−1(0) have k-point contact for t = t0. If a horosphere HS2(v0,−1) and a hyperbolic

space curve γ have at least 3-point contact for a point t0, we call HS2(v0,−1) the

osculating horosphere of γ at γ(t0). Then we have shown the following proposition.

Proposition 2.4. Let γ : I −→ H3
+(−1) be a unit speed hyperbolic space curve.

Then:

(1) The osculating horosphere of γ at a point γ(s0) exists if and only if κh(s0) ≥ 1.

(2) Suppose that κh(s0) ≥ 1. Then the osculating horosphere and γ have 4-point

contact for s = s0 if and only if σh(s0) = 0 and σ′h(s0) 6= 0.

By Theorem 2.1, the set of singular points of the horospherical surface of γ is the

locus the polar vectors of osculating horospheres of γ. Moreover, the swallowtail of the

horospherical surface of γ corresponds to the point γ(s0) where the osculating horosphere

and γ have 4-point contact.

On the other hand, we consider the horocycle HS2(v(s0),−1)∩ 〈γ(s0), t(s0),n(s0)〉R
at a point s0 ∈ I with κh(s0) ≥ 1. We call it the osculating horocycle of γ at γ(s0). The

assertion (1) of Proposition 2.4 suggests that two invariants κh(s0) and τh(s0) describe

the contact between curves and horocycle. We do not, however, proceed to study these

topics here.

3. Hyperbolic Gauss indicatrices of surfaces. In this section we give a survey

on the explicit differential geometry on surfaces in H3
+(−1) due to our previous paper [4].

Let

x : U −→ H3
+(−1)

be a regular surface (i.e., an embedding), where U ⊂ R2 is an open subset. We write

M = x(U) and identify M with U by the embedding x. Define a vector

E(u) =
x(u) ∧ xu1

(u) ∧ xu2
(u)

‖x(u) ∧ xu1
(u) ∧ xu2

(u)‖ ,

then we have

〈e,xui〉 ≡ 〈e,x〉 ≡ 0, 〈e, e〉 ≡ 1.

Since x(u) ∈ H3
+(−1) and 〈E(u),E(u)〉 = 1 we can show that x(u) ± E(u) ∈ LC∗+. We

define a map

L± : U −→ LC∗+
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by L±(u) = x(u)±E(u) which is called the hyperbolic Gauss indicatrix (or the lightcone

dual) of x.

We have shown that DvL± ∈ TpM for any p = x(u0) ∈ M and v ∈ TpM , where Dv

denotes the covariant derivative with respect to the tangent vector v.

We have also shown that the surface x(U) = M is a part of a horosphere if and only if

the hyperbolic Gauss indicatrix L± is constant. In Euclidean differential geometry, if the

Gauss map of a surface is constant, then the surface is a part of a hyperplane. Therefore,

we regard horospheres in our theory like as planes in Euclidean differential geometry.

In [4], we have established the “horospherical geometry” as an application of singularity

theory.

Under the identification of U and M , the derivative dx(u0) can be identified with the

identity mapping idTpM on the tangent space TpM , where p = x(u0). This means that

dL±(u0) = idTpM ±dE(u0).

We call the linear transformation S±p = −dL(u0) : TpM −→ TpM the hyperbolic shape

operator of M = x(U) at p = x(u0). We denote the eigenvalue of S±p by κ̄±p and the

eigenvalue of −dE(u0) by κp. By the relation S±p = − idTpM ∓dE(u0), S±p and −dE(u0)

have the same eigenvectors and κ̄±p = −1± κp.
The hyperbolic Gauss curvature of M = x(U) at p = x(u0) is defined to be

K±h (u0) = detS±p .

We have shown the following explicit expression of the hyperbolic Gauss curvature by

Riemannian metric and the hyperbolic second fundamental invariant:

K±h =
det
(
h̄±ij
)

det (gαβ)
,

where we have Riemannian metric (the hyperbolic first fundamental form) gij(u) =

〈xui(u),xuj (u)〉 and the hyperbolic second fundamental invariant

h̄±ij(u) =
〈
−L±ui(u),xuj (u)

〉

for any u ∈ U .

We say that a point p = x(u0) is a (positive or negative) horospherical parabolic point

(or, briefly, a H±-parabolic point) of x : U −→ Hn
+(−1) if K±h (u0) = 0. We have shown

the following results:

Theorem 3.1. There exists an open dense subset O ⊂ Emb (U,H3
+(−1)) such that

for any x ∈ O, the following conditions hold :

(1) The H±-parabolic set K−1
h (0) is a regular curve. We call such a curve the H±-

parabolic curve.

(2) The hyperbolic Gauss indicatrix L± along the H±-parabolic curve is a cuspidaledge

except at isolated points. At such isolated points, L± is the swallowtail.

Proposition 3.2. Let O ⊂ Emb (U,H3
+(−1)) be the same open dense subset as in

Theorem 3.1. For any x ∈ O, the followings hold :

(1) An H±-parabolic point u0 ∈ U is a fold of the hyperbolic Gauss map if and only

if it is a cuspidaledge of the hyperbolic Gauss indicatrix.
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(2) An H±-parabolic point u0 ∈ U is a cusp of the hyperbolic Gauss map if and only

if it is a swallowtail of the hyperbolic Gauss indicatrix.

Here, a map germ f : (R2,a) −→ (R2, b) is called a fold if it is A-equivalent to

the germ (u1, u
2
2) and a cusp if it is A-equivalent to the germ (u1, u

3
2 + u1u2). We say

that two map germs fi : (Rn,ai) −→ (Rp, bi) (i = 1, 2) are A-equivalent if there exist

diffeomorphism germs φ : (Rn,a1) −→ (R,a2) and ψ : (Rp, b1) −→ (Rp, b2) such that

f2 ◦ φ = ψ ◦ f1.

The basic tool for the proof of the above results is also the horospherical height function

of a surface x. We define a function H : U × LC∗+ −→ R by H(u,v) = 〈x(u),v〉 + 1,

where x : U −→ H3
+(−1) is a surface in hyperbolic space. We call H a horospherical

height function on x(U) = M . We write h(u) = Hv0
(u) = H(u,v0) for any v0 ∈ LC∗+.

Then we have shown the following simple lemma which is the base of our theory on

hyperbolic Gauss indicatrices of surfaces.

Lemma 3.3. Let x : U −→ H3
+(−1) be a surface in hyperbolic space. Then:

(1) H(u,v) = 0 if and only if there exist real numbers µ, ξ1, ξ2 such that

v = x+ µe+ ξ1xu1
+ ξ2xu2

.

(2) H(u,v) =
∂H
∂u1

(u,v) =
∂H
∂u2

(u,v) = 0 if and only if v = x(u)± e(u) = L±(u).

Following the terminology of Whitney [9], we say that a surface x : U −→ H3
+(−1) has

the excellent hyperbolic Gauss indicatrix L± if the hyperbolic Gauss indicatrix L± has

only cuspidaledges and swallowtails as singularities. Theorem 3.1 asserts that a surface

with the excellent hyperbolic Gauss indicatrix is generic in the space of all surfaces

in H3
+(−1).

We now consider the geometric meanings of cuspidaledges and swallowtails of the

hyperbolic Gauss indicatrix. Define a function H : H3
+(−1)× LC∗+ −→ R by H(v1,v2) =

〈v1,v2〉 + 1. For any v0 ∈ LC∗+, we write hv0
(u) = H(u,v0) and we have a horosphere

h−1
v0

(0) = HP (v0,−1)∩H3
+(−1) = HS2(v0,−1). For any u0 ∈ U , we consider the lightlike

vector v±0 = L±(u0), then we have

hv±0
◦ x(u0) = H ◦ (x× idLC∗+)(u0,v

±
0 ) = H(u0,L±(u0)) = 0.

We also have the equalities

∂hv±0
◦ x

∂ui
(u0) =

∂H
∂ui

(u0,L±(u0)) = 0,

for i = 1, 2. This means that the horosphere h−1

v±0
(0) = HS2(v±0 ,−1) is tangent to M =

x(U) at p = x(u0). In this case, we callHS2(v±0 ,−1) the tangent horosphere ofM = x(U)

at p = x(u0) (or u0). If lightlike vectors v1,v2 are linearly dependent, then corresponding

lightlike hyperplanes HP (v1,−1), HP (v2,−1) are parallel. Therefore, we say that two

horospheres HS2(v1,−1), HS2(v2,−1) are parallel if v1,v2 are linearly dependent. For

a surface germ x : (U, u0) −→ (H3
+(−1),x(u0)), we call

(
x−1(HS2(L±(u0),−1)), u0

)
the

tangent horospherical indicatrix germ of x. We can borrow some basic invariants from
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singularity theory on function germs. We define

H-ord±(x, u0) = dim
C∞u0

(U)〈
〈x(u),L±(u0)〉+ 1, 〈xui(u),L±(u0)〉

〉
C∞u0

,

where C∞u0
(U) is the ring of function germs (U, u0) −→ R. Usually H-ord±(x, u0) is called

the K-codimension of h̃v±0
(cf. [7]), where h̃v±0

(u) = H(u,v±0 ). However, we call it the

order of contact with the tangent horosphere at x(u0). We also have the notion of corank

of function germs:

H-corank±(x, u0) = 2− rank Hess(h̃v±0
(u0)),

where v0 = L±(u0). We have shown the following results analogous to the results in

Banchoff et al. [2].

Theorem 3.4. Let L± : (U, u0) −→ (H3
+(−1),v0) be the excellent hyperbolic Gauss

indicatrix of a surface x and hv±0
: (U, u0) −→ R be the horospherical height function

germ at v±0 = L±(u0). Then:

(1) u0 is an H±-parabolic point of x if and only if H-corank±(x, u0) = 1 (i.e., u0 is

not a horospherical point of x).

(2) If u0 is an H±-parabolic point of x, then h̃v±0
has the Ak-type singularity for

k = 2, 3.

(3) Suppose that u0 is an H±-parabolic point of x. Then the following conditions are

equivalent :

(a) L± has a cuspidaledge at u0.

(b) h̃v±0
has the A2-type singularity.

(c) H-ord±(x, u0) = 2.

(d) The tangent horospherical indicatrix is an ordinary cusp, where a curve

C ⊂ R2 is called an ordinary cusp if it is diffeomorphic to the curve given by {(u1, u2) |
u2

1 − u3
2 = 0}.

(e) For each ε > 0, there exist two distinct points u1, u2 ∈ U such that |u0−ui| < ε

for i = 1, 2, both of u1, u2 are not H±-parabolic points and the tangent horospheres to

M = x(U) at u1, u2 are parallel.

(4) Suppose that u0 is an H±-parabolic point of x. Then the following conditions are

equivalent :

(a) L± has a swallowtail at u0.

(b) h̃v±0
has the A3-type singularity.

(c) H-ord±(x, u0) = 3.

(d) The tangent horospherical indicatrix is a point or a tachnodal, where a curve

C ⊂ R2 is called a tachnodal if it is diffeomorphic to the curve given by {(u1, u2) |
u2

1 − u4
2 = 0}.

(e) For each ε > 0, there exist three distinct points u1, u2, u3 ∈ U such that

|u0 − ui| < ε for i = 1, 2, 3 and the tangent horospheres to M = x(U) at u1, u2, u3 are

parallel.
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(f) For each ε > 0, there exist two distinct points u1, u2 ∈ U such that |u0−ui| < ε

for i = 1, 2 and the tangent horospheres to M = x(U) at u1, u2 are equal.

4. Horospherical surfaces as wavefronts. In this section we naturally interpret

the horospherical surface of a space curve in hyperbolic space as a wavefront in the

framework of contact geometry and consider the geometric meaning of singularities. In

Section 6 (Appendix) we give a quick survey on the theory of Legendrian singularities.

For notions and basic results on generating families, please refer to Appendix. For any

lightlike vector v = (v0, v1, v2, v3) ∈ LC∗+, we have a relation v0 =
√
v2

1 + v2
2 + v2

3 . So

we adopt the coordinate system (v1, v2, v3) of LC∗+ as a manifold. Here, we consider

the projective cotangent bundle π : PT ∗(LC∗+) −→ LC∗+ with the canonical contact

structure. We now review geometric properties of this space. Consider the tangent bundle

τ : TPT ∗(LC∗+)→ PT ∗(LC∗+) and the differential map dπ : TPT ∗(LC∗+)→ TLC∗+ of π.

For any X ∈ TPT ∗(LC∗+), there exists an element α ∈ T ∗(LC∗+) such that τ(X) = [α].

For an element V ∈ Tx(LC∗+), the property α(V ) = 0 does not depend on the choice

of representative of the class [α]. Thus we can define the canonical contact structure on

PT ∗(LC∗+) by

K = {X ∈ TPT ∗(LC∗+) | τ(X)(dπ(X)) = 0}.
In the coordinate system (v1, v2, v3), we have the trivialisation

PT ∗(LC∗+) ∼= LC∗+ × P (R2)∗

and we call
(
(v1, v2, v3), [ξ1 : ξ2 : ξ3]

)

homogeneous coordinates , where [ξ1 : ξ2 : ξ3] are homogeneous coordinates of the dual

projective plane P (R2)∗.
It is easy to show that X ∈ K(x,[ξ]) if and only if

∑3
i=1 µiξi = 0, where dπ̃(X) =∑3

i=1 µi
∂
∂vi

. An immersion i : L → PT ∗(LC∗+) is said to be a Legendrian immersion if

dimL = 2 and diq(TqL) ⊂ Ki(q) for any q ∈ L. We also call the map π ◦ i the Legendrian

map and the set W (i) = imageπ ◦ i the wavefront of i. Moreover, i (or the image of i) is

called the Legendrian lift of W (i).

The main tool for the proof of Theorem 2.1 has been the horospherical height function

on γ. For a hyperbolic space curve γ : I −→ H3
+(−1), we define a function

H : I × LC∗+ −→ R

by H(s,v) = 〈γ(s),v〉 + 1. We call H a horospherical height function on γ. We define

h(s) = Hv0
(s) = H(s,v0) for any v0 ∈ LC∗+. The proof for the following proposition is

given by a direct calculation (cf. [4]) but it has induced the notion of the horospherical

surface of a curve.

Proposition 4.1. Let γ : I −→ H3
+(−1) be a unit speed hyperbolic space curve with

κh 6= 0. Then:

(1) h(s0) = 0 if and only if there exist real numbers λ, µ, η with λ2 +µ2 +η2 = 1 such

that v0 = γ(s0) + λt(s0) + µn(s0) + ηe(s0).
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(2) h(s0) = h′(s0) = 0 if and only if there exists θ0 ∈ [0, 2π] such that v0 = γ(s0) +

cos θ0 n(s0) + sin θ0 e(s0).

(3) h(s0) = h′(s0) = h′′(s0) = 0 if and only if v0 = γ(s0) + cos θ0 n(s0) + sin θ0 e(s0)

and cos θ0 = 1/κh(s0).

(4) h(s0) = h′(s0) = h′′(s0) = h(3)(s0) = 0 if and only if v0 = γ(s0) + cos θ0 n(s0) +

sin θ0 e(s0), cos θ0 = 1/κh(s0) and σh(s0) =
(
(κ′h)2 − (κh)2(τh)2((κh)2 − 1)

)
(s0) = 0.

(5) h(s0) = h′(s0) = h′′(s0) = h(3)(s0) = h(4)(s0) = 0 if and only if v0 = γ(s0) +

cos θ0 n(s0) + sin θ0 e(s0), cos θ0 = 1/κh(s0) and σh(s0) = σ′h(s0) = 0.

We have the following proposition:

Proposition 4.2. The horospherical height function H : I × LC∗+ −→ R is a Morse

family.

Proof. For any v = (v0, v1, v2, v3) ∈ LC∗+, we have v0 =
√
v2

1 + v2
2 + v2

3 , so that

H(s,v) = −x0(s)
√
v2

1 + v2
2 + v2

3 + x1(s)v1 + x2(s)v2 + xn(s)v3 + 1,

where γ(s) = (x0(s), x1(s), x2(s), x3(s)). We have to prove that the mapping

∆∗H =
(
H,

∂H

∂s

)

is non-singular at any point. The Jacobian matrix of ∆∗H is given as follows:


〈γ′(s),v〉 −x0(s)

v1

v0
+ x1(s) −x0(s)

v2

v0
+ x2(s) −x0(s)

v3

v0
+ x3(s)

〈γ′′(s),v〉 −x′0(s)
v1

v0
+ x′1(s) −x′0(s)

v2

v0
+ x′2(s) −x′0(s)

v3

v0
+ x′3(s)


 .

We now show that the rank of the matrix

A =



−x0(s)

v1

v0
+ x1(s) −x0(s)

v2

v0
+ x2(s) −x0(s)

v3

v0
+ x3(s)

−x′0(s)
v1

v0
+ x′1(s) −x′0(s)

v2

v0
+ x′2(s) −x′0(s)

v3

v0
+ x′3(s)




is two at (s0,v) ∈ Σ∗(H).

In this case we now calculate the Gram-Schmidt matrix of

B = v2
0A =

(−x0(s0)v1 + x1(s0)v0 −x0(s0)v2 + x2(s0)v0 −x0(s0)v3 + x3(s0)v0

−x′0(s0)v1 + x′1(s0)v0 −x′0(s0)v2 + x′2(s0)v0 −x′0(s0)v3 + x′3(s0)v0

)
.

We define

F =
(
−x0(s0)v1 + x1(s0)v0,−x0(s0)v2 + x2(s0)v0,−x0(s0)v3 + x3(s0)v0

)
,

G =
(
−x′0(s0)v1 + x′1(s0)v0,−x′0(s0)v2 + x′2(s0)v0,−x′0(s0)v3 + x′3(s0)v0

)
.

Then

F ·F = v2
0x

2
0(s0)−2x0(s0)v0

(
v1x1(s0)+v2x2(s0)+v3x3(s0)

)
+v2

0

(
x2

1(s0)+x2
2(s0)+x2

3(s0)
)
.

Since 〈γ(s0),v〉 = −1, we have F · F = −v2
0 + 2x0(s0)v0. We also have G · G = −v2

0 .

Moreover, we can show that

F ·G =
(
−x0(s0)x′0(s0) + x1(s0)x′1(s0) + x2(s0)x′2(s0) + x3(s0)x′3(s0)

)
v2

0 + x′0(s0)v0

= x′0(s0)v0.
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Therefore the Gram-Schmidt matrix of B is(−v2
0 + 2x0(s0)v0 x′0(s0)v0

x′0(s0)v0 −v2
0

)
.

Since (s0,v) ∈ Σ∗(H), we have v = HS±γ (s0). By a Lorentzian motion of the curve

on H3
+(−1), we may assume that γ(s0) = (1, 0, 0, 0). In this case, we have x0(s0) = 1,

x′0(s0) = 0 and v0 = 1. Thus the determinant of the Gram-Schmidt matrix of B is

v2
0

(
2x0(s0)v0 − v2

0 − x′0(s0)
)

= 1. Thus the rank of the matrix A is equal to two. This

completes the proof.

By the method for constructing the Legendrian immersion germ from a Morse family,

we can define a Legendrian immersion germ whose generating family is the horospherical

height function on γ as follows: For a unit speed regular curve γ : I −→ H3
+(−1), we

define

γ(s) =
(
x0(s), x1(s), x2(s), x3(s)

)
, HSγ(s, θ) =

(
v0(s, θ), v1(s, θ), v2(s, θ), v3(s, θ)

)

as coordinate representations. We define a smooth mapping

Lγ : I × J −→ PT ∗(LC∗+)

by

Lγ(s, θ) =
(
HSγ(s, θ), [`(s, θ)]

)
,

where

`(s, θ) =
(
−x0(s)

v1

v0
(s, θ) + x1(s),−x0(s)

v2

v0
(s, θ) + x2(s),−x0(s)

v3

v0
(s, θ) + x3(s)

)
.

By definition, we have the following corollary of the above theorem:

Corollary 4.3. For a unit speed regular curve γ : I −→ H3
+(−1), Lγ is a Legen-

drian immersion such that the horospherical height function H : I × LC∗+ −→ R of γ is

a global generating family of Lγ .

Therefore, we have the Legendrian immersion Lγ whose wavefront set is the horo-

spherical surface of γ.

On the other hand, we can also define a lift

L± : U −→ PT ∗(LC∗+)

of the hyperbolic Gauss indicatrix L± of a surface x : U −→ H3
+(−1) as follows: We

define x(u) =
(
x0(u), x1(u), x2(u), x3(u)

)
and L±(u) =

(
`±0 (u), `±1 (u), `±2 (u), `±3 (u)

)
as

coordinate representations and

L±(u) =
(
L±(u), [`±(u)]

)
,

where

`±(u) =
(
−`±1 (u)x0(u) + `±0 (u)x1(u),−`±2 (u)x0 + `±0 (u)x2(u),−`±3 (u)x0 + `±0 (u)x3(u)

)
.

By a similar calculation as in the proof of Proposition 4.2, we can prove that the horo-

spherical height function H : U ×LC∗+ −→ R of x : U −→ H3
+(−1) is a Morse family and

it is a global generating family of the Legendrian lift L± of L± (cf. [5]).
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5. The canal surface of a hyperbolic space curve. Let γ : I −→ H3
+(−1) be a

unit speed curve. We now define a surface

HCγφ(s, θ) = coshφγ(s) + sinhφ(cos θn(s) + sin θ e(s))

for a non-zero real number φ. We call HCγφ the hyperbolic canal surface of γ. By a

straightforward calculation, we have
(
HCγφ ∧

∂HCγφ
∂s

∧ ∂HCγφ
∂θ

)
(s, θ)

= − sinhφ
(

coshφ− κh(s) cos θ sinhφ
)(

sinhφγ(s) + coshφ(sin θ e(s) + cos θn(s))
)
.

Therefore, the hyperbolic canal surface of γ is singular at (s0, θ0) if and only if A(s0, θ0) =

coshφ − κh(s0) cos θ0 sinhφ = 0. For a sufficiently small |φ|, A(s, θ) 6= 0 for any (s, θ) ∈
I × [0, 2π] (under the assumption that Ī is compact). Therefore the hyperbolic canal

surface of γ is a regular surface for sufficiently small |φ|. If we fix φ as a negative real

number, then − sinhφ(coshφ − κh(s) cos θ sinhφ) is positive. Therefore the unit normal

of the canal surface is given by

E(s, θ) = sinhφγ(s) + coshφ
(
sin θ e(s) + cos θn(s)

)
.

It follows that the hyperbolic Gauss indicatrix of HCγφ is

L±(s, θ) = (coshφ± sinhφ)
{
γ(s)± (cos θn(s) + sin θ e(s))

}
.

We now define a diffeomorphism

Mc : LC∗+ −→ LC∗+

by Mc(v) = cv for a fixed number c ∈ R. Then we have the following lemma:

Lemma 5.1. Under the above notation, we have

Mc ◦HS±γ(s, θ) = L±(s, θ),

where c = coshφ± sinhφ.

By Lemma 5.1, the horospherical surface of γ is diffeomorphic to the hyperbolic

indicatrix of the hyperbolic canal surface of γ. Therefore we have the following theorem

as a corollary of Theorem 2.2:

Theorem 5.2. There exists an open and dense subset O ⊂ Emb (I,H3
+(−1)) such

that for any γ ∈ O, the hyperbolic canal surface HCγφ (for sufficiently small |φ|) has

the excellent hyperbolic Gauss indicatrix.

By Theorems 2.1, 2.2, 3.4 and Proposition 2.4, we have the following corollary:

Corollary 5.3. There exists an open and dense subset O ⊂ Emb (I,H3
+(−1)) such

that for any γ ∈ O, the following conditions are equivalent :

(1) The horospherical surface HSγ of γ is locally diffeomorphic to the swallowtail

SW at (s0, θ0).

(2) cos θ0 = 1/κh(s0), σh(s0) = 0 and σ′h(s0) 6= 0.

(3) The osculating horosphere and γ have 4-point contact at s = s0.

(4) The hyperbolic Gauss indicatrix L± for the hyperbolic canal surface HCγφ has

the swallowtail SW at (s0, θ0).
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(5) H-ord±(HCγφ, (s0, θ0)) = 3.

Here, |φ| is a sufficiently small fixed real number, v0 = γ(s0)+cos θ0 n(s0)+sin θ0 e(s0)

and v±0 = (coshφ± sinhφ)v0.

We remark that we also have other conditions (in Theorem 3.4) which characterize

the swallowtail point of the hyperbolic indicatrix for the canal surface HCγφ of γ. We

do not, however, mention here to avoid the complicated description. The above corollary

asserts that the contact between curves and horospheres generically corresponds to the

contact between canal surfaces of curves and horospheres. We can assert that such a

correspondence holds in general as an application of the theory of Legendrian singularities.

We now define a contact diffeomorphism

M̃c : PT ∗(LC∗+) −→ PT ∗(LC∗+)

by M̃c(v, [ξ]) = (cv, [ξ]) for a fixed number c ∈ R, which is the unique contact lift of the

diffeomorphism Mc : LC∗+ −→ LC∗+. Then we have the following proposition:

Proposition 5.4. Let γ : I −→ H3
+(−1) be a unit speed hyperbolic space curve. Then

M̃c ◦ Lγ(s, θ) = L±(s, θ),

where c = coshφ± sinhφ and L± is the lift of the hyperbolic Gauss indicatrix of HCγφ.

Therefore, the Legendrian lift L± of the hyperbolic Gauss indicatrix of HCγφ is

Legendrian equivalent to Lγ .

We now consider the contact between curves (or surfaces) and horospheres. The main

tools belong to the theory of contact due to Montaldi [8]. Let Xi, Yi (i = 1, 2) be sub-

manifolds of Rn with dimX1 = dimX2 and dimY1 = dim Y2. We say that the contact

of X1 and Y1 at y1 is the same type as the contact of X2 and Y2 at y2 if there is a

diffeomorphism germ Φ : (Rn, y1) −→ (Rn, y2) such that Φ(X1) = X2 and Φ(Y1) = Y2.

In this case we write K(X1, Y1; y1) = K(X2, Y2; y2). It is clear that in the definition

Rn could be replaced by any manifold. In his paper [8], Montaldi gives a characterization

of the notion of contact by using the terminology of singularity theory. He has shown the

following theorem:

Theorem 5.5. Let Xi, Yi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2 and

dimY1 = dim Y2. Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and fi : (Rn, yi) −→
(Rp, 0) be submersion germs with (Yi, yi) = (f−1

i (0), yi). Then

K(X1, Y1; y1) = K(X2, Y2; y2)

if and only if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.

In Section 2 we have defined the osculating horosphere of a hyperbolic space curve γ

with κh(s) 6= 0. We have also defined the tangent horosphere of a surface x in hyperbolic

space. Here we consider the relation between the osculating horosphere of a hyperbolic

space curve and the tangent horosphere of the canal surface of the curve. By definition

HS2(v0,−1) is the osculating horosphere when v0 = γ(s0) + cos θ0 n(s0) + sin θ0 e(s0)

and cos θ0 = 1/κh(s0). In this case HS2(v±0 ,−1) are respectively tangent horospheres of

HCγφ at (s0, θ0) where v±0 = (coshφ± sinhφ)v0. Then we have the following theorem.
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Theorem 5.6. Let γi : I −→ H3
+(−1) (i = 1, 2) be unit speed curves in H3

+(−1).

Then

K
(
γ1, HS

2(v1,−1);γ1(s0)
)

= K
(
γ2, HS

2(v2,−1);γ2(s0)
)

if and only if

K
(
HCγ1,φ, HS

2(v±1 ,−1);HCγ1,φ(s0, θ0)
)

= K(HCγ2,φ, HS
2(v±2 ,−1);HCγ2,φ(s0, θ0)).

Here, |φ| is a sufficiently small fixed real number, vi = γi(s0) + cos θ0 ni(s0) +

sin θ0 ei(s0) and v±i = (coshφ± sinhφ)vi.

Proof. We consider the function H : H3
+(−1) × LC∗+ −→ R defined by H(x,v) =

〈x,v〉 + 1. This function has been used to define the tangent horosphere of a surface in

Section 3.

On the other hand, consider a unit speed curve γ : I −→ H3
+(−1), then we have

hv0
◦γ(s) = H(s,v0) = h(s), whereH is the horospherical height function on γ. Therefore,

HS2(v0,−1) = h−1
v0

(0) is an osculating horosphere of γ at γ(s0) if and only if h(s0) =

h′(s0) = h′′(s0) = 0. By Proposition 4.1, we have v0 = γ(s0) + cos θ0 n(s0) + sin θ0 e(s0).

Let Hi : I × LC∗+ −→ R be the horospherical height function of γi, where i = 1, 2.

By Theorem 5.5, K
(
γ1, HS

2(v1,−1);γ1(s0)
)

= K
(
γ2, HS

2(v2,−1);γ2(s0)
)

if and only

if hv1
and hv2

are K-equivalent, where hvi(s) = Hi(s,vi) (i = 1, 2).

It also follows from Theorem 5.5 that

K
(
HCγ1,φ, HS

2(v±1 ,−1);HCγ1,φ(s0, θ0)
)

= K
(
HCγ2,φ, HS

2(v±2 ,−1);HCγ2,φ(s0, θ0)
)

if and only if h̃v±1
and h̃v±2

are K-equivalent, where h̃v±i
(s, θ) = H(HCγi,φ(s, θ),v±i )

(i = 1, 2).

On the other hand, the horospherical height function H : I × J × LC∗+ −→ R on the

canal surface HCγφ is a generating family of the Legendrian lift L± of L±. Moreover,

the horospherical height function H : I × LC∗+ −→ R on γ is a generating family of Lγ .

By Proposition 5.4 and Theorem 6.3, H and H are stably P -K-equivalent. It follows that

hv1
and hv2

are K-equivalent if and only if h̃v±1
and h̃v±2

are K-equivalent. This completes

the proof.

We also have the following theorem:

Theorem 5.7. Let γ : I −→ H3
+(−1) be a unit speed curve in H3

+(−1). The following

conditions are equivalent :

(1) The osculating horosphere and γ have (k + 1)-point contact for s = s0.

(2) H-ord±(HCγφ, (s0, θ0)) = k.

(3) cos θ0 = 1/κh(s0), σh(s0)(`) = 0 for 0 ≤ ` ≤ k − 3 and σ
(k−2)
h (s0) 6= 0.

Here, |φ| is a sufficiently small fixed real number, v0 = γ(s0)+cos θ0 n(s0)+sin θ0 e(s0)

and v±0 = (coshφ± sinhφ)v0.
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Proof. By the proof of Theorem 5.6, H and H are stably P -K-equivalent. Therefore

condition (1) is equivalent to condition (2). If we continue the calculation in Proposi-

tion 4.1, we can show that h(`)(s0) = 0 for 0 ≤ ` ≤ k and h(k+1)(s0) 6= 0 if and only if

condition (3) holds. It follows that condition (1) is equivalent to condition (3).

We emphasise that the above two theorems hold not necessary under the generic

condition.

6. Appendix: Generating families. We give here a quick survey on the theory of

Legendrian singularities mainly due to Arnol′d-Zakalyukin [1], [10].

Let F : (Rk × R3,0) −→ (R,0) be a function germ. We say that F is a Morse family

if the mapping

∆∗F =
(
F,
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × R3,0) −→ (R× Rk,0)

is non-singular, where (q, x) = (q1, . . . , qk, x1, x2, x3) ∈ (Rk ×R3,0). In this case we have

a smooth surface

Σ∗(F ) =
{

(q, x) ∈ (Rk × R3,0)
∣∣∣ F (q, x) =

∂F

∂q1
(q, x) = . . . =

∂F

∂qk
(q, x) = 0

}

and the map germ ΦF : (Σ∗(F ),0) −→ PT ∗R3 defined by

ΦF (q, x) =
(
x,
[ ∂F
∂x1

(q, x) :
∂F

∂x2
(q, x) :

∂F

∂x3
(q, x)

])

is a Legendrian immersion. Then we have the following fundamental theorem of Arnol′d-

Zakalyukin [1], [10].

Proposition 6.1. All Legendrian submanifold germs in PT ∗R3 are constructed by

the above method.

We call F a generating family of ΦF . Therefore the wavefront is

W (ΦF ) =
{
x ∈ R3

∣∣∣ ∃q ∈ Rk; F (q, x) =
∂F

∂q1
(q, x) = . . . =

∂F

∂qk
(q, x) = 0

}
.

We sometime denote W (ΦF ) by DF and call it the discriminant set of F .

We now introduce an equivalence relation among Legendrian immersion germs. Let i :

(L, p) ⊂ (PT ∗R3, p) and i′ : (L′, p′) ⊂ (PT ∗R3, p′) be Legendrian immersion germs. Then

we say that i and i′ are Legendrian equivalent if there exists a contact diffeomorphism

germ H : (PT ∗R3, p) −→ (PT ∗R3, p′) such that H preserves fibres of π and H(L) = L′.
A Legendrian immersion germ into PT ∗R3 at a point is said to be Legendrian stable if

for every map with the given germ there is a neighbourhood in the space of Legendrian

immersions (in the Whitney C∞ topology) and a neighbourhood of the original point

such that each Legendrian immersion belonging to the first neighbourhood has in the

second one a point at which its germ is Legendrian equivalent to the original germ.

Since the Legendrian lift i : (L, p) ⊂ (PT ∗R3, p) is uniquely determined on the regular

part of the wavefront W (i), we have the following simple but significant property of

Legendrian immersion germs:
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Proposition 6.2. Let i : (L, p) ⊂ (PT ∗R3, p) and i′ : (L′, p′) ⊂ (PT ∗R3, p′) be

Legendrian immersion germs such that regular sets of π ◦ i, π ◦ i′ are dense respectively.

Then i, i′ are Legendrian equivalent if and only if wavefront sets W (i),W (i′) are diffeo-

morphic as set germs.

This result has been firstly pointed out by Zakalyukin [11]. The assumption in the

above proposition is a generic condition for i, i′. Specially, if i, i′ are Legendrian stable,

then these satisfy the assumption.

We can interpret the Legendrian equivalence by using the notion of generating families.

We denote by Em the local ring of function germs (Rm,0) −→ R with the unique maximal

ideal Mm = {h ∈ Em | h(0) = 0}. Let F,G : (Rk × R3,0) −→ (R,0) be function germs.

We say that F and G are P -K-equivalent if there exists a diffeomorphism germ Ψ : (Rk×
R3,0) −→ (Rk × R3,0) of the form Ψ(x, u) = (ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk × R3,0)

such that Ψ∗(〈F 〉Ek+3
) = 〈G〉Ek+3

. Here Ψ∗ : Ek+3 −→ Ek+3 is the pull back R-algebra

isomorphism defined by Ψ∗(h) = h ◦ Ψ. For any F1 ∈ Mk+3, F2 ∈ Mk′+3 we also say

that F1, F2 are stably P -K-equivalent if they become P -K-equivalent after adding new

arguments pi to the arguments qi and nondegenerate quadratic forms Qi in the new

arguments to the functions Fi (i.e., F1 +Q1 and F2 +Q2 are P -K-equivalent).

Let F : (Rk × R3,0) −→ (R,0) a function germ. We say that F is a K-versal defor-

mation of f = F |Rk×{0} if

Ek = Te(K)(f) +
〈 ∂F
∂x1

∣∣∣
Rk×{0}

,
∂F

∂x2

∣∣∣
Rk×{0}

,
∂F

∂x3

∣∣∣
Rk×{0}

〉
R
,

where

Te(K)(f) =
〈 ∂f
∂q1

, . . . ,
∂f

∂qk
, f
〉
Ek
.

(See [7].)

The main result in Arnol′d-Zakalyukin’s theory ([1], [10]) is the following:

Theorem 6.3. Let F1 ∈Mk+3 and F2 ∈Mk′+3 be Morse families. Then

(1) ΦF1
and ΦF2

are Legendrian equivalent if and only if F1, F2 are stably P -K-

equivalent.

(2) ΦF is Legendrian stable if and only if F is a K-versal deformation of F |Rk×{0}.
By the uniqueness result of the K-versal deformation of a function germ, Proposi-

tion 6.2 and Theorem 6.3, we have the following classification result of Legendrian stable

germs. For any function germ f : (Rk,0) −→ (R,0), we define the local ring of f by

Q(f) = Ek/〈f〉En .

Proposition 6.4. Let F,G : (Rk×Rn,0) −→ (R,0) be Morse families. Suppose that

ΦF ,ΦG are Legendrian stable. Then the following conditions are equivalent.

(1) (W (ΦF ),0) and (W (ΦG),0) are diffeomorphic as germs.

(2) ΦF and ΦG are Legendrian equivalent.

(3) Q(f) and Q(g) are isomorphic as R-algebras.

Here f = F |Rk×{0}, g = G|Rk×{0}.
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Proof. Since ΦF ,ΦG are Legendrian stable, these satisfy the generic condition of

Proposition 6.2, so that conditions (1) and (2) are equivalent. Condition (3) implies that

f, g are K-equivalent [7]. By the uniqueness of the K-versal deformation of a function

germ, F,G are P -K-equivalent. This means that condition (2) holds. By Theorem 6.3,

condition (2) implies condition (3).
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