ON ASYMPTOTIC CRITICAL VALUES
AND THE RABIER THEOREM

ZBIGNIEW JELONEK

Institute of Mathematics, Polish Academy of Sciences
Św. Tomasa 30, 31-027 Kraków, Poland
E-mail: najelone@cyf-kr.edu.pl

Abstract. Let $X \subset k^n$ be a smooth affine variety of dimension $n-r$ and let $f = (f_1, \ldots, f_m): X \to k^m$ be a polynomial dominant mapping. It is well-known that the mapping f is a locally trivial fibration outside a small closed set $B(f)$. It can be proved (using a general Fibration Theorem of Rabier) that the set $B(f)$ is contained in the set $K(f)$ of generalized critical values of f. In this note we study the Rabier function. We give a few equivalent expressions for this function, in particular we compare this function with the Kuo function and with the (generalized) Gaffney function. As a consequence we give a direct short proof of the fact that f is a locally trivial fibration outside the set $K(f)$ (i.e., that $B(f) \subset K(f)$). This generalizes the previous results of the author for $X = k^r$ (see [2]).

1. Introduction. Let X be a smooth affine variety over $k = \mathbb{R}$ or $k = \mathbb{C}$ of dimension $n-r$ and let $f : X \to k^m$ be a polynomial dominant mapping. It is well-known that the mapping f is a locally trivial fibration outside a bifurcation set $B(f)$, which has a measure 0.

Let us recall that in general the set $B(f)$ is bigger than $K_0(f)$—the set of critical values of f. It contains also the set $B_\infty(f)$ of bifurcations points at infinity. Briefly speaking, the set $B_\infty(f)$ consists of points at which f is not a locally trivial fibration at infinity (i.e., outside a compact set). To control the set $B_\infty(f)$ one can use the set of asymptotic critical values at infinity of f (see [6]):

$$K_\infty(f) = \{ y \in k^m : \text{there is a sequence } x_l \to \infty \text{ such that } f(x_l) \to y \text{ and } \|x_l\|\nu(\text{rest}_{T_{x_l}X} df(x_l)) \to 0 \},$$

where we consider the induced Euclidean metric on X and ν is the function defined by Rabier (see Definition 2.1 below). If $y \notin K_\infty(f)$ we say also that y is Malgrange regular.

2000 Mathematics Subject Classification: Primary 51N10; Secondary 15A04.
Research supported by KBN grant 2PO3A 01722.
The paper is in final form and no version of it will be published elsewhere.

[125]
If \(m = 1 \) and \(X = k^n \), then there is a wide literature devoted to different regularity conditions and their comparison (e.g., [8], [9], [10]). It has been proved for instance that the Malgrange regularity is equivalent to another regularity called \(t \)-regularity, by Siersma and Tibar (see [7]). The case \(m > 1 \) and \(X = k^n \) was studied in [1], [2] and [4]. In this paper (and in [3]) we study the case when \(X \) is a smooth affine variety (or even a Stein submanifold of \(\mathbb{C}^m \)) and \(m \leq \dim X \).

Let \(K(f) = K_0(f) \cup K_\infty(f) \) be the set of generalized critical values of \(f \). It can be proved that the set \(K(f) \) is a proper algebraic subset of \(\mathbb{C}^m \)—or proper semi-algebraic in the real case (see [3]). Moreover, we have (e.g., by a general Fibration Theorem of Rabier [6], see also [1]) \(B(f) \subset K(f) \). These two facts together allow us to construct effectively a Zariski open dense subset \(U \subset k^m \) over which the mapping \(f \) is a locally trivial fibration.

In this note we study the Rabier function. As a consequence we give a direct proof of the fact that \(B(f) \subset K(f) \) in the case when \(X \subset k^n \) is a smooth submanifold and \(f : X \to k^m \) is a smooth mapping (moreover, some of these results are used in [3] to study the properties of the set \(K(f) \)).

The fact that \(B(f) \subset K(f) \) follows from a very general Theorem of Rabier (see [6]), but it is so important (e.g., in the study of polynomial mappings) that (as I believe) it is worth to have a simple direct proof of it in a special case of submanifolds of a Euclidean space.

Acknowledgments. This paper was written during the author’s stay at the Max-Planck-Institut für Mathematik in Bonn. The author thanks MPI for the invitation and the kind hospitality.

2. On the Rabier function \(\nu \)

Here we give several equivalent expressions for \(\nu \).

Let \(X \cong k^n, Y \cong k^m \) be finite-dimensional vector spaces (over \(k \)). Let us denote by \(\mathcal{L}(X,Y) \) the set of linear mappings from \(X \) to \(Y \) and by \(\Sigma(X,Y) \subset \mathcal{L}(X,Y) \) the set of non-surjective mappings. Let us recall the following ([6]):

Definition 2.1. Let \(A \in \mathcal{L}(X,Y) \).

\[
\nu(A) = \inf_{\|\phi\|=1} \|A^*(\phi)\|,
\]

where \(A^* : \mathcal{L}(Y^*,X^*) \) is the adjoint operator and \(\phi \in Y^* \).

In [4] the following characterization of \(\nu \) is given: \(\nu(A) = \text{dist}(A,\Sigma) = \inf_{B \in \Sigma} \|A-B\| \).

Moreover, we have the following useful characterization ([6] and [4]):

Proposition 2.1. Let \(A \in \mathcal{L}(X,Y) \). Then

a) \(\nu(A) = \sup \{ r > 0 : B(0,r) \subset A(B(0,1)) \} \), where \(B(0,r) = \{ x \in X : \|x\| \leq r \} \).

b) if \(A \in \text{GL}(X,Y) \) then \(\nu(A) = \|A^{-1}\|^{-1} \).

Proposition 2.2. Let \(A = (A_1, \ldots, A_m) \in \mathcal{L}(X,Y) \) and let \(\overline{A}_i = \text{grad} A_i \). Let

\[
\kappa(A) = \min_{1 \leq i \leq m} \text{dist} \left(\overline{A}_i, \left(\overline{A}_j \right)_{j \neq i} \right),
\]

be the Kuo number of \(A \). Then \(\nu(A) \leq \kappa(A) \leq \sqrt{m} \nu(A) \).
We say that \(\nu(A) \) and \(\kappa(A) \) are equivalent and write \(\nu(A) \sim \kappa(A) \). The symbol \(X \sim Y \) means that there are positive constants \(C_1, C_2 \) such that \(C_1 X \leq Y \leq C_2 X \).

Definition 2.2. Let \(A \in \mathcal{L}(X,Y) \) and let \(H \subset X \) be a linear subspace. We set
\[
\nu(A,H) = \nu(\text{res}_H A), \quad \kappa(A,H) = \kappa(\text{res}_H A),
\]
where \(\text{res}_H A \) denotes the restriction of \(A \) to \(H \).

From Proposition 2.2 we get immediately:

Corollary 2.1. Let \(A \in \mathcal{L}(X,Y) \) and let \(H \subset X \) be a linear subspace. Then
\[
\nu(A,H) \sim \kappa(A,H).
\]

Proposition 2.3. Let \(A = (A_1, \ldots, A_m) \in \mathcal{L}(X,Y) \) and let \(H \subset X \) be a linear subspace. Assume that \(H \) is given by a system of linear equations \(B_j = 0, \ j = 1, \ldots, r \). Then
\[
\kappa(A,H) = \min_{1 \leq i \leq m} \text{dist}(\overline{A}_i, (\langle \overline{A}_j \rangle_{j \neq i}; (\overline{B}_j)_{j=1,\ldots,r})),
\]
where \(\overline{A}_i = \text{grad} A_i \) and \(\overline{B}_j = \text{grad} B_j \).

Proof. Indeed, every vector \(\overline{A}_i \) can be written as \(a_i + b_i \), where \(a_i \) is orthogonal to the subspace \(B = \langle (\overline{B}_j)_{j=1,\ldots,r} \rangle \) (which means that \(a_i \in H \) and \(b_i \in B \)). Hence
\[
\text{dist}(\overline{A}_i, (\langle \overline{A}_j \rangle_{j \neq i}; (\overline{B}_j)_{j=1,\ldots,r})) = \text{dist}(a_i, (\langle a_j \rangle_{j \neq i}))
\]
and since \(\text{grad}(\text{res}_H A_i) = a_i \), the proof is finished. \(\blacksquare \)

We need also:

Definition 2.3. Let \(A \in \mathcal{L}(X,Y) \) (where \(n \geq m + r \)) and let \(H \subset X \) be a linear subspace given by a system of independent linear equations \(B_i = \sum b_{ij} x_j, \ i = 1, \ldots, r \). Let \(a = [a_{ij}] \) be the matrix of \(A \). Let \(c = [c_{kl}] \) be a \(((m + r) \times n) \) matrix given by the rows \(A_1, \ldots, A_m; B_1, \ldots, B_r \) (we identify \(A_i = \sum a_{ij} x_j \) with the vector \((a_{i1}, \ldots, a_{in}) \), similarly for \(B_j \)). Let \(M_I \), where \(I = (i_1, \ldots, i_{m+r}) \), denote a \(((m + r) \times (m + r)) \) minor of \(c \) given by columns indexed by \(I \) and let \(|M_I| \) denote the determinant of \(M_I \). Further, let \(M_J(j) \) denote a \(((m+r-1) \times (m+r-1)) \) minor given by columns indexed by \(J \) and by deleting the \(j \)-th row, where \(1 \leq j \leq m \). Then by the generalized Gaffney function of \(A \) with respect to a linear subspace \(H \), we mean the number
\[
g(A,H) = \left(\frac{\sum I |M_I|^2}{\sum J, 1 \leq j \leq m |M_J(j)|^2} \right)^{1/2}.
\]
(If this number is not defined we put \(g(A,H) = 0 \).)

Remark 2.1. It is easy to see that \(g(A,H) \) depends on \(A \) and \(H \) only. A particular case of this definition (for \(H = X \)) has been considered by Gaffney—see [1].

Proposition 2.4. Let \(A \in \mathcal{L}(X,Y) \) (where \(n \geq m \)) and let \(H \subset X \) be a linear subspace. Then \(g(A,H) \sim \kappa(A,H) \sim \nu(A,H) \).
Proof. By basic properties of the Gram determinant (see e.g., [5]) we have
\[
\text{dist}(\overline{A}_{ij}, \langle (\overline{A}_j)_{j\neq i}; (\overline{B}_j)_{j\in \{1,\ldots,r\}} \rangle) = \frac{G((\overline{A}_j)_{j\in \{1,\ldots,m\}}, (\overline{B}_j)_{j\in \{1,\ldots,r\}})^{1/2}}{G((\overline{A}_j)_{j\neq i}, (\overline{B}_j)_{j\in \{1,\ldots,r\}})^{1/2}} = \frac{(\sum_I |M_I|^2)^{1/2}}{(\sum_J |M_J(i)|^2)^{1/2}}.
\]
Thus \(g(A, H) \leq \kappa(A, H)\). On the other hand there is a number \(i_0\) such that the sum \((\sum_j |M_J(i_0)|^2)^{1/2}\) is maximal. Since
\[
\left(\sum_{j,j} |M_J(j)|^2\right)^{1/2} = \left(\sum_r \left(\sum_j |M_J(r)|^2\right)^{1/2}\right) \leq \sqrt{m} \left(\sum_j |M_J(i_0)|^2\right)^{1/2},
\]
we have
\[
g(A, H) \geq C \frac{(\sum_I |M_I|^2)^{1/2}}{(\sum_J |M_J(i_0)|^2)^{1/2}} = C \text{dist}(\overline{A}_{i_0}, \langle (\overline{A}_j)_{j\neq i_0}; (\overline{B}_j)_{j\in \{1,\ldots,r\}} \rangle) \geq C \kappa(A, H),
\]
where \(C = 1/\sqrt{m}\). ■

Definition 2.4. Let us apply the notation from Definition 2.3. Put
\[
q(A, H) = \max_I \frac{|M_I|}{\max_I, j \subseteq I, j |M_J(j)|},
\]
(where we consider only numbers with \(M_J(j) \neq 0\), if all numbers \(M_J(j)\) are zero, we put \(q(A, H) = 0\)).

Proposition 2.4 can also be formulated in the following way:

Corollary 2.2. We have \(q(A, H) \sim \nu(A, H)\).

Proof. Let \(A\) denote the number of all possible matrices of type \(M_I\) (for all \(I\)) and let \(B\) denote the number of all possible matrices of type \(M_J(j)\) (for all possible \(I, J \subseteq I\) and all \(1 \leq j \leq m\)). Since the norms \(||x|| = \left(\sum |x_i|^2\right)^{1/2}\) and \(||x||' = \sum |x_i|\) are equivalent, we have
\[
g(A, H) \sim \frac{\sum_I |M_I|}{\sum_{I, J \subseteq I, j |M_J(j)|}.}
\]
On the other hand
\[
(1/B) \frac{\max_I |M_I|}{\max_I, j \subseteq I, j |M_J(j)|} \leq \frac{\sum_I |M_I|}{\sum_{I, J \subseteq I, j |M_J(j)|}} \leq A \frac{\max_I |M_I|}{\max_I, j \subseteq I, j |M_J(j)|}
\]
and consequently \(g(A, H) \sim q(A, H)\). Now we finish the proof by Proposition 2.4. ■

At the end of this section we introduce another important function (the notation is as in Definition 2.3):

Definition 2.5. We define the function
\[
g'(A, H) = \max_I \left\{\min_{J \subseteq I, 1 \leq j \leq m} \frac{|M_I|}{|M_J(j)|}\right\},
\]
(where we consider only numbers with \(M_J(j) \neq 0\), if all numbers \(M_J(j)\) are zero, we put \(g'(A, H) = 0\)).
Proposition 2.5. We have $g'(A, H) \sim g(A, H)$.

Proof. First we prove that there is a constant $C > 0$ such that $g'(A, H) \leq C g(A, H)$. Let us fix an index $I = (i_1, \ldots, i_{m+r})$ such that $|M_I| \neq 0$ and consider the numbers $|M_I|/|M_J(s)|$, where $J \subset I$ and $1 \leq s \leq m$. For simplicity we can assume that $I = (1, \ldots, m+r)$. Let the subspace H be given by a system of independent linear equations $B_i = \sum b_{ij} x_j$, $i = 1, \ldots, r$, and let $a = [a_{ij}]$ be the matrix of A.

Consider the system of linear equations:

\[
\begin{align*}
\sum_{j=1}^n a_{1j} x_j &= y_1, \\
& \quad \ldots \quad \ldots \\
\sum_{j=1}^n a_{mj} x_j &= y_m, \\
\sum_{j=1}^n b_{1j} x_j &= 0, \\
& \quad \ldots \quad \ldots \\
\sum_{j=1}^n b_{rj} x_j &= 0, \\
x_{m+r+1} &= 0, \\
& \quad \ldots \quad \ldots \\
x_n &= 0.
\end{align*}
\]

We can solve this system using the Cramer rules. Let $M_{ki} := M_J(i)$ for $J = I \setminus \{k\}$. We have

\[
\begin{align*}
x_1 &= \sum_{k=1}^m (-1)^{1+k} y_k M_{1k}/M_I, \\
& \quad \ldots \quad \ldots \\
x_{m+r} &= \sum_{k=1}^m (-1)^{m+r+k} y_k M_{(m+r)k}/M_I, \\
x_{m+r+1} &= 0, \\
& \quad \ldots \quad \ldots \\
x_n &= 0.
\end{align*}
\]

In particular we have $||x|| \leq \left(\max |M_J(i)|/|M_I| \right) ||y||$. Consequently we see that the image of a unit ball in the subspace $H' = \{ x \in H : x_{m+r+1} = 0, \ldots, x_n = 0 \}$ by the mapping A contains a ball of radius $\min_{J \subset I, 1 \leq j \leq m} |M_I|/|M_J(j)|$. Now by Proposition 2.1a), we see that $\min_{J \subset I, 1 \leq j \leq m} |M_I|/|M_J(j)| \leq \nu(A, H') \leq \nu(A, H)$. Finally we get

\[
\nu(A, H) \geq \max_I \left\{ \min_{J \subset I, 1 \leq j \leq m} \frac{|M_I|}{|M_J(j)|} \right\} = g'(A, H).
\]

In particular there is a constant C such that $C g(A, H) \geq g'(A, H)$.

On the other hand, there exists I_0 such that the minor M_{I_0} has a maximal norm.
Since
\[g(A, H) = \frac{\left(\sum_l |M_l|^2 \right)^{1/2}}{\left(\sum_j |M_j(j)|^2 \right)^{1/2}} \leq \left(\frac{n}{m + r} \right)^{1/2} \frac{|M_0|}{\left(\sum_j |M_j(j)|^2 \right)^{1/2}} \]
\[\leq \left(\frac{n}{m + r} \right)^{1/2} \min_{j \leq i_0, 1 \leq j \leq m} \frac{|M_0|}{|M_j(j)|} \leq \left(\frac{n}{m + r} \right)^{1/2} g'(A, H), \]
we deduce that there is a constant \(C' > 0 \) such that \(g(A, H) \leq C'g'(A, H) \).

Corollary 2.3. We have \(g'(A, H) \sim \nu(A, H) \).

3. Main result. In this section we give a short direct proof of the fact \(B(f) \subset K(f) \) for a smooth mapping \(f : X \to k^m \), where \(X \) is a smooth submanifold of \(k^m \). Let us recall the following basic definition:

Definition 3.1. Let \(k = \mathbb{C} \) or \(k = \mathbb{R} \) and let \(X \) be a smooth submanifold of \(k^n \). Let \(f : X \to k^m \) be a \(k \)-smooth mapping. Then we define the set of generalized critical values \(K(f) = K_0(f) \cup K_\infty(f) \), where \(K_0(f) \) is the set of critical values of \(f \) and

\[K_\infty(f) = \{ y \in k^m : \text{there is a sequence } x_l \to \infty \text{ such that } f(x_l) \to y, \text{ and } ||x_l||\nu(df(x_l), T_{x_l}X) \to 0 \} \]
is the set of critical values at infinity.

Remark 3.1. Note that by virtue of results of Section 2, in place of the function \(\nu \) above we can put also \(\kappa, g, q \) or \(g' \).

We have the following simple observation (see [2], [6]):

Proposition 3.1. Let \(k = \mathbb{C} \) or \(k = \mathbb{R} \) and let \(X \) be a smooth affine variety over \(k \). Let \(f : X \to k^m \) be a \(k \)-smooth mapping. Then the set \(K(f) = K_0(f) \cup K_\infty(f) \) is closed.

We need also the following lemma (see [2]):

Lemma 3.1. Let \(U \subset k^n \) be an open set and \(V : U \to k^n \) be a smooth mapping. Let \(y \in U \) and let

\[x'(t) = V(x), \text{ with } x(0) = y, \]
be a differential equation. Let \(x(y, t), t \in [0, t_0) \), be a solution of this equation. Assume that for \(||x(y, t)|| \) large enough, we have \(||V(x(y, t))|| < M||x(y, t)|| \). Then this trajectory is bounded. In particular this trajectory either is defined for every \(t > 0 \) or intersects the boundary \(\partial U \) of \(U \).

Now we give a short direct proof of the fact that \(B(f) \subset K(f) \), which is a particular version of a very general result of Rabier [6] (see also [1]).

Theorem 3.1. Let \(k = \mathbb{C} \) or \(k = \mathbb{R} \) and let \(X \subset k^n \) be a smooth submanifold (i.e., \(X \) is smooth for \(k = \mathbb{R} \) or Stein for \(k = \mathbb{C} \)). Let \(f : X \to k^m \) be a \(k \)-smooth mapping (i.e., \(f \) is smooth for \(k = \mathbb{R} \) or holomorphic for \(k = \mathbb{C} \)). Then

\[B(f) \subset K(f) = K_0(f) \cup K_\infty(f), \]
i.e., the mapping \(f \) is a locally trivial fibration outside the set \(K(f) \).
Proof. It is well-known that we can assume that \(f \) can be extended to a \(k \)-smooth mapping \(\overline{f} \) on the whole \(k^{n} \) (in real case it is an easy exercise, in complex it follows from the theory of Stein manifolds).

First assume that \(X \) is a global complete intersection, i.e. \(X = \{ b_1 = 0, \ldots, b_r = 0 \} \) and \(\text{rank}\{ d_x b_1, \ldots, d_x b_r \} = r \) for every \(x \in X \).

Let \(a \notin K(f) \). Without loss of generality we can assume that \(a = 0 \). We have \(a \notin K_0(f) \) and \(a \notin K_\infty(f) \). This implies that there are \(R > 0, \epsilon > 0, \eta > 0 \), such that for every \(x \in X \) with \(||x|| \geq R \) and \(||f(x)|| < \eta \), we have

\[
\max\left\{ \min_{J \subset I, 1 \leq j \leq m} ||x|| \frac{|M_I|}{|M_J(j)|} \right\} > \epsilon.
\]

Moreover, there is \(\omega > 0 \) such that for every \(x \in X \) with \(||x|| \leq R \) and \(||f(x)|| < \eta \), we have \(\max_I |M_I(x)| \geq \omega \).

Let \(U = \{ y \in k^{m} : ||y|| < \eta \} \) and let \(\Gamma = f^{-1}(0) \). We show that \(f^{-1}(U) \cong \Gamma \times U \) and \(f \) is a projection \(\Gamma \times U \ni (\gamma, u) \mapsto u \in U \). Indeed, let us define a set

\[
U_I = \left\{ x \in f^{-1}(U) : \text{if } ||x|| \geq R \text{ then } \min_{J \subset I, 1 \leq j \leq m} ||x|| \frac{|M_I|}{|M_J(j)|} \geq \epsilon, \right. \\
\left. \text{if } ||x|| \leq R \text{ then } |M_I(x)| \geq \omega \right\}.
\]

Further, let

\[
V_I = \left\{ x \in f^{-1}(U) : \text{if } ||x|| \geq R \text{ then } \min_{J \subset I, 1 \leq j \leq m} ||x|| \frac{|M_I|}{|M_J(j)|} \leq \epsilon/2, \right. \\
\left. \text{if } ||x|| \leq R \text{ then } |M_I(x)| \leq \omega/2 \right\}.
\]

The sets \(V_I \) and \(U_I \) are disjoint. Consequently there is a \(C^\infty \) function \(\delta_I : k^{n} \to [0, 1] \), which is equal to 1 on \(U_I \) and to 0 on \(V_I \). It is easy to see that the sets \(H_I = \{ x : \delta_I(x) > 0 \} \) cover the set \(f^{-1}(U) \). Now take \(\delta = \sum_I \delta_I \) and let \(\Delta_I = \delta_I / \delta \).

Take \(y = (y_1, \ldots, y_n) \in U \). Take the index \(I = (1, \ldots, m + r) \) and consider a (formal) system of differential equations:

\[
\sum_{j=1}^{n} \frac{\partial f_j}{\partial x_j}(x(t))x_j(t)' = y_1,
\]

\[
\ldots \ldots
d
\]

\[
\sum_{j=1}^{n} \frac{\partial f_m}{\partial x_j}(x(t))x_j(t)' = y_m,
\]

\[
\sum_{j=1}^{n} \frac{\partial b_1}{\partial x_j}(x(t))x_j(t)' = 0,
\]

\[
\ldots \ldots
d
\]

\[
\sum_{j=1}^{n} \frac{\partial b_r}{\partial x_j}(x(t))x_j(t)' = 0,
\]

\[
x_{m+r+1}(t)' = 0,
\]

\[
\ldots \ldots
d
\]

\[
x_n(t)' = 0.
\]
We can solve this system using the Cramer rules (at least in U_I). Let $M_{ki} := M_f(i)$ for $J = I \setminus \{k\}$. We have

$$x_1(t)' = \sum_{k=1}^{m} (-1)^{1+k} y_k M_{1k}/M_I,$$

$$\ldots \ldots$$

$$x_{m+r}(t)' = \sum_{k=1}^{m} (-1)^{m+r+k} y_k M_{(m+r)k}/M_I,$$

$$x_{m+r+1}(t)' = 0,$$

$$\ldots \ldots$$

$$x_n(t)' = 0.$$

We can write this system shortly as

$$x(t)' = V_I(y, x(t)).$$

By the Cramer rules, we have $df(V_I(y, x)) = y$ and $db(V_I(y, x)) = 0$. In an analogous way we can define V_I for an arbitrary index $I = (i_1, \ldots, i_m)$.

Now consider a vector field $V(y, x) = \sum_I \Delta_I V_I(y, x)$ in a domain $\overline{f}^{-1}(U)$. By the construction, we have $||V(x)|| \leq 2m\eta/\epsilon||x||$ for $||x|| \geq R$ and $x \in X$. Let us consider the differential equation

$$(2) \quad x(t)' = V(y, x(t)), \quad x(0) = \gamma,$$

where $\gamma \in \Gamma$. Let us note that

$$df(V(y, x)) = df\left(\sum_I \Delta_I V_I(y, x)\right) = \sum_I df(\Delta_I V_I(y, x)) = \sum_I \Delta_I y.$$}

Similarly $db(V(x, y)) = 0$. Consequently, if $x(t, y, \gamma)$ is a solution of system (2), then the trajectory is contained in X and $yt = \overline{f}(x(t), y, \gamma) = f(x(t), y, \gamma)$. Since $y \in U$, we see that the trajectory $x(t, y, \gamma)$, $t \in [0, t_0]$ does not cross the border $\partial f^{-1}(U)$ for every $0 \leq t_0 \leq 1 + \delta$, for some $\delta > 0$. Consequently by Lemma 3.1 the trajectory $x(t, y, \gamma)$ is defined on the whole $[0, 1]$ and is contained in X. Since $f(x(t, y, \gamma)) = yt$, the phase flow $x(t, y, \gamma)$, $t \in [0, 1]$, transforms $f^{-1}(0) = \Gamma$ into $f^{-1}(y)$ (in fact, by the symmetry, it transforms Γ onto $f^{-1}(y)$). Let

$$\Phi : \Gamma \times U \ni (\gamma, y) \mapsto x(1, y, \gamma) \in f^{-1}(U).$$

It is easy to see that Φ is a diffeomorphism. Thus $0 \notin B(f)$.

In the general case we can choose a locally finite cover $\{U_i\}$ of k^n such that in each U_i the manifold $X \cap X_i$ is a complete intersection. Now we can construct vector fields V_i on U_i (construction is as above) and then glue them to one field V by a partition of unity subordinate to the cover $\{U_i\}$. The rest of the proof is the same as above. ■

At the end of this note we give two simple examples.

Example 3.1. Let us consider a Stein curve $\Gamma = \{(x, y) \in \mathbb{C}^2 : \exp(xy) = 2\}$. Let us consider the projection $f : \Gamma \ni (x, y) \mapsto y \in \mathbb{C}$. Using the generalized Gaffney function
we see that
\[K_0(f) = f\{(x, y) \in \Gamma : y \exp(xy) = 0\} = \emptyset \]
and
\[K_\infty(f) = \{\lim f(x_n, y_n) = y_n; \text{ where } (|x_n| + |y_n|) \to \infty \text{ and } |y_n| \to 0\} = \{0\}. \]
Hence finally \(K(f) = \{0\} \) and indeed we can check directly that in this case \(B(f) = K(f) = \{0\} \) (in fact \(f \) is a topological covering outside 0). Note that the mapping \(f \) has no usual critical values.

Example 3.2. Let us consider a smooth mapping
\[f : \mathbb{C}^3 \ni (x, y, z) \mapsto (x \exp(z), y \exp(z)) \in \mathbb{C}^2. \]
Using the function \(g \) we can easily compute that \(K(f) = \{0\} \). But the function \(f \) is a global fibration of \(\mathbb{C}^3 \) — in fact it gives a fibration
\[\mathbb{C}^2 \times \mathbb{C} \ni ((x, y), z) \mapsto (x \exp(-z), y \exp(-z), z) \in \mathbb{C}^3. \]
Thus in general \(B(f) \neq K(f) \).

References

