LIPSCHITZ STRATIFICATIONS AND LIPSCHITZ ISOTOPIES

TADEUSZ MOSTOWSKI
Department of Mathematics, Warsaw University
Banacha 2, 02-097 Warszawa, Poland
E-mail: tmostows@mimuw.edu.pl

Introduction. The motivation of this paper is a question of M. Gromov, communicated by Lev Birbrair. We shall state it after giving, rather informally, a few definitions.

We shall work with the following classes of sets: \mathfrak{A}_{1} subanalytic, \mathfrak{A}_{2} semianalytic, \mathfrak{A}_{3} semialgebraic, \mathfrak{A}_{4} complex analytic, \mathfrak{A}_{5} complex algebraic.

Usually we shall not distinguish between sets and their germs at a precised point.
Two subsets $A, B \subset \mathbb{R}^{n}$ are Lipschitz equivalent if there exists a bi-Lipschitz homeomorphism $h: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ such that $h(A)=B$.

Consider now a family of subsets of \mathbb{R}^{n}, i.e. a commuting diagram

where π is the standard projection $(t, x) \longmapsto t$ and $X, T \in \mathfrak{A}_{i}, i=1, \ldots, 5$. Let $X_{t}=$ $\pi^{-1}(t) \cap X$ be the fibre over t.
X is locally Lipschitz trivial over a subset $T_{0} \subset T$ if for every point $t_{0} \in T_{0}$ there exists a neighbourhood $U_{0} \subset T_{0}$ of t_{0} and a bi-Lipschitz homeomorphism $h: \pi^{-1}\left(U_{0}\right) \longrightarrow$ $U_{0} \times \mathbb{R}^{n}$ such that the diagram

commutes, $h: \pi^{-1}\left(U_{0}\right) \cap X \longrightarrow U_{0} \times X_{t_{0}}$ and h is the identity over $X_{t_{0}}$.

[^0]Thus h induces a Lipschitz equivalence between $X_{t_{0}}$ and the fibre X_{t} over every point t sufficiently close to t_{0} in T_{0}.

Similar definitions can be given for germs at 0 of families of germs at 0 of subsets in each class \mathfrak{A}_{i}.

It is known (see [6] for a review of the results) that if $X \longrightarrow T$ is a family of germs at 0 of subsets in any class \mathfrak{A}_{i}, then there exists a stratification of T with skeletons in the same class such that the family X is locally Lipschitz trivial over every stratum.

Now we pass to curves in the base T.
In this paper a (parametrised subanalytic, abbreviated as s.an.) curve in a set $A \subset \mathbb{R}^{n}$ is a germ at $\mu=0$ of a subanalytic map

$$
p:[0, \varepsilon) \longrightarrow \bar{A}
$$

such that $p(\mu) \in A$ for $\mu>0$.
Let $p(\mu), q(\mu)$ be two curves in the base T; we take an interval $[0, \varepsilon)$ such that both of them are defined on it. We shall say that X is Lipschitz equivalent over p and q (or, that p and q are L-equivalent rel X) if there exists a mapping $H:(0, \varepsilon) \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ such that:
$1^{\circ} H$ is continuous,
2° for every $\mu>0, H(\mu, \cdot):\left(\mathbb{R}^{n}, X_{p(\mu)}\right)=\left(\mathbb{R}^{n}, X_{q(\mu)}\right)$ is a bi-Lipschitz homeomorphism and the Lipschitz constant of both $H(\mu, \cdot)$ and its inverse is independent of μ.

Let us restrict ourselves for a moment to semialgebraic sets and semialgebraic curves. A curve $p(\mu)$ in the base T is of complexity at most N if its graph can be described (set theoretically) by at most N polynomial equations and inequalities of degree at most N.

We can now state Gromov's question: is the set of L-equivalence classes rel X of curves of complexity at most N finite?

The answer to this question is affirmative.
This answer is an immediate corollary to two propositions which we shall now state; they hold in the subanalytic and semialgebraic categories and constitute the main results of the paper.

To state the first proposition we fix some notation. Let us write $\mathbb{R}^{m}=\mathbb{R}_{t}^{m}$, the ambient space of the base T, and $\mathbb{R}^{n}=\mathbb{R}_{x}^{n}$, the ambient space of the fibres; by t or x we shall denote points of \mathbb{R}_{t}^{m} or \mathbb{R}_{x}^{n}.

A stratification $\mathcal{Z}=\left\{Z^{j}\right\}$ of some Euclidean space \mathbb{R}^{N} with skeletons Z^{j} in any of the classes \mathfrak{A}_{i} is a sequence of sets

$$
\mathbb{R}^{N} \supset Z^{N-1} \supset Z^{N-2} \supset \ldots
$$

such that all $Z^{j} \in \mathfrak{A}_{i}$ and every

$$
\dot{Z}^{j}=Z^{j} \backslash Z^{j-1}
$$

is either empty or smooth j-dimensional; Z^{j} are skeletons of \mathcal{Z} and \check{Z}^{j} strata (thus strata are not assumed to be connected).

A stratification \mathcal{Z} is compatible with a set if this set is a union of some connected components of strata.

A vector field v defined on a subset of \mathbb{R}^{N} is tangent to \mathcal{Z} (or compatible with \mathcal{Z}) if for every $x \in \check{Z}^{j}, v(x) \in T_{x} \dot{Z}^{j}$, provided that $v(x)$ is defined. More generally, if v depends on some parameters μ, then v is tangent (compatible) to \mathcal{Z} if for every $x \in \dot{Z}^{j}$, $v(\mu, x) \in T_{x} \dot{Z}^{j}$, provided that $v(\mu, x)$ is defined.

The flow of a vector field v will be denoted by $\chi_{\lambda}^{v} ; \lambda$ is "time".
Let us now return to the family $X \longrightarrow T$. To be slightly more general, suppose we are given finitely many subsets $X_{s} \subset X$, also considered as families over T, with fibres $X_{s, t}$. Assume that $X, X_{s}, T \in \mathfrak{A}_{i}, i=1,3,4,5$.

Let $B_{x}^{n} \subset \mathbb{R}_{x}^{n}$ be the closed unit ball. Assume that X, X_{s} are subsets of B_{x}^{n}.
Proposition 1. There exists a stratification $\mathfrak{T}=\left\{T^{j}\right\}$ of \mathbb{R}_{t}^{m}, compatible with T, with skeletons in \mathfrak{A}_{i}, with the following property: for every Lipschitz vector field v on \mathbb{R}_{t}^{m}, tangent to \mathfrak{T}, and every stratum \dot{T}^{j}, there exists a function

$$
H_{\lambda}: \stackrel{\circ}{T}^{j} \times \mathbb{R}_{x}^{n} \longrightarrow \mathbb{R}_{x}^{n}, \quad \lambda \in[0,1]
$$

such that:
$1^{\circ} H_{\lambda}(t, x)$ is continuous with respect to all variables,
2° for every λ and $t \in \stackrel{\circ}{T}^{j}$

$$
H_{\lambda}(t, \cdot): \mathbb{R}_{x}^{n} \longrightarrow \mathbb{R}_{x}^{n}
$$

is a bi-Lipschitz homeomorphism, and the Lipschitz constants of $H_{\lambda}(t, \cdot)$ and its inverse are independent of λ, t,
3° for every λ, t

$$
H_{\lambda}(t, \cdot): X_{t} \longrightarrow X_{\chi_{\lambda}^{v}(t)}
$$

and, more generally,

$$
H_{\lambda}(t, \cdot): X_{s, t} \longrightarrow X_{s, \chi_{\lambda}^{v}(t)}
$$

Remarks.
1° It is pleasant to consider the map

$$
(\lambda, x) \longmapsto\left(\chi_{\lambda}^{v}(t), H_{\lambda}(t, x)\right)
$$

as a lifting of the isotopy $\lambda \longmapsto \chi_{\lambda}^{v}(t)$ of the point t; this lifting is thus bi-Lipschitz and preserves fibres of X and X_{s} 's.
2° The Lipschitz constant of $H_{\lambda}(t, \cdot)$ and its inverse depend only on $X, X_{s}, T, \mathfrak{T}$ and v.
3° In the sequel we shall need a slight generalisation of Proposition 1 to the case of Lipschitz families of vector fields which depend continuously on one parameter μ (of course one could treat in the same way the case of more parameters).

Definition. A Lipschitz family v_{μ} of vector fields is a function $v_{\mu}(x)$, continuous with respect to all variables, Lipschitz with respect to x, with a Lipschitz constant independent of μ.

Proposition 1'. In the notation of Proposition 1, there exists a stratification \mathfrak{T} of \mathbb{R}_{t}^{m}, compatible with T, with the following property: for every Lipschitz family v_{μ} of vector fields on $\mathbb{R}_{t}^{m}, \mu \in(0, \varepsilon)$, tangent to \mathfrak{T}, and every stratum $\stackrel{\circ}{T}^{j}$, there exists a function

$$
H_{\mu, \lambda}: \stackrel{\circ}{T}^{j} \times \mathbb{R}_{x}^{n} \longrightarrow \mathbb{R}_{x}^{n}, \quad \lambda \in[0,1], \quad \mu \in(0, \varepsilon)
$$

which depends continuously on all variables μ, λ, t, x and has all the properties of Proposition 1 ; in particular the Lipschitz constant of $H_{\mu, \lambda}(t, \cdot)$ and its inverse are independent of μ, λ, t.

Since the sets X_{s} present no difficulty, we shall simply omit them in the sequel.
The second problem that we shall study deals with the following situation. Suppose we have two curves $p=p(\mu)$ and $q=q(\mu)$ in a stratum of some stratification of a space \mathbb{R}^{n}. We want to know when one of these curves, say p, can be "pushed" to the other one by the flow of a Lipschitz family v_{μ} of vector fields tangent to this stratification, i.e.

$$
q(\mu)=\chi_{1}^{v_{\mu}}(p(\mu)) \text { for all } \mu>0
$$

There is an obvious obstacle: orders of distances of $p(\mu)$ and $q(\mu)$ to skeletons of this stratification must be the same.

Let us precise this point.
If $p:[0, \varepsilon) \longrightarrow \mathbb{R}^{n}$ is a curve and $A \subset \mathbb{R}^{n}$ a set in any class \mathfrak{A}_{i}, then, by Puiseux,

$$
\operatorname{dist}(p(\mu), A)=c \mu^{\gamma}+o\left(\mu^{\gamma}\right)
$$

for some $c>0, \gamma \in \mathbb{Q} \cup\{\infty\}, \gamma \geq 0$. The exponent γ is the order of the distance from $p(\mu)$ to A.

Now let $q(\mu)$ be another (s.an.) curve in \mathbb{R}^{n} related to $p(\mu)$ by the formula

$$
q(\mu)=\chi_{1}^{v_{\mu}}(p(\mu))
$$

where v_{μ} is a Lipschitz family of vector fields which preserve A, i.e. for all μ and λ

$$
\chi_{\lambda}^{v_{\mu}}(A) \subset A
$$

Then, as we shall see in detail in Section 1.5, the distances of $p(\mu)$ and $q(\mu)$ to A are of the same order.

In particular, if v_{μ} is tangent to a stratification with skeletons in \mathfrak{A}_{i}, then the distances of $p(\mu)$ and $q(\mu)$ to every skeleton are of the same order.

Definition. A subset $A \subset \dot{Z}^{j}$ is Lipschitz homogeneous with respect to $\mathcal{Z}=\left\{Z^{j}\right\}$ (abbreviated as LHrel \mathfrak{Z}) if there exists an N with the following property: for every pair $p(\mu), q(\mu)$ of curves in A having the same orders of distances to all skeletons $Z^{k}, k<j$, there exists a sequence of curves in A :

$$
p=p_{1}, p_{2}, \ldots, p_{N}=q
$$

and $N-1$ families $v_{1, \mu}, \ldots, v_{N-1, \mu}$ of Lipschitz vector fields on \mathbb{R}^{n}, tangent to \mathfrak{Z}, such that for all $i=1, \ldots, N-1$

$$
p_{i+1}(\mu)=\chi_{1}^{v_{i, \mu}}\left(p_{i}(\mu)\right)
$$

Remark. We do not require $v_{i, \mu}$'s to preserve A.
Our second result is the following proposition.

Proposition 2. Given any finite number of sets in \mathbb{R}^{n} in any class $\mathfrak{A}_{i}, i=1,3$, there exists a stratification $\mathfrak{Z}=\left\{Z^{j}\right\}$ of \mathbb{R}^{n}, compatible with all of these sets, with skeletons Z^{j} in \mathfrak{A}_{i}, such that every stratum Z^{j} is a finite union, not necessarily disjoint, of sets in \mathfrak{A}_{i} which are LHrel \mathfrak{Z} :

$$
\dot{Z}^{j}=\bigcup A_{\beta}^{j}, \quad A_{\beta}^{j} \text { are LHrel } \mathfrak{Z}
$$

Corollary 1. Let $X \longrightarrow T$ be a family as in Proposition $1^{\prime}, X, T \in \mathfrak{A}_{i}, i=1,3$. Then there exists a stratification \mathfrak{T} of \mathbb{R}_{t}^{m} having both properties of Propositions 1^{\prime} and 2 .

In fact, take any stratification of \mathbb{R}_{t}^{m} satisfying the conclusion of Proposition 1^{\prime}; by Proposition 2 we can refine it to get also the conclusion of Proposition 2.

Another Lipschitz homogeneity property of subanalytic sets will be given in Proposition 4 ; it will be used in the proof of Proposition 2.

We shall now show how the above corollary yields an answer to Gromov's question.
Let $X, T \in \mathfrak{A}_{3}$. Take a stratification $\mathfrak{T}=\left\{T^{j}\right\}$ of \mathbb{R}_{t}^{m} as in the corollary and decompose every $\stackrel{\circ}{T}^{j}$

$$
\stackrel{\circ}{T}^{j}=\bigcup A_{\beta}^{j}, \quad A_{\beta}^{j} \text { are LHrel } \mathfrak{T}
$$

The space \mathfrak{F}_{N} of all curves in T of complexity not greater than N is the union of the spaces $\mathfrak{F}_{N j \beta}$ of curves of complexity not greater than N in A_{β}^{j}. The bound of complexity implies that there are only finitely many rationals which are orders of distances of curves in \mathfrak{F}_{N} to skeletons of \mathfrak{T}. In other words, if

$$
\widetilde{\gamma}=(\gamma(0), \gamma(1), \ldots, \gamma(m))
$$

is any sequence of rationals and $\mathfrak{F}_{N j \beta \tilde{\gamma}} \subset \mathfrak{F}_{N j \beta}$ the space of all curves in A_{β}^{j} having $\gamma(k)$ (for every $k<j$) as the order of distance to T^{k}, then, for only finitely many $\widetilde{\gamma}, \mathfrak{F}_{N j \tilde{\gamma \gamma}} \neq \varnothing$ and

$$
\mathfrak{F}_{N j \beta}=\bigcup \mathfrak{F}_{N j \beta \tilde{\gamma}}
$$

It is enough to prove that any two $p, q \in \mathfrak{F}_{N j \beta \tilde{\gamma}}$ are L-equivalent rel X.
Let $p=p_{1}, \ldots, p_{N}=q$ be curves in A_{β}^{j} such that

$$
p_{i+1}(\mu)=\chi_{1}^{v_{i, \mu}}\left(p_{i}(\mu)\right) .
$$

By Proposition 1^{\prime} to every $v_{i, \mu}$ there corresponds a function

$$
H_{\mu, \lambda}^{i}: \stackrel{\circ}{T}^{j} \times \mathbb{R}_{x}^{n} \longrightarrow \mathbb{R}_{x}^{n}, \quad \lambda \in[0,1], \mu \in(0, \varepsilon)
$$

If

$$
H_{\mu}^{(i)}=H_{\mu, 1}^{(i)}\left(p_{i}(\mu), \cdot\right): \mathbb{R}_{x}^{n} \longrightarrow \mathbb{R}_{x}^{n}
$$

then the composition of the $H_{\mu}^{(i)}$:

$$
H_{\mu}=H_{\mu}^{(N-1)} \circ \ldots \circ H_{\mu}^{(1)}: \mathbb{R}_{x}^{n} \longrightarrow \mathbb{R}_{x}^{n}
$$

establishes L-equivalence of p and q rel X.

Remark. As was pointed out by K. Kurdyka and A. Parusiński, the answer to Gromov's question can be obtained directly from Proposition 1.

In fact, the space C of all (germs of) curves in T of complexity at most N has a natural structure of a finite-dimensional semi-algebraic set. For every $p \in C$ choose $\varepsilon=\varepsilon(p)$ such that $p(\mu)$ is defined on $[0, \varepsilon(p)]$ and $\varepsilon(p)$ is a semi-algebraic function. Let

$$
\widetilde{T}=\{(p, \mu): p \in C, \mu \in[0, \varepsilon(p)]\}
$$

and let $\widetilde{T} \rightarrow T$ be defined by

$$
(p, \mu) \rightarrow p(\mu)
$$

It is enough to apply Proposition 1 to the family over \widetilde{T} induced from X by this map.
Acknowledgements. It is a pleasure to thank Professor Gromov for stating a beautiful problem, and my friends Lev Birbrair, Jean-Pierre Henry, Krzysztof Kurdyka and Adam Parusiński for very valuable and interesting discussions.

1. Preliminaries

1.1. The symbols \lesssim, \simeq. We write, for non-negative functions,
$\varphi \lesssim \psi \Leftrightarrow \varphi \leq C \psi$ for some constant C,
$\varphi \simeq \psi \Leftrightarrow \varphi \lesssim \psi$ and $\psi \lesssim \varphi$.
If φ, ψ depend also on parameters, we ask C to be independent of them.
1.2. Boundary of a set. $\partial A=\bar{A} \backslash A$.
1.3. Distance to a set. It is denoted by $d(x, A)=d_{A}(x)$; the Hausdorff distance of two (non-empty) sets A, B is $d(A, B)$, i.e. $d(A, B)=\inf \{d(a, B): a \in A\}$; distance $d_{Z^{i}}$ to a skeleton Z^{i} in a stratification will be abbreviated as d_{i}.
1.4. Kirszbraun's theorem. (See [1].) We need only a weak version of it. If $f: A \longrightarrow \mathbb{R}$ is Lipschitz with a constant $C, A \subset \mathbb{R}^{n}$, then the formula

$$
F(x)=\sup _{a \in A}(f(a)-C|x-a|), \quad x \in \mathbb{R}^{n}
$$

gives an extension of f being Lipschitz with the same constant C.
It follows that if f depends continuously on some parameters μ, i.e. $f(x, \mu), x \in A$, is continuous as a function of all variables, and is Lipschitz with respect to x with a Lipschitz constant independent of μ, then f has a Lipschitz extension $F(x, \mu), x \in \mathbb{R}^{n}$, with a Lipschitz constant independent of μ.

We shall write usually a vector field in the form

$$
v=\sum v_{i} \partial / \partial x_{i}
$$

and identify it with the sequence $\left(v_{1}, \ldots, v_{n}\right)$ of its components; so v can be identified with a mapping with values in \mathbb{R}^{n}.

Applying Kirszbraun's theorem to every component of v we get the following observation:

Let v be a Lipschitz vector field defined on a subset $A \subset \mathbb{R}^{n}$, which depends continuously on some parameters μ, with a Lipschitz constant C (as on p. 181); then there exists a Lipschitz vector field V on \mathbb{R}^{n}, which depends continuously on μ, with the Lipschitz constant $C \sqrt{n}$ (of course we use the Euclidean metric on \mathbb{R}^{n}).
1.5. Estimates for Lipschitz vector fields. Let v be a Lipschitz vector field on \mathbb{R}^{n}, with a Lipschitz constant C; its flow χ_{λ}^{v} satisfies the equation

$$
\chi_{\lambda}^{v}(x)=x+\int_{0}^{\lambda} v\left(\chi_{s}^{v}(x)\right) d s
$$

A standard calculation based on this formula gives
$\chi_{\lambda}^{v}(x)=x+u_{\lambda}^{v}(x), u_{\lambda}^{v}$ is Lipschitz with a Lipschitz constant $e^{C \lambda}-1$;
$e^{-C \lambda}\left|x_{1}-x_{2}\right| \leq\left|\chi_{\lambda}^{v}\left(x_{1}\right)-\chi_{\lambda}^{v}\left(x_{2}\right)\right| \leq e^{C \lambda}\left|x_{1}-x_{2}\right|$.
Suppose now that $p(\mu), q(\mu)$ are two curves in \mathbb{R}^{n}; let $|p(\mu)-q(\mu)| \simeq \mu^{\gamma}$. Suppose that v_{μ} is a Lipschitz family of vector fields on \mathbb{R}^{n} with a Lipschitz constant C. Put

$$
\widetilde{p}(\mu)=\chi_{1}^{v_{\mu}}(p(\mu)), \quad \widetilde{q}(\mu)=\chi_{1}^{v_{\mu}}(q(\mu))
$$

(they need not be subanalytic). Then

$$
\begin{equation*}
e^{-C}|p(\mu)-q(\mu)| \leq|\widetilde{p}(\mu)-\widetilde{q}(\mu)| \leq e^{C}|p(\mu)-q(\mu)| \tag{1.1}
\end{equation*}
$$

so $|\widetilde{p}(\mu)-\widetilde{q}(\mu)| \simeq \mu^{\gamma}$.
It follows that if v_{μ} preserve $A \in \mathfrak{A}_{i}(i=1, \ldots, 5), p(\mu)$ is a curve in \mathbb{R}^{n} and $\widetilde{p}(\mu)=\chi_{1}^{v_{\mu}}(p(\mu))$, then

$$
d(p(\mu), A) \simeq d(\widetilde{p}(\mu), A)
$$

In fact, to prove \lesssim, we take a (subanalytic) curve $q(\mu)$ in \bar{A} such that $|p(\mu)-q(\mu)|=$ $d(p(\mu), A)$; then for $\widetilde{q}(\mu)=\chi_{1}^{v_{\mu}}(q(\mu))$ we have: $\widetilde{q}(\mu) \in A$ for $\mu>0$ and $|\widetilde{p}(\mu)-\widetilde{q}(\mu)| \simeq$ $\mu^{\gamma} \simeq d(p(\mu), A)$.

If \gtrsim were wrong, there would exist a sequence $\mu_{\nu} \searrow 0$ such that

$$
d\left(\widetilde{p}\left(\mu_{\nu}\right), A\right) / d\left(p\left(\mu_{\nu}\right), A\right) \longrightarrow 0
$$

Let $a_{\nu} \in A$ be points such that

$$
\left|a_{\nu}-\widetilde{p}\left(\mu_{\nu}\right)\right| \leq 2 d\left(\widetilde{p}\left(\mu_{\nu}\right), A\right)
$$

if $a_{\nu}^{*}=\chi_{1}^{-v_{\mu}}\left(a_{\nu}\right)$, then $a_{\nu}^{*} \in A$ and

$$
\left|a_{\nu}^{*}-a_{\nu}\right| / d\left(p\left(\mu_{\nu}\right), A\right) \longrightarrow 0
$$

which is impossible.
1.6. Derivatives of subanalytic functions. Let $f: U \longrightarrow \mathbb{R}$ be a subanalytic function, $U \in \mathfrak{A}_{1}$ open, $f \in C^{\infty}(U)$, and $|f| \lesssim 1$. Then for every integer $k>0$ there exists a $Y \in \mathfrak{A}_{1}, \operatorname{dim} Y<n$, such that for all $x \in U$

$$
\begin{equation*}
\left|D^{\alpha} f(x)\right| \lesssim d_{Y}(x)^{-|\alpha|} \tag{1.2}
\end{equation*}
$$

$|\alpha| \leq k$. If f is semialgebraic, then Y can be chosen semialgebraic. A proof is given in [2].
1.7. Lipschitz functions with denominators. In principle this notion will not be used, but we hope it may be helpful.

Let X be a metric space with distance denoted by $|x-y|$. Let $\varrho: X \longrightarrow \mathbb{R}^{+}$be a bounded Lipschitz function, where \mathbb{R}^{+}is the set of nonnegative reals.

Definition. $f \in \operatorname{Lip}(X, \varrho, C)$ if $f: X \longrightarrow \mathbb{R}$ is bounded and for all $x, y \in X$,

$$
|f(x)-f(y)| \leq C|x-y| / \min (\varrho(x), \varrho(y))
$$

We shall write $f \in \operatorname{Lip}(X, \varrho)$ if either the value of C is clear or $f \in \operatorname{Lip}(X, \varrho, C)$ for some C. In particular, $f \in \operatorname{Lip}(X, 1)$ means that f is bounded and Lipschitz.

If $f: X \longrightarrow \mathbb{R}^{k}, f=\left(f_{1}, \ldots, f_{k}\right)$, we shall write $f \in \operatorname{Lip}(X, \varrho)$ if all components f_{i} are in $\operatorname{Lip}(X, \varrho)$.

We list some obvious properties of the class $\operatorname{Lip}(X, \varrho)$ of scalar valued functions.
1° if $f, g \in \operatorname{Lip}(X, \varrho),|g| \lesssim \varrho$, then $f g \in \operatorname{Lip}(X, 1)$; in particular, if $f \in \operatorname{Lip}(X, \varrho)$, then $\varrho f \in \operatorname{Lip}(X, 1)$;
2° if $f, g \in \operatorname{Lip}(X, \varrho)$, then $f g \in \operatorname{Lip}(X, \varrho)$;
3° if $f \in \operatorname{Lip}(X, 1),|f| \lesssim \varrho$, then $f / \varrho \in \operatorname{Lip}(X, \varrho)$,
4° if $h: Y \longrightarrow X$ is Lipschitz, $f \in \operatorname{Lip}(X, \varrho)$, then $f \circ h \in \operatorname{Lip}(Y, \varrho \circ h)$.
1.8. Lipschitz stratifications. We refer to [6] for review of the subject. A stratification $\mathfrak{X}=\left\{X^{j}\right\}$ of \mathbb{R}^{n} is Lipschitz if it has the following extension property of Lipschitz vector fields: there exists a constant C such that for every compact $K, X^{l-1} \subset K \subset X^{l}$ for some l, and every Lipschitz vector field v, defined on K, with a Lipschitz constant M_{1}, bounded by $M_{2}\left(\right.$ i.e. $|v(x)| \leq M_{2}$ for all $\left.x \in K\right)$, tangent to \mathfrak{X}, there exists a Lipschitz extension \widetilde{v}, defined on \mathbb{R}^{n}, with a Lipschitz constant $C\left(M_{1}+M_{2}\right)$.

This definition was first introduced in [5]. There is a simple way of constructing \widetilde{v}. To describe it, define for every $x \in \dot{X}^{l}$

$$
P_{x}: \mathbb{R}^{n}=T_{x} \mathbb{R}^{n} \longrightarrow T \dot{X}^{l} \subset \mathbb{R}^{n}
$$

as orthogonal projection.
Using Kirszbraun's theorem, we extend v to a Lipschitz vector field V, defined on \mathbb{R}^{n}; of course it need not be tangent to \mathfrak{X}. Put, for $x \in X^{l}$,

$$
\widetilde{v}_{l}(x)= \begin{cases}v(x): & x \in K \\ P_{x} V(x): & x \in \stackrel{\circ}{X}^{l} .\end{cases}
$$

For Lipschitz stratifications this formula gives a Lipschitz vector field \widetilde{v}_{l}. We can proceed further in a similar way. Extend \widetilde{v}_{l} to a Lipschitz vector field V_{1} defined on \mathbb{R}^{n}, and put

$$
\widetilde{v}_{l+1}(x)= \begin{cases}\widetilde{v}_{l}(x): & x \in X^{l} \\ P_{x} V_{1}(x): & x \in \grave{X}^{l+1}\end{cases}
$$

etc. At the end we get $\widetilde{v}_{n}=\widetilde{v}$.
We note that original definition of a Lipschitz stratification ($(1.6, \mathrm{k}),(1.7, \mathrm{k})$ in [4], Def. 1.1 in [5], Def. 1.1 in [6]), equivalent to the above one (as proved in [5]), consisted of a big system of estimates on angles between tangent spaces to strata; this system guarantees that the above construction produces Lipschitz vector fields at every step.

It is known that for every set $A \in \mathfrak{A}_{i}$ in \mathbb{R}^{n} there exists a Lipschitz stratification of \mathbb{R}^{n}, compatible with A, with skeletons in \mathfrak{A}_{i}; in general this stratification is not unique.

Remark. The above construction gives also a similar extension property for Lipschitz families of vector fields. Let $\mathfrak{X}=\left\{X^{j}\right\}$ be a Lipschitz stratification of \mathbb{R}^{n}. Let K be compact, $X^{l} \subset K \subset X^{l+1}$, and v_{μ} a Lipschitz family of vector fields of uniformly bounded length, tangent to \mathfrak{X}, defined for all $x \in K$; then there exists a Lipschitz family of vector fields \widetilde{v}_{μ}, extending v_{μ}, defined for all $x \in \mathbb{R}^{n}$, tangent to \mathfrak{X}. The construction of \widetilde{v}_{μ} is as above; suppose namely that $\widetilde{v}_{\mu, k}$ is an extension defined for all $x \in X^{k}$; first we extend $\widetilde{v}_{\mu, k}$ to a Lipschitz family V_{μ}, defined for all $x \in \mathbb{R}^{n}$, and then we put

$$
\widetilde{v}_{\mu, k+1}(x)= \begin{cases}\widetilde{v}_{\mu, k}(x): & x \in X^{k} \\ P_{x} V_{\mu}(x): & x \in \dot{X}^{k+1}\end{cases}
$$

Again, the estimates of the original definition of a Lipschitz stratification, mentioned above, imply that $\widetilde{v}_{\mu, k+1}$ is a Lipschitz family of vector fields.

Example. Let X^{j} be a stratum of a Lipschitz stratification. Let $\varrho: X^{j} \longrightarrow \mathbb{R}$ be the distance to X^{j-1}. Then the matrix-valued function $\dot{X}^{j} \ni x \longmapsto P_{x}$ is in the class $\operatorname{Lip}\left(X^{j} ; \varrho\right)$ as the estimates of the original definition show.
1.9. L-regular sets. They are well-known cylinders with an extra property introduced by A. Parusiński in [5].

A subanalytic set $A \subset \mathbb{R}^{n}$ is a k-dimensional L-regular set $(k \leq n)$ if, possibly after a linear change of coordinates, it is of the following form:
1° if $k=n$, then

$$
\begin{equation*}
A=\left\{\left(x^{\prime}, x_{n}\right): x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right) \in A^{\prime}, \varphi\left(x^{\prime}\right)<x_{n}<\psi\left(x^{\prime}\right)\right\} \tag{1.3}
\end{equation*}
$$

where A^{\prime} is an $(n-1)$-dimensional L-regular set in \mathbb{R}^{n-1}, and φ, ψ are subanalytic functions on A^{\prime} (or semialgebraic, semianalytic), smooth, bounded together with their first derivatives:

$$
|\varphi|,|\psi|,\left|\frac{\partial \varphi}{\partial x_{\alpha}}\right|,\left|\frac{\partial \psi}{\partial x_{\alpha}}\right| \lesssim 1, \quad \alpha=1, \ldots, n-1
$$

and $\varphi<\psi$ on A^{\prime}.
2° if $k<n$, then A is the graph of F, where

$$
F: A^{\prime} \longrightarrow \mathbb{R}^{n-k}
$$

is bounded subanalytic (or semialgebraic, or semianalytic) smooth function on an L regular set $A^{\prime} \subset \mathbb{R}^{k}$ of dimension k, and the first derivatives of F are bounded: $\left|\frac{\partial F}{\partial x_{\alpha}}\right| \lesssim 1$. Of course \mathbb{R}^{k} is identified with the subspace $\left\{\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)\right\} \subset \mathbb{R}^{n}$ and \mathbb{R}^{n-k} with $\left\{\left(0, \ldots, 0, x_{k+1}, \ldots, x_{n}\right)\right\} \subset \mathbb{R}^{n}$.

Remark. If we drop the condition of boundedness of first derivatives, we get the familiar notion of a cylinder. However, L-regular sets have very useful properties which cylinders in general do not have; some of them we shall mention below.

A basic fact ([5], [7]) states that every set in $\mathfrak{A}_{i}, i=1,2,3$, can be decomposed into a finite union of L-regular sets in \mathfrak{A}_{i}; these sets can be chosen to be disjoint.

Every L-regular set A has Whitney's property with exponent 1, i.e. every pair of points $x, y \in A$ can be joined by a piecewise C^{1} curve in A of length $\lesssim|x-y|$.

We shall now make an observation concerning the distance to the boundary ∂A of an L-regular set.

Suppose that $A \subset \mathbb{R}^{n}$ is n-dimensional,

$$
A=\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in A^{\prime}, \varphi\left(x^{\prime}\right)<x_{n}<\psi\left(x^{\prime}\right)\right\}
$$

as before. Let $\pi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n-1}$ be the canonical projection. Then

$$
\partial A=\left(\pi^{-1}\left(\partial A^{\prime}\right) \cap \bar{A}\right) \cup \operatorname{graph} \varphi \cup \operatorname{graph} \psi
$$

Put, for every $x=\left(x^{\prime}, x_{n}\right) \in A$

$$
\begin{align*}
\operatorname{hordist}(x, \partial A) & =d\left(x^{\prime}, \partial A^{\prime}\right)=d\left(\pi(x), \partial A^{\prime}\right) \tag{1.4}\\
\operatorname{vertdist}(x, \partial A) & =\min \left(\psi\left(x^{\prime}\right)-x_{n}, x_{n}-\varphi\left(x^{\prime}\right)\right) \tag{1.5}
\end{align*}
$$

Clearly

$$
d(x, \partial A) \simeq \min (\operatorname{hordist}(x, \partial A), \operatorname{vertdist}(x, \partial A))
$$

in particular, $d(x, \partial A) \lesssim d\left(\pi(x), \partial A^{\prime}\right)$.
If A is k-dimensional, $k<n$, then, after a coordinate change, A is the graph of $F: A^{\prime} \longrightarrow \mathbb{R}^{n-k}$, as before. Let $\pi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}$ be the standard projection. Then

$$
\partial A=\pi^{-1}\left(\partial A^{\prime}\right) \cap \bar{A},
$$

and, for $x \in A$,

$$
\begin{equation*}
d(x, \partial A) \simeq d\left(\pi(x), \partial A^{\prime}\right) \tag{1.6}
\end{equation*}
$$

Finally we make a remark concerning tangent spaces to k-dimensional L-regular sets A in \mathbb{R}^{n}. Suppose $\mathfrak{X}=\left\{X^{j}\right\}$ is a Lipschitz stratification of \mathbb{R}^{n} and A is an open subset of \dot{X}^{k} which is the graph of F as above. Let again $\pi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}$ be the standard projection. Let π_{A} be the restriction of π to A. Then the norms of the differentials $\left(\pi_{A}\right)_{* x}, x \in A$, are bounded. The vector fields

$$
e_{\alpha}=\left(\pi_{A}\right)_{*}^{-1}\left(\partial / \partial x_{\alpha}\right), \quad \alpha=1, \ldots, k
$$

constitute a basis of tangent vector fields to A and

$$
e_{\alpha} \in \operatorname{Lip}(A, \varrho), \quad \varrho=d_{X^{k-1}}
$$

This follows again from the estimates of the original definition.
2. Liftings of vector fields in Lipschitz stratifications. In this section we shall work with the product space $\mathbb{R}_{t}^{m} \times B_{y}^{N}$, where B_{y}^{N} is the closed unit ball in \mathbb{R}_{y}^{n}, centred at 0 ; let $\pi: \mathbb{R}_{t}^{m} \times B_{y}^{N} \longrightarrow \mathbb{R}_{t}^{m}$ be the standard projection.

Let $\mathfrak{Z}=\left\{Z^{j}\right\}$ be a Lipschitz stratification of $\mathbb{R}_{t}^{m} \times B_{y}^{N}$ with skeletons in $\mathfrak{A}_{i}, i=1,3$. Let $\mathfrak{T}=\left\{T^{j}\right\}$ be any Lipschitz stratification of \mathbb{R}_{t}^{m} compatible with all $\pi\left(Z^{j}\right)$, with skeletons in the same \mathfrak{A}_{i} (it is important here to exclude semi-analytic sets). Very often we shall identify \mathbb{R}_{t}^{m} with $\mathbb{R}_{t}^{m} \times 0 \subset \mathbb{R}_{t}^{m} \times B_{y}^{N}$; remark that then every stratum of \mathfrak{T} is a submanifold of some stratum of \mathfrak{Z}.

If v is a vector field defined on a subset of \mathbb{R}_{t}^{m}, then a lift of v is a vector field $\widehat{v}=\widehat{v}(t, y)$, defined on a subset of $\mathbb{R}_{t}^{m} \times \mathbb{R}_{y}^{N}$ such that

$$
\pi_{*} \widehat{v}(t, y)=v(t)
$$

for all (t, y) where both sides are defined. In other words, identifying a vector field on $\mathbb{R}_{t}^{m} \times \mathbb{R}_{y}^{N}$ with a mapping with values in $\mathbb{R}_{t}^{m} \times \mathbb{R}_{y}^{N}$ and similarly on \mathbb{R}_{t}^{m}, we may say that $\widehat{v}(t, y)$ is a lift of $v(t)$ if \widehat{v} is of the form

$$
\widehat{v}(t, y)=(v(t), V(t, y))
$$

Now fix a stratum $\stackrel{\circ}{T}^{j} \subset \mathbb{R}_{t}^{m}$. For every $\varepsilon_{0}>0$ put

$$
U_{\varepsilon_{0}}\left(\circ^{j}\right)=\left\{(t, y): t \in \stackrel{\circ}{T}^{j},|y|<\varepsilon_{0} d_{j-1}(t)\right\},
$$

where, as in Section 1.3, $d_{j-1}(t)=d_{T^{j-1}}(t)$.
Remark that

$$
\begin{equation*}
d_{Z^{j-1}}(t, 0) \geq d_{T^{j-1}}(t, 0)=d_{j-1}(t) \tag{2.1}
\end{equation*}
$$

because

$$
d_{Z^{j-1}}(t, 0) \geq d_{\pi\left(Z^{j-1}\right)}(t) \geq d_{j-1}(t)
$$

It follows that for $(t, y) \in U_{\varepsilon_{0}}\left(\stackrel{\circ}{T}^{j}\right)$

$$
d_{Z^{j-1}}(t, y) \simeq d_{j-1}(t)
$$

provided that $\varepsilon_{0}<1 / 2$ as we shall further suppose; more exactly the ratio of these distances is between $1 / 2$ and 2 .

The aim of this section is the following proposition.
Proposition 3. There exists an ε_{0} such that every Lipschitz vector field v on \mathbb{R}_{t}^{m}, tangent to \mathfrak{T}, lifts to a Lipschitz vector field \widehat{v}, defined on $U_{\varepsilon_{0}}\left(T^{j}\right)$, tangent to \mathfrak{Z}.

Remark. We may consider $U_{\varepsilon_{0}}^{j}\left(\stackrel{\circ}{T}^{j}\right)$ as a subanalytic neighbourhood of $\stackrel{\circ}{T}^{j} \times 0$ in $\pi^{-1}\left(\dot{T}^{j}\right)$. More generally, for every rational $\rho>0$, the sets

$$
U_{\varepsilon_{0}, \rho}\left(\stackrel{\circ}{T}^{j}\right)=\left\{(t, y): t \in \stackrel{\circ}{T}^{j},|y|<\varepsilon_{0} d_{j-1}^{\rho}(t)\right\}
$$

are also subanalytic neighbourhoods of $\stackrel{\circ}{T}^{j} \times 0$ in $\pi^{-1}\left(\stackrel{\circ}{T}^{j}\right)$. So it is worth noticing that a lifting \widehat{v} exists not only on some subanalytic neighbourhood of $\grave{T}^{j} \times 0$ in $\pi^{-1}\left(\grave{T}^{j}\right)$ but on a neighbourhood "with exponent" $\rho=1$.

We shall start the proof with a slight strengthening of a lemma of A. Parusiński [8].
Quite generally, consider a Lipschitz stratification $\mathfrak{X}=\left\{X^{j}\right\}$ in \mathbb{R}^{n} with skeletons in any \mathfrak{A}_{i}. We shall say that Lipschitz vector fields e_{0}, \ldots, e_{j-1}, defined on \mathbb{R}^{n}, tangent to \mathfrak{X}, satisfy condition $P(C, \varepsilon)$ at a point $q \in \dot{X}^{j}$ if there exist a $k<j$ and a point $q^{\prime} \in \dot{X}^{k}$ such that $\left|q-q^{\prime}\right|=d_{k}(q)$ and
$1^{\circ} e_{0}, \ldots, e_{j-1}$ are orthonormal in $B\left(q, \varepsilon d_{k}(q)\right)$,
2° for every i, e_{i} has $C / d_{i}(q)$ as a Lipschitz constant,
$3^{\circ} e_{0}, \ldots, e_{k-1}$ satisfy $P(C, \varepsilon)$ at q^{\prime}.

Lemma 2.1. There exist C, ε, depending only on the stratification, such that for every j and every $q \in \dot{X}^{j}$ there exist vector fields e_{0}, \ldots, e_{j-1} which satisfy $P(C, \varepsilon)$ at q.

Remark. The index k appearing in the definition of condition $P(C, \varepsilon)$ will be chosen at the beginning of the proof of the lemma; this choice will be also used in the proof of Lemma 2.2 below.

Proof of the lemma. We shall use increasing induction with respect to j; if $j=0$ or 1 the lemma is obvious. Clearly it is enough to prove the lemma with the constants C, ε depending on j; for if the lemma is true for $C=C(j), \varepsilon=\varepsilon(j)$, we may put at the end $C=\max C(j), \varepsilon=\min \varepsilon(j)$.

By [8], there exists a C_{2}, depending only on the stratification, such that for every $q \in \dot{X}^{j}$ there exist vector fields $e_{0}^{*}, \ldots, e_{j-1}^{*}$, tangent to \mathfrak{X}, orthonormal at q and e_{i}^{*} has $C_{2} / d_{i}(q)$ as a Lipschitz constant.

Let C_{1}, ε_{1} be constants such that the conclusion of the lemma holds with C_{1} and ε_{1} instead of C, ε for all $q \in \dot{X}^{l}, l<j$.

Let A be any constant such that

$$
A>1, \quad 2 /(A-1)<\varepsilon_{1} .
$$

Define k as the smallest number such that $k<j$ and

$$
d_{i}(q) \leq A d_{i+1}(q) \quad \text { for all } i, \quad k \leq i \leq j-1
$$

Let $q^{\prime} \in \dot{X}^{k}$ realise the distance of q to X^{k} :

$$
\left|q-q^{\prime}\right|=d_{k}(q)
$$

By induction hypothesis, there exist vector fields e_{0}, \ldots, e_{k-1} which satisfy $P\left(C_{1}, \varepsilon_{1}\right)$ at q^{\prime}; in particular, they are orthonormal in $B\left(q^{\prime}, \varepsilon_{1} d_{l}\left(q^{\prime}\right)\right)$ for some $l<k$.

Remark that

$$
d_{l}\left(q^{\prime}\right) \geq d_{l}(q)-\left|q-q^{\prime}\right|=d_{l}(q)-d_{k}(q) \geq(A-1) d_{k}(q)
$$

thus if $|x-q| \leq d_{k}(q)$, then

$$
\left|x-q^{\prime}\right| \leq|x-q|+\left|q-q^{\prime}\right| \leq 2 d_{k}(q) \leq \frac{2}{A-1} d_{l}(q) \leq \varepsilon_{1} d_{l}\left(q^{\prime}\right)
$$

so $B\left(q, d_{k}(q)\right) \subset B\left(q^{\prime}, \varepsilon_{1} d_{l}\left(q^{\prime}\right)\right)$ and therefore e_{0}, \ldots, e_{k-1} are orthogonal in $B\left(q, d_{k}(q)\right)$. We have to add to them suitably chosen fields e_{k}, \ldots, e_{j-1}.

Replacing the vector fields e_{i}^{*} by $\sum a_{i j} e_{j}^{*}$, where $\left(a_{i j}\right)$ is a suitable orthogonal matrix (with constant entities) we may assume that

$$
e_{0}(q), \ldots, e_{k-1}(q), e_{k}^{*}(q), \ldots, e_{j-1}^{*}(q)
$$

are orthonormal. We have, for all $x \in B\left(q, d_{i}(q) / 2 C_{2}\right)$

$$
\left|e_{i}^{*}(x)-e_{i}^{*}(q)\right| \leq C_{2} \frac{|x-q|}{d_{i}(q)} \leq \frac{1}{2}
$$

For $i \leq k$ we have $d_{i}(q) \geq d_{k}(q)$; for $i \geq k$ we have $d_{i}(q) \geq A^{-n} d_{k}(q)$. Thus for all i

$$
d_{i}(q) \geq A^{-n} d_{k}(q)
$$

and therefore

$$
\begin{equation*}
B\left(q, \frac{d_{i}(q)}{2 C_{2}}\right) \supset B\left(q, \frac{d_{k}(q)}{2 C_{2} A^{n}}\right) \tag{2.2}
\end{equation*}
$$

Remark that $e_{0}, \ldots, e_{k-1}, e_{k}^{*}, \ldots, e_{j-1}^{*}$ are all Lipschitz with a Lipschitz constant

$$
\frac{L}{d_{k}(q)}, \quad L=A^{n}\left(C_{1}+C_{2}\right)
$$

(this is, of course, a very rough estimate); we may assume that $C_{1}+C_{2} \geq 1$.
Put

$$
M=(100 n)^{n} L, \quad \varepsilon=\frac{1}{100 n M}
$$

(again these choices are very far from the best).
In $B_{2}=B\left(q, 2 \varepsilon d_{k}(q)\right)$ we have, for all $i \geq k$,

$$
\left|e_{i}^{*}(x)-e_{i}^{*}(q)\right| \leq \frac{1}{2}
$$

Let

$$
B_{1}=B\left(q, \varepsilon d_{k}(q)\right), \quad D=\mathbb{R}^{n} \backslash B_{2}, \quad \varphi=\frac{d_{D}}{d_{D}+d_{B_{1}}}
$$

where, for every subset $A \subset \mathbb{R}^{n}, d_{A}$ is, as before, the distance to A. Clearly φ has the following properties:
$\varphi=0$ outside B_{2} (i.e. on $\left.D\right), \varphi=1$ on $B_{1}, 0 \leq \varphi \leq 1$,
φ is Lipschitz with the constant

$$
\frac{1}{\varepsilon d_{k}(q)}+\frac{2}{\varepsilon d_{k}(q)}=\frac{3}{\varepsilon d_{k}(q)}
$$

Now we apply the Gram-Schmidt orthonormalisation procedure to $e_{k}^{*}, \ldots, e_{j-1}^{*}$ in the following way: we put

$$
\begin{gathered}
\breve{e}_{k}=e_{k}^{*}-\sum_{i=0}^{k-1}\left\langle e_{k}^{*}, e_{i}\right\rangle e_{i}, \quad \widetilde{e}_{k}=\frac{\breve{e}_{k}}{\left|\breve{e}_{k}\right|}, \\
\breve{e}_{k+1}=e_{k+1}^{*}-\sum_{i=0}^{k-1}\left\langle e_{k+1}^{*}, e_{i}\right\rangle e_{i}-\left\langle e_{k+1}^{*}, \widetilde{e}_{k}\right\rangle \widetilde{e}_{k}, \quad \widetilde{e}_{k+1}=\frac{\breve{e}_{k+1}}{\left|\breve{e}_{k+1}\right|},
\end{gathered}
$$

etc.
By induction on m (where $m \geq k$) we shall prove that in B_{2}
$1^{\circ} \widetilde{e}_{m}$ has

$$
\frac{(100 n)^{m-k}}{d_{k}(q)} L
$$

as a Lipschitz constant,
2°

$$
\frac{1}{2} \leq\left|\breve{e}_{m}\right| \leq \frac{3}{2}
$$

this of course implies that all \widetilde{e}_{i} are defined in B_{2} and have $M / d_{k}(q)$ as a Lipschitz constant.

We shall treat only the induction step, since it covers also the first step; assume thus that 1° and 2° hold for \widetilde{e}_{m-1}.

Clearly both $\left\langle e_{m}^{*}, e_{i}\right\rangle e_{i}$ (for $i<k$) and $\left\langle e_{m}^{*}, \widetilde{e}_{i}\right\rangle \widetilde{e}_{i}$ (for $k \leq i \leq m-1$) are Lipschitz with a Lipschitz constant

$$
2 \cdot \frac{3}{2} \frac{(100 n)^{m-k-1} L}{d_{k}(q)}+\frac{L}{d_{k}(q)} \leq \frac{4 \times 100^{m-k-1} n^{m-k-1} L}{d_{k}(q)}
$$

so for a Lipschitz constant of \breve{e}_{m} we may take

$$
L_{m}=n \frac{4 \times 100^{m-k-1} n^{m-k-1} L}{d_{k}(q)}=\frac{4 \times 100^{m-k-1} n^{m-k} L}{d_{k}(q)}
$$

Since $\left|\breve{e}_{m}(q)\right|=\left|e_{m}^{*}(q)\right|=1$ and $\varepsilon L_{m}<1 / 2 d_{k}(q)$, it follows that in B_{2}

$$
\frac{1}{2} \leq\left|\breve{e}_{m}\right| \leq \frac{3}{2}
$$

as claimed. Thus for a Lipschitz constant of \widetilde{e}_{m} we may take

$$
\frac{L_{m}}{\frac{1}{2}}+\frac{3}{2} \frac{L_{m}}{\left(\frac{1}{2}\right)^{2}}<10 L_{m}<\frac{(100 n)^{m-k} L}{d_{k}(q)} .
$$

1° and 2° are thus proved, and with them we know, as remarked above, that \widetilde{e}_{m} are defined in B_{2}, Lipschitz with a Lipschitz constant $M / d_{k}(q)$.

Finally we put, for $k \leq i \leq j-1$,

$$
e_{i}=\varphi \widetilde{e}_{i}+(1-\varphi) e_{i}^{*} \text { in } B_{2}, \quad 0 \text { outside of } B_{2}
$$

In B_{1} all e_{0}, \ldots, e_{j-1} are orthonormal and the Lipschitz constant of every e_{i} is, for $i \geq k$,

$$
\frac{3}{\varepsilon d_{k}(q)}+\frac{M}{d_{k}(q)}+\frac{3}{\varepsilon d_{k}(q)} \sup _{B_{2}}\left|e_{i}^{*}\right|+\frac{C_{1}}{d_{k}(q)},
$$

so is of the form $\frac{\text { const. }}{d_{k}(q)}$, where const. depends only on the stratification.
The lemma is proved.
Let v be a Lipschitz vector field on \mathbb{R}^{n}, tangent to \mathfrak{X}. We shall study now its components λ_{i} in an orthonormal basis that satisfies condition $P(C, \varepsilon)$.

Lemma 2.2. Let $q \in \dot{X}^{j}$ and e_{i} satisfy $P(C, \varepsilon)$ at q; then in $B\left(q, \varepsilon d_{k}(q)\right) \cap X^{j}$ we may write

$$
v=\sum \lambda_{i} e_{i}, \quad \lambda_{i}=\left\langle v, e_{i}\right\rangle
$$

and λ_{i} have the following properties:
$1^{\circ}\left|\lambda_{i}(x)\right| \leq K d_{i}(q)$ for all $x \in B\left(q, \varepsilon d_{k}(q)\right)$ and $i=0, \ldots, j-1$;
$2^{\circ} \lambda_{i}$ is Lipschitz;
moreover, K and the Lipschitz constant of λ_{i} depend only on the Lipschitz constant of v, C and ε.

Proof. To prove the first estimate we use induction on j; we choose k, l and q^{\prime} as in the proof of the previous lemma and we may assume that the statement is correct for $i<k$ in $B\left(q^{\prime}, \varepsilon_{1} d_{l}\left(q^{\prime}\right)\right)$. Since the latter ball contains $B\left(q, \varepsilon d_{k}(q)\right)$ (see p. 190) and $d_{i}\left(q^{\prime}\right) \simeq d_{i}(q)$ [recall that $\left|d_{i}\left(q^{\prime}\right)-d_{i}(q)\right| \leq\left|q^{\prime}-q\right|=d_{k}(q)$ and $\left.d_{i}(q) \geq A d_{k}(q), A>1\right]$, our statement is true for $i<k$.

Let $i \geq k$. For $x \in B\left(q, \varepsilon d_{k}(q)\right)$

$$
\begin{aligned}
\left|\lambda_{i}(x)\right|=\left|\left\langle v(x), e_{i}(x)\right\rangle\right| & \leq\left|\left\langle v(x)-v\left(q^{\prime}\right), e_{i}(x)\right\rangle\right|+\left|\left\langle v\left(q^{\prime}\right), e_{i}(x)\right\rangle\right| \\
& \lesssim\left|x-q^{\prime}\right|+\sum_{s<k}\left|\lambda_{s}\left(q^{\prime}\right)\right|\left|\left\langle e_{s}\left(q^{\prime}\right), e_{i}(x)\right\rangle\right| \\
& \lesssim d_{k}(q)+\sum_{s<k} d_{s}(q)\left|\left\langle e_{s}\left(q^{\prime}\right)-e_{s}(x), e_{i}(x)\right\rangle+\left\langle e_{s}(x), e_{i}(x)\right\rangle\right|
\end{aligned}
$$

Since $s<k$ and $i \geq k,\left\langle e_{s}(x), e_{i}(x)\right\rangle=0$. From

$$
\left|e_{s}\left(q^{\prime}\right)-e_{s}(x)\right| \leq C \frac{\left|q^{\prime}-x\right|}{d_{s}(q)}
$$

we get

$$
\left|\lambda_{i}(x)\right| \lesssim d_{k}(q) \simeq d_{i}(q), \quad i \geq k
$$

To prove that λ_{i} are Lipschitz in $B\left(q, \varepsilon d_{k}(q)\right) \cap X^{j}$ we write, for $x, x^{\prime} \in B\left(q, \varepsilon d_{k}(q)\right)$,

$$
\begin{aligned}
\left|\lambda_{i}(x)-\lambda_{i}\left(x^{\prime}\right)\right|=\mid\left\langle v(x), e_{i}(x)\right\rangle & -\left\langle v\left(x^{\prime}\right), e_{i}\left(x^{\prime}\right)\right\rangle \mid \\
& \leq\left|\left\langle v(x)-v\left(x^{\prime}\right), e_{i}(x)\right\rangle\right|+\left|\left\langle v\left(x^{\prime}\right), e_{i}(x)-e_{i}\left(x^{\prime}\right)\right\rangle\right|
\end{aligned}
$$

The first summand is $\lesssim\left|x-x^{\prime}\right|$. We write the second as

$$
\left|\sum_{s=0}^{j-1} \lambda_{s}\left(x^{\prime}\right)\left\langle e_{s}\left(x^{\prime}\right), e_{i}(x)-e_{i}\left(x^{\prime}\right)\right\rangle\right|
$$

Since $\left\langle e_{s}, e_{i}\right\rangle=\delta_{s i}$ in $B\left(q, \varepsilon d_{k}(q)\right)$, we have

$$
\begin{aligned}
0=\left\langle e_{s}(x), e_{i}(x)\right\rangle-\left\langle e_{s}\left(x^{\prime}\right), e_{i}\left(x^{\prime}\right)\right\rangle & \\
& =\left\langle e_{s}(x)-e_{s}\left(x^{\prime}\right), e_{i}(x)\right\rangle-\left\langle e_{s}\left(x^{\prime}\right), e_{i}\left(x^{\prime}\right)-e_{i}(x)\right\rangle
\end{aligned}
$$

Thus for every s we have

$$
\begin{aligned}
&\left|\lambda_{s}\left(x^{\prime}\right)\left\langle e_{s}\left(x^{\prime}\right), e_{i}(x)-e_{i}\left(x^{\prime}\right)\right\rangle\right|=\left|\lambda_{s}\left(x^{\prime}\right)\right|\left|\left\langle e_{s}(x)-e_{s}\left(x^{\prime}\right), e_{i}(x)\right\rangle\right| \\
& \lesssim d_{s}(q)\left|e_{s}(x)-e_{s}\left(x^{\prime}\right)\right| \lesssim\left|x-x^{\prime}\right| .
\end{aligned}
$$

The lemma is proved.
We return now to the situation of the beginning of this section; thus we have the spaces $\mathbb{R}_{t}^{m} \times B_{y}^{N}, \mathbb{R}_{t}^{m}$, with stratifications \mathfrak{Z} and \mathfrak{T}, respectively, and the projection $\pi: \mathbb{R}_{t}^{m} \times B_{y}^{N} \longrightarrow \mathbb{R}_{t}^{m}$. We shall apply Lemmas 2.1 and 2.2 to $\mathbb{R}^{n}=\mathbb{R}_{t}^{m}, \mathfrak{X}=\mathfrak{T}$; we shall write t_{0} instead of q.

Take a stratum \dot{T}^{j} and a point $t_{0} \in \stackrel{\circ}{T}^{j}$; let e_{0}, \ldots, e_{j-1} be the vector fields on \mathbb{R}_{t}^{m} constructed in Lemma 2.1 which satisfy $P(C, \varepsilon)$ at t_{0}. The symbol $d_{i}\left(t_{0}\right)$ denotes, as before, $d_{T^{i}}\left(t_{0}\right)$.

Lemma 2.3. The vector fields e_{i} extend from $B\left(t_{0}, \varepsilon d_{k}\left(t_{0}\right)\right) \subset \mathbb{R}_{t}^{m}$ to Lipschitz vector fields $E_{i}(t, y)$, defined on $\mathbb{R}_{t}^{m} \times B_{y}^{N}$, tangent to \mathfrak{Z}, such that the Lipschitz constant of E_{i} is $C_{0} / d_{i}\left(t_{0}\right)$, where C_{0} depends only on the stratifications \mathfrak{Z} and \mathfrak{T}.

Proof. We keep the notation of Lemma 2.1; in particular the index k and the constants A and ε have the same meaning. By an induction argument on j we may assume that
e_{0}, \ldots, e_{k-1} extend as stated. Consider e_{k}, \ldots, e_{j-1}; their Lipschitz constant does not exceed $C / d_{j-1}\left(t_{0}\right)$.

Consider the vector fields $e_{k}^{\prime}, \ldots, e_{j-1}^{\prime}$ defined on $B\left(t_{0}, \varepsilon d_{k}\left(t_{0}\right)\right) \cup Z^{j-1}$ by the formula: $e_{i}^{\prime}=e_{i}$ on $B\left(t_{0}, \varepsilon d_{k}\left(t_{0}\right)\right), e_{i}^{\prime}=0$ on Z^{j-1}. We shall show that the Lipschitz constant of e_{i}^{\prime} is

$$
\frac{\max \left(C, 2 A^{n}\right)}{d_{k}\left(t_{0}\right)}
$$

To prove this estimate it is enough to show that for every $t \in B\left(t_{0}, \varepsilon d_{k}\left(t_{0}\right)\right)$

$$
d\left(t, Z^{j-1}\right) \geq \frac{d_{k}\left(t_{0}\right)}{2 A^{n}}
$$

of course we are identifying t with $(t, 0) \in \mathbb{R}_{t}^{m} \times B_{y}^{N}$.
Recall that $d_{j-1}\left(t_{0}\right) \geq A^{-n} d_{k}\left(t_{0}\right)$, so

$$
B\left(t_{0}, \varepsilon d_{k}\left(t_{0}\right)\right) \subset B\left(t_{0}, \varepsilon A^{n} d_{j-1}\left(t_{0}\right)\right) \subset B\left(t_{0}, \frac{d_{j-1}\left(t_{0}\right)}{2}\right)
$$

also $d\left(t, Z^{j-1}\right) \geq d\left(t, T^{j-1}\right)$ as remarked in (2.1). Therefore

$$
B\left(t_{0}, \varepsilon d_{k}\left(t_{0}\right)\right) \subset B\left(\left(t_{0}, 0\right), \frac{d\left(t_{0}, Z^{j-1}\right)}{2}\right)
$$

which implies the desired estimate.
Clearly every e_{i}^{\prime} is tangent (where defined) to strata of dimension not exceeding j in \mathfrak{Z}. Thus it extends, by the basic property of Lipschitz stratifications, to a Lipschitz vector field E_{i}, defined on $\mathbb{R}_{t}^{m} \times B_{y}^{N}$, tangent to \mathfrak{Z}, with the Lipschitz constant

$$
C_{2} \frac{\max \left(C, 2 A^{n}\right)}{d_{k}\left(t_{0}\right)}
$$

where C_{2} depends only on \mathfrak{J}. This proves the lemma with $C_{0}=C_{2} \max \left(C, 2 A^{n}\right)$.
We keep the previous notation; we have thus $t_{0} \in \overleftarrow{T}^{j}$ with vector fields e_{i} which satisfy $P(C, \varepsilon)$ at t_{0}. Let

$$
U_{\varepsilon_{0}}\left(\grave{T}^{j}, t_{0}\right)=U_{\varepsilon_{0}}\left(t_{0}\right)=\left\{(t, y): t \in B\left(t_{0}, \varepsilon d_{k}\left(t_{0}\right)\right) \cap \stackrel{\circ}{T}^{j},|y|<\varepsilon_{0} d_{j-1}\left(t_{0}\right)\right\}
$$

alternatively,

$$
U_{\varepsilon_{0}}\left(t_{0}\right)=U_{\varepsilon_{0}}\left(\stackrel{\circ}{T}^{j}\right) \cap \pi^{-1}\left(B\left(t_{0}, \varepsilon d_{k}\left(t_{0}\right)\right)\right)
$$

Lemma 2.4. There exists an ε_{0}, depending only on the stratifications, such that for every $t_{0} \in \stackrel{\circ}{T}^{j}$, every e_{i} has a Lipschitz lifting $\widehat{e}_{i}(t, y)$, defined on $U_{\varepsilon_{0}}\left(t_{0}\right)$, tangent to \mathfrak{Z}, with a Lipschitz constant $C_{1} / d_{i}\left(t_{0}\right)$, where C_{1} depends only on \mathfrak{Z} and \mathfrak{T}.

Proof. Let $E_{i}(t, y)$ be the extensions of $e_{i}(t)$ constructed in Lemma 2.3; the constant C_{0} has the same meaning as in Lemma 2.3. We may assume that $C_{0} \geq C$. Let

$$
E_{i}^{\prime}(t, y)=\pi_{*} E_{i}(t, y) \quad \text { for }(t, y) \in U_{\varepsilon_{0}}\left(t_{0}\right)
$$

Since $E_{i}^{\prime}(t, 0)=e_{i}(t)$, we have in $U_{\varepsilon_{0}}\left(t_{0}\right)$

$$
\left|E_{i}^{\prime}(t, y)-e_{i}(t)\right| \leq C_{0} \varepsilon_{0} \frac{d_{j-1}\left(t_{0}\right)}{d_{i}\left(t_{0}\right)}
$$

Thus we may write, for $i=0, \ldots, j-1$,

$$
\begin{aligned}
& E_{i}^{\prime}(t, y)=e_{i}(t)+\sum_{p=0}^{j-1} a_{i p}(t, y) e_{p}(t) \\
& \left|a_{i p}(t, y)\right| \leq C_{0} \varepsilon_{0} \frac{d_{j-1}\left(t_{0}\right)}{d_{i}\left(t_{0}\right)} \leq C_{0} \varepsilon_{0}
\end{aligned}
$$

for all p.
Obviously

$$
e_{i}(t)=\sum b_{i p}(t, y) E_{p}^{\prime}(t, y)
$$

where $b_{i p}(t, y)$ are elements of the matrix $(I+A)^{-1}$, where $A=\left(a_{i p}(t, y)\right)$. The fields

$$
\widehat{e}_{i}(t, y)=\sum b_{i p}(t, y) E_{p}^{\prime}(t, y)
$$

are liftings of e_{i}, tangent to \mathfrak{Z}.
It remains to prove that for ε_{0} sufficiently small $I+A$ is invertible and to estimate the Lipschitz constant of every \widehat{e}_{i}.

The first fact is obvious: since $d_{j-1} \leq d_{i}$ for all $i \leq j$,

$$
\left|a_{i p}(t, y)\right| \leq C_{0} \varepsilon_{0},
$$

so if ε_{0} is small enough (for instance if $C_{0} \varepsilon_{0}<1 /(2 m)$ as we shall further suppose), $\|A\| \leq 1 / 2$, and

$$
(I+A)^{-1}=\sum_{s=0}^{\infty}(-A)^{s}
$$

We shall now prove that every $a_{i p}(t, y)$ is Lipschitz in $U_{\varepsilon_{0}}\left(t_{0}\right)$ with the Lipschitz constant $C_{0}\left(2+C \varepsilon_{0}\right) / d_{i}\left(t_{0}\right)$. In fact, writing z for (t, y) and z^{\prime} for $\left(t^{\prime}, y^{\prime}\right)$, we have

$$
\begin{aligned}
& \left|a_{i p}(z)-a_{i p}\left(z^{\prime}\right)\right|=\left|\left\langle E_{i}^{\prime}(z)-e_{i}(t), e_{p}(t)\right\rangle-\left\langle E_{i}^{\prime}\left(z^{\prime}\right)-e_{i}\left(t^{\prime}\right), e_{p}\left(t^{\prime}\right)\right\rangle\right| \\
& \leq\left|\left\langle E_{i}^{\prime}(z)-E_{i}^{\prime}\left(z^{\prime}\right)-e_{i}(t)+e_{i}\left(t^{\prime}\right), e_{p}(t)\right\rangle\right|+\left|\left\langle E_{i}^{\prime}\left(z^{\prime}\right)-e_{i}\left(t^{\prime}\right), e_{p}(t)-e_{p}\left(t^{\prime}\right)\right\rangle\right| \\
& \leq \frac{2 C_{0}}{d_{i}\left(t_{0}\right)}\left|z^{\prime}-z\right|+\left|E_{i}^{\prime}\left(z^{\prime}\right)-e_{i}\left(t^{\prime}\right)\right| \frac{C\left|t^{\prime}-t\right|}{d_{p}\left(t_{0}\right)} \\
& \quad \leq \frac{2 C_{0}+C C_{0} \varepsilon_{0}}{d_{i}\left(t_{0}\right)}\left|z^{\prime}-z\right|=\frac{C_{0}\left(2+C \varepsilon_{0}\right)}{d_{i}\left(t_{0}\right)}\left|z^{\prime}-z\right| .
\end{aligned}
$$

Let $a_{i p}^{(s)}(z)$ be the elements of the matrix $(-A)^{s}$. We shall prove by induction on s that for every $s>0$ and $z \in U_{\varepsilon_{0}}\left(t_{0}\right)$

$$
\left|a_{i p}^{(s)}(z)\right| \leq \frac{m C_{0} \varepsilon_{0}}{2^{s-1}} \frac{d_{j-1}\left(t_{0}\right)}{d_{i}\left(t_{0}\right)} \leq \frac{1}{2^{s}}
$$

and that $a_{i p}^{(s)}(z)$ is Lipschitz with the Lipschitz constant

$$
\frac{s m^{2}}{2^{s-1}} \frac{C_{0}\left(2+C \varepsilon_{0}\right)}{d_{i}\left(t_{0}\right)}
$$

In fact, first of all

$$
\left|a_{i p}^{(s)}\right|=\left|\sum_{q} a_{i q} a_{q p}^{(s-1)}\right| \leq m \frac{C_{0} \varepsilon_{0} d_{j-1}\left(t_{0}\right)}{d_{i}\left(t_{0}\right)}\|A\|^{s-1} \leq \frac{m C_{0} \varepsilon_{0}}{2^{s-1}} \frac{d_{j-1}\left(t_{0}\right)}{d_{i}\left(t_{0}\right)}
$$

Then, $a_{i p}^{(s)}(z)-a_{i p}^{(s)}\left(z^{\prime}\right)$ are elements of the matrix

$$
(-A)^{s}(z)-(-A)^{s}\left(z^{\prime}\right)=\sum_{k+l=s-1}(-A)^{k}(z)\left[(-A)(z)-(-A)\left(z^{\prime}\right)\right](-A)^{l}\left(z^{\prime}\right)
$$

so

$$
\begin{aligned}
\mid a_{i p}^{(s)}(z)-a_{i p}^{(s)} & \left(z^{\prime}\right) \mid \\
& \leq \sum_{k+l=s-1} \sum_{q, r}\left|a_{i q}^{(k)}(z)\left(a_{q r}(z)-a_{q r}\left(z^{\prime}\right)\right) a_{r p}^{(l)}\left(z^{\prime}\right)\right| \\
& \leq \sum_{k+l=s-1} \sum_{q, r} \frac{m C_{0} \varepsilon_{0}}{2^{k-1}} \frac{d_{j-1}\left(t_{0}\right)}{d_{i}\left(t_{0}\right)} \frac{C_{0}\left(2+C \varepsilon_{0}\right)}{d_{q}\left(t_{0}\right)} \frac{m C_{0} \varepsilon_{0}}{2^{l-1}} \frac{d_{j-1}\left(t_{0}\right)}{d_{r}\left(t_{0}\right)}\left|z-z^{\prime}\right| \\
& \leq \sum \sum \frac{1}{2^{k}} \frac{C_{0}\left(2+C \varepsilon_{0}\right)}{d_{i}\left(t_{0}\right)} \frac{1}{2^{l}}\left|z-z^{\prime}\right| \leq \frac{s m^{2}}{2^{s-1}} \frac{C_{0}\left(2+C \varepsilon_{0}\right)}{d_{i}\left(t_{0}\right)}\left|z-z^{\prime}\right| .
\end{aligned}
$$

After summing over s we deduce that $b_{i p}$ are Lipschitz with a Lipschitz constant $K / d_{i}\left(t_{0}\right)$, where K depends only on the stratifications. It follows that

$$
\left|b_{i p}\right| \leq K \frac{d_{j-1}\left(t_{0}\right)}{d_{i}\left(t_{0}\right)} \text { on } U_{\varepsilon_{0}}\left(t_{0}\right)
$$

It is now easy to prove that \widehat{e}_{i} are Lipschitz; in fact, remembering that on $U_{\varepsilon_{0}}\left(t_{0}\right)$

$$
\begin{gathered}
\left|E_{p}(z)\right| \leq 1+C_{0} \frac{d_{j-1}\left(t_{0}\right)}{d_{i}\left(t_{0}\right)} \leq 1+C_{0} \\
\left|\widehat{e}_{i}(z)-\widehat{e}_{i}\left(z^{\prime}\right)\right| \leq \sum\left|b_{i p}(z)-b_{i p}\left(z^{\prime}\right)\right|\left|E_{p}\left(z^{\prime}\right)\right|+\sum\left|b_{i p}\left(z^{\prime}\right)\right|\left|E_{p}(z)-E_{p}\left(z^{\prime}\right)\right| \\
\leq \sum\left(\frac{K\left|z-z^{\prime}\right|}{d_{i}\left(t_{0}\right)}\left|E_{p}\left(z^{\prime}\right)\right|+K \frac{d_{j-1}\left(t_{0}\right)}{d_{i}\left(t_{0}\right)} C_{0} \frac{\left|z-z^{\prime}\right|}{d_{p}\left(t_{0}\right)}\right) \\
\quad \leq\left(1+2 C_{0}\right) K \frac{\left|z-z^{\prime}\right|}{d_{i}\left(t_{0}\right)}
\end{gathered}
$$

and the lemma is proved with $C_{1}=\left(1+2 C_{0}\right) K$.
Corollary 2. Let v be a Lipschitz vector field on \mathbb{R}_{t}^{m}, tangent to \mathfrak{T}. Then, for every $t_{0} \in \grave{T}^{j}$, v has a lift $\widehat{v}_{t_{0}}$, defined on $U_{\varepsilon_{0}}\left(t_{0}\right)$, Lipschitz and tangent to \mathfrak{Z}.

Proof. We write $v=\sum \lambda_{i} e_{i}$ in $B\left(t_{0}, \varepsilon d_{k}\left(t_{0}\right)\right) \cap T^{j}, \lambda_{i}=\left\langle v, e_{i}\right\rangle$. Let $\widehat{e}_{i}(t, y)=\widehat{e}_{i}(z)$ be the lifts of e_{i} constructed in Lemma 2.4. The field

$$
\widehat{v}_{t_{0}}(t, y)=\sum \lambda_{i}(t) \widehat{e}_{i}(t, y)
$$

is clearly a lift of v, tangent to \mathfrak{Z}. The estimates of Lemmas 2.2 and 2.4 imply that $\widehat{v}_{t_{0}}$ is Lipschitz.

To prove Proposition 3 we shall glue together the $\widehat{v}_{t_{0}}$'s by means of a partition of unity. The following lemma is similar to Lemma 3.1 in [3]; the latter treats only the case $\alpha=2$, but the proof requires almost no change.

Lemma 2.5. Let $K \subset \mathbb{R}^{n}$ be compact, $\alpha>0$. There exist numbers $M_{0}, M_{1}>0$ and a family of functions $\varphi_{i} \geq 0(i \in I)$ with the following properties:
1° the family of all supports $\operatorname{supp} \varphi_{i} \cap K=\varnothing$ for all i, and for every $x \in \mathbb{R}^{n} \backslash K$ there exist at most M_{0} functions φ_{i} such that $x \in \operatorname{supp} \varphi_{i}$,
$2^{\circ} \sum \varphi_{i}=1$ on $\mathbb{R}^{n} \backslash K$,
3° for every $i \in I, \operatorname{diam}\left(\operatorname{supp} \varphi_{i}\right) \leq \alpha d\left(K, \operatorname{supp} \varphi_{i}\right)$,
4° every φ_{i} is Lipschitz with a Lipschitz constant

$$
\frac{M_{1}}{d\left(K, \operatorname{supp} \varphi_{i}\right)}
$$

Proof (after [3]). For every $p=0,1,2, \ldots$ let C_{p} be the family of all cubes obtained by cutting \mathbb{R}^{n} by all hyperplanes $x_{i}=m / 2^{p}, m \in \mathbb{Z}$. The diameter of every cube in C_{p} is of course $\sqrt{n} / 2^{p}$. Let K_{0} be the family of all $S \in C_{0}$ such that

$$
d(S, K) \geq \frac{2 \sqrt{n}}{\alpha}
$$

Inductively, let K_{p} be the family of all $S \in C_{p}$ such that

$$
d(S, K) \geq \frac{\sqrt{n}}{2^{p-1} \alpha} \text { and } S \nsubseteq \bigcup_{j<p} K_{j}
$$

For every $S \in I$ we have, obviously, $d(S, K) \geq 2 \operatorname{diam}(S) / \alpha$.
Let x_{S} be the centre of S and let S^{\prime} be the cube centred at x_{S} with $\operatorname{diam}\left(S^{\prime}\right)=$ $\lambda \operatorname{diam}(S)$, where $\lambda=(2+\alpha) /(1+\alpha)$; then

$$
\operatorname{diam}\left(S^{\prime}\right) \leq \alpha d\left(S^{\prime}, K\right)
$$

In fact,

$$
\begin{aligned}
d\left(S^{\prime}, K\right) \geq d(S, K)-(\lambda-1) \operatorname{diam}(S) & \geq \frac{2}{\alpha} \operatorname{diam}(S)-(\lambda-1) \operatorname{diam}(S) \\
& =\left(\frac{2}{\alpha}-\lambda+1\right) \lambda^{-1} \operatorname{diam}\left(S^{\prime}\right)=\alpha^{-1} \operatorname{diam}\left(S^{\prime}\right)
\end{aligned}
$$

For every $S \in I$ let $f_{S}(x)=d(x, S), g_{S}(x)=d\left(x, \mathbb{R}^{n} \backslash S^{\prime}\right)$,

$$
\psi_{S}=\frac{g_{S}}{f_{S}+g_{S}}, \quad \varphi_{S}=\frac{\psi_{S}}{\sum_{T \in I} \psi_{T}}
$$

The family $\varphi_{S}, S \in I$, satisfies all the requirements of the lemma.
We shall now apply this lemma taking \mathbb{R}_{t}^{m} instead of \mathbb{R}^{n} and $Z^{j-1} \cap \mathbb{R}_{t}^{m}$ instead of K; for α we take ε.

Let $S \in I$ and let t_{S} be its centre (denoted before by x_{S}); let S^{\prime} be the cube defined in the proof of Lemma 2.5. We note that

$$
S^{\prime} \subset B\left(t_{S}, \varepsilon d_{k}\left(t_{S}\right)\right)
$$

In fact, to prove it one has to know that

$$
\operatorname{diam}\left(S^{\prime}\right)<\varepsilon d_{k}\left(t_{S}\right)=\varepsilon d\left(t_{S}, K\right)
$$

This follows at once from

$$
\operatorname{diam}\left(S^{\prime}\right)=\lambda \operatorname{diam}(S)<\frac{1}{2} \lambda \varepsilon d(S, K) \leq \varepsilon d\left(t_{S}, K\right)
$$

Now the required lifting \widehat{v} of v is given by

$$
\widehat{v}(t, y)=\sum_{S \in I} \varphi_{S}(t) \widehat{v}_{T_{S}}(t, y), \quad(t, y) \in U_{\varepsilon_{0}}
$$

It is obvious that \widehat{v} is a lifting of v and that \widehat{v} is tangent to \mathfrak{Z}. To prove that \widehat{v} is Lipschitz, it is enough to write

$$
\widehat{v}(t, y)=v(t)+\sum_{S \in I} \varphi_{S}(t)\left(\widehat{v}_{T_{S}}(t, y)-v(t)\right)
$$

and to recall that v, \widehat{v} are Lipschitz, $|\widehat{v}(t, y)-v(t)| \lesssim d_{j-1}\left(t_{S}\right)$ on $U_{\varepsilon_{0}}\left(t_{S}\right)$, and that the Lipschitz constant of φ_{S} is $\lesssim 1 / d_{j-1}\left(t_{S}\right)$ since

$$
d\left(\operatorname{supp} \varphi_{S}, K\right) \geq d\left(S^{\prime}, K\right) \geq(1-\varepsilon) d_{j-1}\left(t_{S}\right)
$$

Proposition 3 is thus proved.
A minor generalisation of it is a version for Lipschitz families of vector fields.
Proposition 3'. There exists an ε_{0} such that every Lipschitz family v_{μ} on \mathbb{R}_{t}^{m}, tangent to \mathfrak{T}, lifts to a Lipschitz family \widehat{v}_{μ} of vector fields on $U_{\varepsilon_{0}}\left(\dot{T}^{j}\right)$, tangent to \mathfrak{Z}.
3. Proof of Proposition 1. As mentioned on p. 181, we shall prove it only for one family $X \longrightarrow T$. Proposition 1^{\prime} can be proved along the same lines, using Proposition 3^{\prime} instead of Proposition 3.

We start with the given family

$$
\begin{array}{cc}
X \subset \mathbb{R}_{t}^{n} \times \mathbb{R}_{x}^{n} \\
\downarrow & \downarrow \pi \\
T \subset & \mathbb{R}_{t}^{m}
\end{array}
$$

$X, T \in \mathfrak{A}_{i}, i=1,3,4,5$. Let \mathbb{R}_{s}^{1} be a copy of \mathbb{R} and we introduce the family $C X \subset$ $\mathbb{R}_{t}^{m} \times \mathbb{R}_{s}^{1} \times \mathbb{R}_{x}^{n}$ of cones over X :

$$
C X=\left\{(t, s, s x): t \in T, s \in \mathbb{R}_{s}^{1}, x \in X_{t}\right\}
$$

We shall consider $C X$ as family over T :

$$
\begin{array}{ccc}
C X & \subset \mathbb{R}_{t}^{m} & \times \mathbb{R}_{s}^{1} \times \mathbb{R}_{x}^{n} \\
\downarrow & & \downarrow \pi \\
T & \subset & \mathbb{R}_{t}^{m}
\end{array}
$$

Thus the fibre $(C X)_{t}$ is the cone over the fibre $X_{t} . T$ imbeds in $C X$ in the obvious way: $t \longmapsto(t, 0,0)$; of course $(t, 0,0)$ is the vertex of the cone $(C X)_{t}$.

Also X imbeds in $C X:(t, x) \longmapsto(t, 1, x)$.
We put $y=(s, x), \mathbb{R}_{s}^{1} \times \mathbb{R}_{x}^{n}=\mathbb{R}_{y}^{N}$. Let B_{y}^{N} be the closed unit ball in \mathbb{R}_{y}^{N} centred at 0 . Let $\mathfrak{Z}=\left\{Z^{j}\right\}$ be a Lipschitz stratification of $\mathbb{R}_{t}^{m} \times B_{y}^{N}$ compatible with $C X$ with skeletons in \mathfrak{A}_{i}; as in the previous section, let \mathcal{T} be any Lipschitz stratification of \mathbb{R}_{t}^{m} compatible with T and all $\pi\left(Z^{j}\right)$.

Let v be any Lipschitz vector field on \mathbb{R}_{t}^{m}, tangent to \mathcal{T}. Fix a stratum $\stackrel{\circ}{T}^{j}$ of T. By Proposition 3, there exists an ε_{0} such that v lifts to a Lipschitz vector field \widehat{v}, tangent
to \mathfrak{Z}, defined on $U_{\varepsilon_{0}}\left(T^{j}\right)$. Put

$$
\begin{gather*}
d_{j-1}(t)=\varrho(t) \tag{3.1}\\
\widehat{v}(t, s, x)=(v(t), V(t, s, x)), \text { where } V(t, s, x) \in T_{(s, x)}\left(\mathbb{R}_{s}^{1} \times \mathbb{R}_{x}^{n}\right)
\end{gather*}
$$

for simplicity of notation, and denote the flow of \widehat{v} by

$$
\lambda \longmapsto\left(\chi_{\lambda}^{v}, \varphi_{\lambda}, h_{\lambda}\right),
$$

i.e. the image of a point (t, s, x) after time λ is

$$
\left(\chi_{\lambda}^{v}(t), \varphi_{\lambda}(t, s, x), h_{\lambda}(t, s, x)\right)
$$

We make three remarks.

1. Observe that for $|s|$ sufficiently small and all $t \in \stackrel{\circ}{T}^{j}, x \in X_{t}$ and $\lambda \in[0,1]$ (actually any finite interval would do, for the price of choosing an appropriate constant appearing implicitly in the signs \lesssim, \simeq below)

$$
\begin{equation*}
\left|\varphi_{\lambda}(t, s, x)\right| \simeq|s|, \quad\left|h_{\lambda}(t, s, x)\right| \lesssim|s| \tag{3.2}
\end{equation*}
$$

In fact, the flow of \widehat{v} is bi-Lipschitz and preserves the family of vertices of cones $(C X)_{t}$, i.e. $T \times\{0\} \times\{0\}$; clearly for $(s, x) \in(C X)_{t}$

$$
|(s, x)|=\text { distance of }(s, x) \text { to the vertex of }(C X)_{t} \simeq|s|
$$

2. Recall (1.1) that for $\lambda \in[0,1]$

$$
\begin{equation*}
w_{\lambda}(t, s, x)=\varphi_{\lambda}(t, s, x)-s, \quad u_{\lambda}(t, s, x)=h_{\lambda}(t, s, x)-x \tag{3.3}
\end{equation*}
$$

have Lipschitz constant $C \lambda$, where C depends only on \widehat{v}.
3. $\varrho\left(\chi_{\lambda}^{v}(t)\right) \simeq \varrho(t)$ for $t \in \stackrel{\circ}{T}^{j}, \lambda \in[0,1]$. In fact, if $t^{\prime} \in T^{j-1}$ is one of the closest points in $\stackrel{\circ}{T}^{j-1}$ to t, then $\varrho(t)=\left|t-t^{\prime}\right|$; since χ_{λ}^{v} preserves $T^{j-1}, \chi_{\lambda}^{v}\left(t^{\prime}\right) \in \dot{T}^{j}$ and

$$
\varrho\left(\chi_{\lambda}^{v}(t)\right) \leq\left|\chi_{\lambda}^{v}(t)-\chi_{\lambda}^{v}\left(t^{\prime}\right)\right| \lesssim\left|t-t^{\prime}\right|=\varrho(t)
$$

To prove the converse inequality it is enough to reverse the direction of "time" λ.
It follows that if ε_{1} is sufficiently small, then for all $t \in \stackrel{\circ}{T}^{j}$, all x such that $|x| \leq 1$, all s such that $|s|<\varepsilon_{1} \varrho(t)$, the trajectory of $(t, s, s x)$ under the flow of \widehat{v} stays in $U_{\varepsilon_{0}}\left(T^{j}\right)$ for time λ in $[0,1]$.

Now define a map \widetilde{H}_{λ} by the formula

$$
\widetilde{H}_{\lambda}\left(t_{0}, x\right)=\frac{h_{\lambda}\left(t_{0}, \varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right)}{\varphi_{\lambda}\left(t_{0}, \varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right)}
$$

where $t_{0} \in \stackrel{\circ}{T}^{j}, x \in X_{t_{0}}, \lambda \in[0,1]$.
Remark that \widetilde{H}_{λ} is well defined: $\varrho\left(t_{0}\right) \neq 0$ and, by our first remark above,

$$
\varphi_{\lambda}\left(t_{0}, \varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right) \simeq \varepsilon_{1} \varrho\left(t_{0}\right)
$$

so the denominator does not vanish. Obviously $\widetilde{H}_{\lambda}\left(t_{0}, x\right)$ is a continuous function of $\left(\lambda, t_{0}, x\right) \in[0,1] \times \stackrel{\circ}{T}^{j} \times X_{t_{0}}$; clearly $\widetilde{H}_{0}\left(t_{0}, x\right)=x$.

It is easy to see that $\widetilde{H}_{\lambda}\left(t_{0}, x\right) \in X_{\chi_{\lambda}^{v}\left(t_{0}\right)}$. In fact, $x \in X_{t_{0}}$, so

$$
\left(\varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right) \in(C X)_{t_{0}}
$$

and therefore

$$
\left(\varphi_{\lambda}\left(\varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right), h_{\lambda}\left(\varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right)\right) \in(C X)_{\chi_{\lambda}^{v}\left(t_{0}\right)}
$$

because the flow of \widehat{v} preserves $C X$. Thus, writing

$$
h_{\lambda}\left(\varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right)=\varphi_{\lambda}\left(\varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right) \widetilde{H}_{\lambda}\left(t_{0}, x\right)
$$

we get $\widetilde{H}_{\lambda}\left(t_{0}, x\right) \in X_{\chi_{\lambda}^{v}\left(t_{0}\right)}$.
We shall now prove that $\widetilde{H}_{\lambda}\left(t_{0}, x\right)-x$ is Lipschitz with respect to x with a constant $K \lambda$, where K is independent of $\left(\lambda, t_{0}\right)$. We may write

$$
\widetilde{H}_{\lambda}\left(t_{0}, x\right)=\frac{x+\frac{u_{\lambda}\left(t_{0}, \varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right)}{\varepsilon_{1} \varrho\left(t_{0}\right)}}{1+\frac{w_{\lambda}\left(t_{0}, \varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right)}{\varepsilon_{1} \varrho\left(t_{0}\right)}} .
$$

It is enough to prove that both

$$
\frac{u_{\lambda}\left(t_{0}, \varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right)}{\varepsilon_{1} \varrho\left(t_{0}\right)}, \quad \frac{w_{\lambda}\left(t_{0}, \varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right)}{\varepsilon_{1} \varrho\left(t_{0}\right)}
$$

are Lipschitz with respect to x with a constant $C \lambda$. So let $x, x^{\prime} \in X_{t_{0}}$; we have

$$
\begin{aligned}
& \left|\frac{u_{\lambda}\left(t_{0}, \varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x\right)}{\varepsilon_{1} \varrho\left(t_{0}\right)}-\frac{u_{\lambda}\left(t_{0}, \varepsilon_{1} \varrho\left(t_{0}\right), \varepsilon_{1} \varrho\left(t_{0}\right) x^{\prime}\right)}{\varepsilon_{1} \varrho\left(t_{0}\right)}\right| \\
& \quad \leq \frac{C \lambda \varepsilon_{1} \varrho\left(t_{0}\right)\left|x-x^{\prime}\right|}{\varepsilon_{1} \varrho\left(t_{0}\right)}=C \lambda\left|x-x^{\prime}\right|
\end{aligned}
$$

and similarly for $w_{\lambda} / \varepsilon_{1} \varrho\left(t_{0}\right)$.
Now it is easy to construct H_{λ} of Proposition 1. Recall that $H_{\lambda}\left(t_{0}, \cdot\right)$ should be defined on \mathbb{R}_{x}^{n} while $\widetilde{H}_{\lambda}\left(t_{0}, \cdot\right)$ is defined only on $X_{t_{0}}$. Choose an integer N so big that for all $t_{0} \in \overleftarrow{T}^{j}$ and $\lambda \in[0,1 / N]$, the Lipschitz constant with respect to x of $\widetilde{H}_{\lambda}\left(t_{0}, x\right)-x$ is smaller than $1 / 2 \sqrt{n}$. We may write, for $\lambda \in[0,1 / N]$,

$$
\widetilde{H}_{\lambda}\left(t_{0}, x\right)=x+\widetilde{G}_{\lambda}\left(t_{0}, x\right)
$$

where the Lipschitz constant of \widetilde{G}_{λ} with respect to x is smaller than $1 / 2 \sqrt{n}$. By Kirszbraun's theorem we can extend \widetilde{G}_{λ} to a function $G_{\lambda}\left(t_{0}, x\right)$, defined for all $x \in \mathbb{R}_{x}^{n}, t_{0} \in \dot{T}^{j}$, $\lambda \in[0,1 / N]$, continuous with respect to all variables and Lipschitz with respect to x with a Lipschitz constant $\frac{1}{2}$. Put

$$
H_{\lambda}^{*}\left(t_{0}, x\right)=x+G_{\lambda}\left(t_{0}, x\right), \quad x \in \mathbb{R}_{x}^{n}, \lambda \in[0,1 / N] ;
$$

then $H_{\lambda}^{*}: \mathbb{R}_{x}^{n} \longrightarrow \mathbb{R}_{x}^{n}$ is bi-Lipschitz.
Finally, for $\lambda \in[0,1]$ and any $x \in \mathbb{R}_{x}^{n}, t_{0} \in \stackrel{\circ}{T}^{j}$, we put for $i=1, \ldots, N, x=x_{0}$,

$$
t_{i+1}=\chi_{\lambda / N}^{v}\left(t_{i}\right), \quad x_{i+1}=H_{\lambda / N}^{*}\left(t_{i}, x_{i}\right)
$$

and

$$
H_{\lambda}\left(t_{0}, x\right)=x_{N}
$$

Proposition 1 is proved.

4. Proof of Proposition 2

4.1. Notation

1° If v_{1}, \ldots, v_{N} are Lipschitz vector fields on \mathbb{R}^{n}, we define the "joint flow" $\chi \frac{v}{\lambda}$ of $\underline{v}=\left(v_{1}, \ldots, v_{N}\right)$. Let $x_{0} \in \mathbb{R}^{n}$; we put, inductively,

$$
x_{i+1}=\chi_{1}^{v_{i}}\left(x_{i}\right), \quad i=1, \ldots, N
$$

For $\lambda \in[0, N]$ define

$$
\tilde{\chi}_{\lambda}^{v}\left(x_{0}\right)=\chi_{\lambda-i}^{v_{i+1}}\left(x_{i}\right)
$$

if $i \leq \lambda<i+1,0 \leq i \leq N-1$,

$$
\widetilde{\chi}_{N}^{v}\left(x_{0}\right)=x_{N} .
$$

Thus for $\lambda \in[i, i+1]$, the curve $\lambda \longmapsto \widetilde{\chi}_{\lambda}^{v}\left(x_{0}\right)$ is a trajectory of v_{i+1}. Finally we normalise λ :

$$
\chi \frac{v}{\lambda}\left(x_{0}\right)=\widetilde{\chi} \frac{v}{N \lambda}\left(x_{0}\right), \quad \lambda \in[0,1] .
$$

The map $\left(x_{0}, \lambda\right) \longmapsto \chi_{\lambda}^{\frac{v}{\lambda}}\left(x_{0}\right), \lambda \in[0,1]$, is the joint flow of \underline{v}.
2° Let $p, q \in \mathbb{R}^{n}$. We shall say that $\underline{v}=\left(v_{1}, \ldots, v_{N}\right)$ moves p to q if $q=\chi \frac{v}{1}(p)$. We shall say that \underline{v} moves p to q regularly if, moreover, the map

$$
\begin{equation*}
\lambda \longmapsto h \frac{v}{\lambda}(p), \quad \lambda \in[0,1], \tag{4.1}
\end{equation*}
$$

is a bi-Lipschitz homeomorphism onto its image, i.e. for some C

$$
\begin{equation*}
C^{-1}\left|\lambda_{1}-\lambda_{2}\right| \leq\left|h \frac{v}{\lambda_{1}}(p)-h \frac{v}{\lambda_{2}}\left(p_{2}\right)\right| \leq C\left|\lambda_{1}-\lambda_{2}\right| \tag{4.2}
\end{equation*}
$$

of course the last inequality is superfluous since it follows at once from the assumption that all v_{i} 's are Lipschitz.

If \underline{v} moves p to q regularly, then the length of the curve $\lambda \longmapsto \chi \frac{v}{\lambda}(p)$ is of order $|p-q|$.

We shall say that \underline{v} moves p to q in a controlled way if, for some constant K,

$$
\begin{equation*}
\left|v_{i}(x)\right| \leq K|p-q| \tag{4.3}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$ and $i=1, \ldots, N$; this condition is a tautology here, but will become significant in 3°.

We shall say that p can be moved to q (regularly, in a controlled way) if there exists a \underline{v} which moves p to q (regularly, in a controlled way).
3° We shall now replace points p, q in 2° by (subanalytic) curves in \mathbb{R}^{n}, Lipschitz vector fields by one-parameter Lipschitz families of vector fields and repeat definitions of 2° in a parametrised way.

Let $p(\mu), q(\mu)$ be curves, $\underline{v}_{\mu}=\left(v_{1, \mu}, \ldots, v_{N, \mu}\right)$, where $v_{i, \mu}$ are Lipschitz families of vector fields on \mathbb{R}^{n}.

We shall say that \underline{v}_{μ} moves $p(\mu)$ to $q(\mu)$ if, for all $\mu>0$,

$$
\chi_{1}^{\underline{v}_{\mu}}(p(\mu))=q(\mu) .
$$

\underline{v}_{μ} moves $p(\mu)$ to $q(\mu)$ regularly if, moreover, (4.2) holds for all $\mu>0$ with a constant C independent of μ :

$$
C^{-1}\left|\lambda_{1}-\lambda_{2}\right| \leq\left|\chi_{\lambda_{1}}^{\underline{v}_{\mu}}(p(\mu))-\chi_{\lambda_{2}}^{\underline{v}_{\mu}}(p(\mu))\right| \leq C\left|\lambda_{1}-\lambda_{2}\right| ;
$$

again the second inequality follows at once from the fact that the Lipschitz constants of every $v_{i, \mu}$ are independent of μ.
\underline{v}_{μ} moves $p(\mu)$ to $q(\mu)$ in a controlled way if (4.3) holds for all x and μ, with K independent of μ :

$$
\left|v_{i, \mu}(x)\right| \leq K|p(\mu)-q(\mu)|
$$

for all $x \in \mathbb{R}^{n}, \mu>0$. This condition implies that the lengths of the curves

$$
[0,1] \ni \lambda \longmapsto \chi_{\lambda}^{\underline{v}_{\mu}}(p(\mu))
$$

are of order of $|p(\mu)-q(\mu)|$.
4° In the introduction we defined the notion of Lipschitz homogeneity $(L H)$; we shall now define a related notion.

A subset $A \subset \mathbb{R}^{n}$ is $W L H$ (weakly Lipschitz homogeneous) if for every pair of curves $p(\mu), q(\mu)$ in A such that, for some C,

$$
\begin{equation*}
|p(\mu)-q(\mu)| \leq C d_{\partial A}(\{p(\mu), q(\mu)\}) \tag{4.4}
\end{equation*}
$$

$p(\mu)$ can be moved to $q(\mu)$, regularly, in a controlled way, by some $\underline{v}_{\mu}=\left(v_{1, \mu}, \ldots, v_{N, \mu}\right)$, such that all $v_{i, \mu}$ vanish on ∂A and every $v_{i, \mu}$ preserves A : $\chi_{\lambda}^{v_{i, \mu}}(A) \subset A$ for all $\lambda \in[0,1]$ and all $\mu>0$. Of course $d_{\partial A}(\{p(\mu), q(\mu)\})=\min \left(d_{\partial A}(p(\mu)), d_{\partial A}(q(\mu))\right)$.

Remark. If $p(\mu), q(\mu)$ are in A and $p(\mu)$ can be moved to $q(\mu)$ by a \underline{v}_{μ} such that all $v_{i, \mu}$ vanish on ∂A then $d_{\partial A}(p(\mu)) \simeq d_{\partial A}(q(\mu))$.

4.2. A homogeneity property

Proposition 4. Every set A in \mathfrak{A}_{i}, $i=1,3$, is a finite union of not necessarily disjoint WLH sets B_{j} in the same class \mathfrak{A}_{i}.

Remarks.
1° As follows from proofs below, the number N which appears in the definition of $W L H$ sets is bounded by n for every B_{j}.
2° We shall prove also that B_{j} are smooth (non-compact if $\operatorname{dim} B_{j}>0$) manifolds and $v_{i, \mu}$ are smooth on them.

Proof of Proposition 4. We use induction on the dimension of the set; the proposition is obvious for 0 -dimensional sets. Since every A is a finite union of L-regular sets, we can at once assume that A is L-regular of dimension m, i.e.

$$
A=\operatorname{graph}\left(F: A^{\prime} \longrightarrow \mathbb{R}^{k}\right),
$$

where $A^{\prime} \subset \mathbb{R}^{m}$ is open L-regular, $m+k=n, F$ is smooth and bounded on A^{\prime} together with its first derivatives. Let $\pi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be as usual the standard projection.

Let $Z^{\prime} \subset \overline{A^{\prime}}$ satisfy:

$$
\operatorname{dim} Z^{\prime}<m, \quad\left|D^{2} F\right| \lesssim 1 / d_{Z^{\prime}}, \quad Z^{\prime} \in \mathfrak{A}_{i}
$$

as in (1.2).
Decompose $A^{\prime} \backslash Z^{\prime}$ into a union of L-regular sets A_{β}^{\prime}; for each of them fix a projection $\pi_{\beta}^{\prime}: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m-1}$ such that A_{β}^{\prime} is a cylinder over $A_{\beta}^{\prime \prime}=\pi_{\beta}^{\prime}\left(A_{\beta}^{\prime}\right)$ as in (1.3).

Since A is the union of all $\left(\pi_{\beta}^{\prime} \pi\right)^{-1}\left(A_{\beta}^{\prime \prime}\right) \cap A$, it is enough to prove Proposition 4 for each of the latter sets instead of A. Take any one of them. To simplify notation, let us omit the index β; thus we are in the following situation: we have the standard projections

$$
\mathbb{R}^{n} \xrightarrow{\pi} \mathbb{R}^{m} \xrightarrow{\pi^{\prime}} \mathbb{R}^{m-1},
$$

L-regular sets $A, A^{\prime}, A^{\prime \prime}$, surjections

$$
A \xrightarrow{\pi} A^{\prime} \xrightarrow{\pi^{\prime}} A^{\prime \prime}
$$

and

$$
\begin{equation*}
A^{\prime}=\left\{\left(x^{\prime \prime}, x_{m}\right): x^{\prime \prime} \in A^{\prime \prime}, \varphi\left(x^{\prime \prime}\right)<x_{m}<\psi\left(x^{\prime \prime}\right)\right\} \tag{4.5}
\end{equation*}
$$

φ, ψ are smooth, bounded on $A^{\prime \prime}$ together with $|D \varphi|,|D \psi|$,

$$
A=\operatorname{graph}\left(F: A^{\prime} \longrightarrow \mathbb{R}^{k}\right)
$$

F smooth, bounded on A^{\prime} together with $|D F|$, and

$$
\begin{equation*}
\left|D^{2} F\right| \lesssim 1 / d_{\partial A^{\prime}} \tag{4.6}
\end{equation*}
$$

Let $Y_{1}^{\prime \prime} \subset \overline{A^{\prime \prime}}$ satisfy:

$$
\begin{equation*}
\left|D^{2} \varphi\right|,\left|D^{2} \psi\right| \lesssim 1 / d_{Y_{1}^{\prime \prime}}, \quad \operatorname{dim} Y_{1}^{\prime \prime}<m-1, \quad Y_{1}^{\prime \prime} \in \mathfrak{A}_{i} \tag{4.7}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left|D^{2}(\psi-\varphi)\right| \lesssim 1 / d_{Y_{1}^{\prime \prime}} \tag{4.8}
\end{equation*}
$$

Consider A^{\prime} as a family $A^{\prime} \xrightarrow{\pi^{\prime}} A^{\prime \prime}$ over $A^{\prime \prime}$ with one-dimensional fibres. Let \widehat{A}^{\prime} be the family obtained from A^{\prime} by replacing its fibres (i.e. the open intervals $\left(\varphi\left(x^{\prime \prime}\right), \psi\left(x^{\prime \prime}\right)\right)$) by their closures $\left[\varphi\left(x^{\prime \prime}\right), \psi\left(x^{\prime \prime}\right)\right]$. We apply Proposition 1^{\prime} to this family; thus we put $T=A^{\prime \prime}, X=\widehat{A}^{\prime}$. Let \mathcal{T} be a stratification of \mathbb{R}^{m-1} which satisfies the conclusion of this proposition and let $Y_{2}^{\prime \prime}$ be its skeleton of dimension $m-2$ (more precisely, union of all strata of dimension smaller than $m-1$). Let

$$
Y^{\prime \prime}=Y_{1}^{\prime \prime} \cup Y_{2}^{\prime \prime}
$$

The following observation, which is a special case of the conclusion of Proposition 1, is basic for the proof.

Let v be any Lipschitz vector field on \mathbb{R}^{m-1} vanishing on $Y^{\prime \prime}$; then there exists a family of maps

$$
H_{\lambda}:\left(A^{\prime \prime} \backslash Y^{\prime \prime}\right) \times \mathbb{R} \longrightarrow \mathbb{R}
$$

where \mathbb{R} is the x_{m}-axis, and this family satisfies all requirements of Proposition 1 ; in particular 3° reads:

$$
H_{\lambda}\left(x_{0}^{\prime \prime}, \cdot\right):\left[\varphi\left(x^{\prime \prime}\right), \psi\left(x^{\prime \prime}\right)\right] \longrightarrow\left[\varphi\left(\chi_{\lambda}^{v}\left(x_{0}^{\prime \prime}\right)\right), \psi\left(\chi_{\lambda}^{v}\left(x_{0}^{\prime \prime}\right)\right)\right]
$$

is bi-Lipschitz for $\lambda \in[0,1]$. It follows that for some C, independent of $x_{0}^{\prime \prime} \in A^{\prime \prime} \backslash Y^{\prime \prime}$ and $\lambda \in[0,1]$,

$$
\begin{equation*}
C^{-1}\left|(\psi-\varphi)\left(x_{0}^{\prime \prime}\right)\right| \leq\left|(\psi-\varphi)\left(\chi_{\lambda}^{v}\left(x_{0}^{\prime \prime}\right)\right)\right| \leq C\left|(\psi-\varphi)\left(x_{0}^{\prime \prime}\right)\right| \tag{4.9}
\end{equation*}
$$

intuitively: the intervals $\left[\varphi\left(x^{\prime \prime}\right), \psi\left(x^{\prime \prime}\right)\right],\left[\varphi\left(\chi_{\lambda}^{v}\left(x_{0}^{\prime \prime}\right)\right), \psi\left(\chi_{\lambda}^{v}\left(x_{0}^{\prime \prime}\right)\right)\right]$ are of comparable length.
By induction hypothesis $A^{\prime \prime} \backslash Y^{\prime \prime}$ is a finite union of $W L H$ sets:

$$
\begin{equation*}
A^{\prime \prime} \backslash Y^{\prime \prime}=\bigcup A_{\alpha}^{\prime \prime} \tag{4.10}
\end{equation*}
$$

The following lemma implies Proposition 4:
Lemma 4.1. Every $A_{\alpha}=\left(\pi^{\prime} \pi\right)^{-1}\left(A_{\alpha}^{\prime \prime}\right) \cap A$ is WLH.
In fact, $A=\bigcup A_{\alpha}^{\prime \prime} \cup\left[\pi^{-1}\left(Y^{\prime \prime}\right) \cap A\right]$ and $\pi^{-1}\left(Y^{\prime \prime}\right) \cap A$ is of dimension smaller than m.
To simplify notation, we omit α and write A instead of A_{α}, A^{\prime} instead of $\pi(A)$ and $A^{\prime \prime}$ instead of $A_{\alpha}^{\prime \prime}$.

Proof of Lemma 4.1. Let $p(\mu), q(\mu)$ be curves in A which satisfy (4.4); we have to prove that $p(\mu)$ is moved to $q(\mu)$ by a \underline{v}_{μ} such that all $v_{i, \mu}=0$ on ∂A and their flows preserve A.

Let $p^{\prime}(\mu), q^{\prime}(\mu)\left(\right.$ resp. $\left.p^{\prime \prime}(\mu), q^{\prime \prime}(\mu)\right)$ be the projections of $p(\mu), q(\mu)$ under $\pi\left(\right.$ resp. $\left.\pi^{\prime} \pi\right)$. Then, by (1.6), $p^{\prime \prime}(\mu), q^{\prime \prime}(\mu)$ satisfy (4.4) with $A^{\prime \prime}$ instead of A, and similarly $p^{\prime}(\mu), q^{\prime}(\mu)$.

Since $A^{\prime \prime}$ is $W L H$, there is a $\underline{v}_{\mu}^{\prime \prime}$ which moves $p^{\prime \prime}(\mu)$ in $q^{\prime \prime}(\mu), \chi_{\lambda}^{\underline{v}_{\mu}^{\prime \prime}}$ preserves $A^{\prime \prime}$ and $\underline{v}_{i, \mu}^{\prime \prime}$ vanish on $\partial A^{\prime \prime}$.

Step 1 . We shall prove that $p^{\prime}(\mu)$ can be moved to $q^{\prime}(\mu)$ by a $\underline{v}_{\mu}^{\prime}$ with similar properties. We shall do it as follows. First we shall find, for every $\mu>0$, a continuous piecewise C^{1} curve Γ_{μ}^{\prime} joining $p^{\prime}(\mu)$ to $q^{\prime}(\mu)$, and then we shall show that the tangent vector fields to C^{1} segments of Γ_{μ}^{\prime} extend to Lipschitz vector fields $v_{i, \mu}$, defined on \mathbb{R}^{n}, with desired properties.

Let us write

$$
p^{\prime}(\mu)=\left(p^{\prime \prime}(\mu), p_{m}(\mu)\right), \quad q^{\prime}(\mu)=\left(q^{\prime \prime}(\mu), q_{m}(\mu)\right)
$$

For every $\mu>0$ we have a curve

$$
\Gamma_{\mu}^{\prime \prime}(\lambda)=\chi_{\lambda}^{\frac{v_{\mu}^{\prime \prime}}{\mu}}\left(p^{\prime \prime}(\mu)\right)
$$

joining $p^{\prime \prime}(\mu)$ with $q^{\prime \prime}(\mu)$; it consists of segments $\Gamma_{i, \mu}^{\prime \prime}, i=1, \ldots, N$, which are integral curves of $\underline{v}_{i, \mu}^{\prime \prime}$; the total length of $\Gamma_{\mu}^{\prime \prime}$ is $\simeq\left|p^{\prime \prime}(\mu)-q^{\prime \prime}(\mu)\right|\left(\right.$ cf. Remark 1° after Proposition 4) and the mapping $\lambda \longmapsto \Gamma_{\mu}^{\prime \prime}(\lambda)$ is bi-Lipschitz homeomorphism onto its image.

It is convenient to write

$$
\Gamma_{\mu}^{\prime \prime}=p^{\prime \prime}(\mu ; \lambda)
$$

The curve Γ_{μ}^{\prime} joining $p^{\prime}(\mu)$ and $q^{\prime}(\mu)$ consists of $N+1 C^{1}$ segments $\Gamma_{i, \mu}^{\prime}, i=1, \ldots, N+1$. The first N segments are liftings of $\Gamma_{i, \mu}^{\prime \prime}$ constructed as follows.

We may write

$$
p_{m}(\mu)=\varphi\left(p^{\prime \prime}(\mu)\right)+\theta(\mu)(\psi-\varphi)\left(p^{\prime \prime}(\mu)\right)
$$

where $\theta(\mu)$ takes values in $[0,1]$.
We lift $\Gamma_{\mu}^{\prime \prime}$ to a curve $\widetilde{\Gamma}_{\mu}^{\prime}$ in \mathbb{R}^{m} by the formula

$$
\widetilde{\Gamma}_{\mu}^{\prime}: p^{\prime}=p^{\prime}(\mu ; \lambda)=\left(p^{\prime \prime}(\mu ; \lambda), \varphi\left(p^{\prime \prime}(\mu ; \lambda)\right)\right)+\theta(\mu)(\psi-\varphi)\left(p^{\prime \prime}(\mu ; \lambda)\right)
$$

Of course $\widetilde{\Gamma}_{\mu}^{\prime}$ is piecewise C^{1}; its C^{1} segments $\widetilde{\Gamma}_{i, \mu}^{\prime}$ project on $\Gamma_{i, \mu}^{\prime \prime}$.
The curve $\widetilde{\Gamma}_{\mu}^{\prime}$ does not join in general $p^{\prime}(\mu)$ with $q^{\prime}(\mu)$. Let $\widetilde{q}^{\prime}(\mu)$ be its end, i.e.

$$
\widetilde{q}^{\prime}(\mu)=p^{\prime}(\mu ; 1)
$$

This point projects under π^{\prime} into $q^{\prime \prime}(\mu)$; the point $q^{\prime}(\mu)$ has also the same property. So $\widetilde{q}^{\prime}(\mu)$ and $q^{\prime}(\mu)$ are joined by a segment parallel to the x_{m}-axis. We take this "vertical" segment for $\Gamma_{N+1, \mu}^{\prime}$; the curve Γ_{μ}^{\prime} is defined as the curve consisting of $\widetilde{\Gamma}_{\mu}^{\prime}$ and the added segment $\Gamma_{N+1, \mu}^{\prime}$.

The curve Γ_{μ}^{\prime} is supposed to be parametrised by the unit interval. So on $\widetilde{\Gamma}_{\mu}^{\prime}$ we change the parametrisation by λ above into the parametrisation by $\lambda^{*}=\frac{N}{N+1} \lambda$. The vertical interval $\Gamma_{N+1, \mu}^{\prime}$ is parametrised linearly by $\lambda^{*} \in\left[\frac{N}{N+1}, 1\right]$. Thus finally we have the curve $\Gamma_{\mu}^{\prime}\left(\lambda^{*}\right)$ joining $p^{\prime}(\mu)$ and $q^{\prime}(\mu)$ consisting of $N+1 C^{1}$ segments $\Gamma_{i, \mu}^{\prime}, i=1, \ldots, N+1$.

Now we shall show that the tangent vector field to every segment $\Gamma_{i, \mu}^{\prime}$ extends to a Lipschitz family of vector fields $v_{i, \mu}^{\prime}$, vanishing on ∂A^{\prime}.
I. We start with the segments $\Gamma_{i, \mu}^{\prime}, i \leq N$. Of course, for the existence of $v_{i, \mu}^{\prime}$ the reparametrisation $\lambda \longmapsto \lambda^{*}$ does not matter, and we shall use the parameter λ. The tangent vector field to $\Gamma_{i, \mu}^{\prime}$ is given (component-wise, as on p . 184) by

$$
\bar{t}_{\mu}(\lambda)=\left(v_{i, \mu}^{\prime}\left(p^{\prime \prime}(\mu ; \lambda)\right),(d \varphi+\theta(\mu) d(\psi-\varphi))\left(v_{i, \mu}^{\prime}\right)\left(p^{\prime \prime}(\mu ; \lambda)\right)\right)
$$

We claim that it is enough to prove the following two statements:
$1^{\circ} \bar{t}_{\mu}(\lambda)$ is Lipschitz on $\widetilde{\Gamma}_{i, \mu}^{\prime}$ (with a Lipschitz constant independent of μ) and continuous with respect to λ, μ;
$2^{\circ}\left|\bar{t}_{\mu}(\lambda)\right| \lesssim d_{\partial A^{\prime}}\left(\widetilde{\Gamma}_{i, \mu}^{\prime}(\lambda)\right)$, with a constant appearing implicitly in the sign \lesssim independent of λ, μ.

In fact, if 1° and 2° hold, we may define a Lipschitz family of vector fields on $\partial A^{\prime} \cup \widetilde{\Gamma}_{i, \mu}^{\prime}$ by putting 0 on ∂A^{\prime} and $\bar{t}_{\mu}(\lambda)$ on $\widetilde{\Gamma}_{i, \mu}^{\prime}$. By Kirszbraun's theorem it extends to a family $v_{i, \mu}^{\prime}$ we are looking for.
ad 1°. Continuity of $\bar{t}_{\mu}(\lambda)$ with respect to λ, μ is obvious. To prove the Lipschitz estimate it is enough to bound the derivative with respect to λ of the m-th component of $\bar{t}_{\mu}(\lambda)$ (recall, Remark 2° after Proposition 4, that $v_{i, \mu}^{\prime \prime}$ are smooth on $A^{\prime \prime}$).

Let $v_{j}^{\prime \prime}$ be the components of $v_{i, \mu}^{\prime \prime}$, i.e.

$$
v_{i, \mu}^{\prime \prime}=\sum_{j \leq m-1} v_{j}^{\prime \prime} \partial / \partial x_{j}
$$

We have

$$
\begin{aligned}
& \frac{d}{d \lambda}\left\{[d \varphi+\theta(\mu) d(\psi-\phi)]\left(v_{i, \mu}^{\prime \prime}\right)\left(p^{\prime \prime}(\mu ; \lambda)\right)\right\} \\
&=\sum_{j, k \leq m-1} \frac{\partial^{2}}{\partial x_{j} \partial x_{k}}[\varphi+\theta(\mu)(\psi-\phi)] v_{j}^{\prime \prime} v_{k}^{\prime \prime} \\
&+\sum_{j \leq m-1} \frac{\partial}{\partial x_{j}}[\varphi+\theta(\mu)(\psi-\phi)] \frac{d\left(v_{j}^{\prime \prime}\right)}{d \lambda}
\end{aligned}
$$

where, of course, the right-hand side is evaluated at $p^{\prime \prime}(\mu ; \lambda)$.
The second term on the right-hand side is bounded since $|D \varphi|,|D \psi|$ are bounded and $v_{i, \mu}^{\prime \prime}$ is Lipschitz.

To bound the first term we use (4.7), (4.8) and the estimates

$$
\left|v_{i, \mu}^{\prime \prime}\right| \lesssim d_{\partial A^{\prime \prime}} \leq d_{Y_{1}^{\prime \prime}} ;
$$

the first one follows from the fact that $v_{i, \mu}^{\prime \prime}$ are Lipschitz and vanish on $\partial A^{\prime \prime}$, and the second from the inclusion $Y_{1}^{\prime \prime} \subset \partial A^{\prime \prime}$ which follows from (4.10).
ad 2°. Since $|D \varphi|,|D(\psi-\varphi)|$ are bounded,

$$
\begin{equation*}
\left|\bar{t}_{\mu}(\lambda)\right| \lesssim\left|v_{i, \mu}^{\prime \prime}\left(p^{\prime \prime}(\mu ; \lambda)\right)\right| \tag{4.11}
\end{equation*}
$$

Since $p^{\prime \prime}(\mu)$ is moved by $\underline{v}_{\mu}^{\prime \prime}$ to $q^{\prime \prime}(\mu)$ regularly and in a controlled way,

$$
\left|v_{i, \mu}^{\prime \prime}\right| \lesssim\left|p^{\prime \prime}(\mu)-q^{\prime \prime}(\mu)\right| \leq\left|p^{\prime}(\mu)-\widetilde{q}^{\prime}(\mu)\right| .
$$

It is thus enough to show that for all $x^{\prime} \in \widetilde{\Gamma}_{i, \mu}^{\prime}, i \leq N$,

$$
\left|p^{\prime}(\mu)-\widetilde{q}^{\prime}(\mu)\right| \lesssim d_{\partial A^{\prime}}\left(x^{\prime}\right)
$$

This is true not only on the segment $\widetilde{\Gamma}_{i, \mu}^{\prime}$, but on the whole curve $\widetilde{\Gamma}_{\mu}^{\prime}$, i.e. for all points x^{\prime} of the form $p^{\prime}(\mu ; \lambda)$.

In fact,

$$
\operatorname{hordist}\left(p^{\prime}(\mu ; \lambda), \partial A^{\prime}\right)=d_{\partial A^{\prime \prime}}\left(p^{\prime \prime}(\mu ; \lambda)\right) \simeq d_{\partial A^{\prime \prime}}\left(p^{\prime \prime}(\mu)\right)
$$

since, for every μ, the curve $\lambda \longmapsto p^{\prime \prime}(\mu ; \lambda)$ consists of segments being integral curves of Lipschitz vector fields preserving $\partial A^{\prime \prime}$. Further,

$$
\begin{aligned}
\operatorname{vertdist}\left(p^{\prime}(\mu ; \lambda), \partial A^{\prime}\right)=\theta(\mu) \mid(\psi-\phi) & \left(p^{\prime \prime}(\mu ; \lambda)\right) \mid \\
& \simeq \theta(\mu)\left|(\psi-\phi)\left(p^{\prime \prime}(\mu)\right)\right| \simeq \operatorname{vertdist}\left(p^{\prime}(\mu), \partial A^{\prime}\right)
\end{aligned}
$$

as follows from (4.9) after taking for x_{0} the end-points of successive segments $\Gamma_{i, \mu}^{\prime \prime}$ and taking $v_{i, \mu}^{\prime \prime}$ for v. Thus for all $x^{\prime} \in \Gamma_{\mu}^{\prime}$

$$
d_{\partial A^{\prime}}\left(x^{\prime}\right) \simeq d_{\partial A^{\prime}}\left(p^{\prime}(\mu)\right) \geq d_{\partial A^{\prime \prime}}\left(p^{\prime \prime}(\mu)\right) \gtrsim\left|p^{\prime \prime}(\mu)-q^{\prime \prime}(\mu)\right| \simeq\left|p^{\prime}(\mu)-\widetilde{q}^{\prime}(\mu)\right|
$$

The case of segments $\widetilde{\Gamma}_{i, \mu}^{\prime}, i \leq N$, is finished.
II. Now we consider the last segment $\Gamma_{N+1, \mu}^{\prime}$. The tangent vector field to it is given by

$$
\begin{equation*}
(N+1)\left[q_{m}(\mu)-\widetilde{q}_{m}(\mu)\right] \partial / \partial x_{m} \tag{4.12}
\end{equation*}
$$

where, of course, $q_{m}(\mu), \widetilde{q}_{m}(\mu)$ are the m-coordinates of the points $q_{m}^{\prime}(\mu), \widetilde{q}_{m}^{\prime}(\mu)$. We claim that for the existence of $v_{N+1, \mu}^{\prime}$ it is enough to prove that

$$
\begin{equation*}
\left|q_{m}(\mu)-\widetilde{q}_{m}(\mu)\right| \lesssim d_{\partial A^{\prime}}\left(\left\{\widetilde{q}^{\prime}(\mu), q(\mu)\right\}\right) \tag{4.13}
\end{equation*}
$$

In fact, if (4.13) holds, then the family of vector fields equal to (4.12) on $\Gamma_{N+1, \mu}^{\prime}$ and 0 on ∂A^{\prime} is Lipschitz (and of course continuous with respect to μ), so, by Kirszbraun's theorem, it extends to a Lipschitz family of vector fields.

Formula (4.13) is proved as follows:

$$
\begin{aligned}
&\left|q_{m}(\mu)-\widetilde{q}_{m}(\mu)\right| \leq\left|q^{\prime}(\mu)-\widetilde{q}^{\prime}(\mu)\right| \leq\left|\widetilde{q}^{\prime}(\mu)-p^{\prime}(\mu)\right|+\left|p^{\prime}(\mu)-q^{\prime}(\mu)\right| \\
& \lesssim\left|q^{\prime \prime}(\mu)-p^{\prime \prime}(\mu)\right|+\left|p^{\prime}(\mu)-q^{\prime}(\mu)\right|
\end{aligned}
$$

the inequality \lesssim follows from the fact that the direction of tangents to the segments $\Gamma_{i, \mu}^{\prime}$, $i \leq N$, (i.e. $\left.\bar{t}_{\mu}(\lambda)\right)$ are bounded away from the vertical direction (i.e. the direction of the x_{m}-axis) according to (4.11). Thus

$$
\left|q_{m}(\mu)-\widetilde{q}_{m}(\mu)\right| \lesssim\left|p^{\prime}(\mu)-q^{\prime}(\mu)\right| \lesssim d_{\partial A^{\prime}}\left(\left\{p^{\prime}(\mu), q^{\prime}(\mu)\right\}\right)
$$

because, as remarked at the beginning of the proof, $p^{\prime}(\mu), q^{\prime}(\mu)$ satisfy (4.4). Finally,

$$
d_{\partial A^{\prime}}\left(\widetilde{q}^{\prime}(\mu)\right) \simeq d_{\partial A^{\prime}}\left(\widetilde{p}^{\prime}(\mu)\right)
$$

because $p^{\prime}(\mu)$ is moved to $\widetilde{q}^{\prime}(\mu)$ by a Lipschitz family of vector fields $\left(v_{1, \mu}^{\prime}, \ldots, v_{N, \mu}^{\prime}\right)$ which vanish on ∂A^{\prime}.

Step 1 of the proof of Lemma 4.1 is complete.
Step 2 . We shall prove that $p(\mu)$ can be moved to $q(\mu)$ in A regularly and in a controlled way. We lift the curve Γ_{μ}^{\prime} to A via π, i.e. we put

$$
\Gamma_{\mu}\left(\lambda^{*}\right)=\pi^{-1} \Gamma_{\mu}^{\prime}\left(\lambda^{*}\right), \quad \lambda^{*} \in[0,1]
$$

In other words,

$$
\Gamma_{\mu}\left(\lambda^{*}\right)=\left(\Gamma_{\mu}^{\prime}\left(\lambda^{*}\right), F \Gamma_{\mu}^{\prime}\left(\lambda^{*}\right)\right)
$$

in the splitting $\mathbb{R}^{n}=\mathbb{R}^{m} \times \mathbb{R}^{k}$.
Clearly Γ_{μ} starts at $p(\mu)$ and ends at $q(\mu)$.
Again, using Kirszbraun's theorem, it is enough to prove that the tangent vector field to $\Gamma_{\mu}\left(\lambda^{*}\right)$, i.e.

$$
\frac{d}{d \lambda^{*}} \Gamma_{\mu}\left(\lambda^{*}\right)
$$

is Lipschitz on Γ_{μ} and its length is bounded, up to a multiplicative constant, by $d_{\partial A}$.
The latter statement is almost immediate: since $|D F|$ is bounded, we get, by Step 1 ,

$$
\left|\frac{d}{d \lambda^{*}} \Gamma_{\mu}\left(\lambda^{*}\right)\right| \lesssim\left|\frac{d}{d \lambda^{*}} \Gamma_{\mu}^{\prime}\left(\lambda^{*}\right)\right| \lesssim d_{\partial A^{\prime}}\left(\Gamma_{\mu}^{\prime}\left(\lambda^{*}\right)\right) \lesssim d_{\partial A}\left(\Gamma_{\mu}\left(\lambda^{*}\right)\right)
$$

To prove the first statement we shall show that

$$
\frac{d^{2}}{d \lambda^{*}} \Gamma_{i, \mu}\left(\lambda^{*}\right)
$$

is bounded on every segment $\Gamma_{i, \mu}, i \leq N+1$. Of course it is enough to prove that $\frac{d^{2} F}{d \lambda^{* 2}}$, or, in a more exact notation,

$$
\frac{d^{2}}{d \lambda^{*^{2}}} F\left(\Gamma_{\mu}^{\prime}\left(\lambda^{*}\right)\right)
$$

is bounded.
Take any of these segments, $\Gamma_{i, \mu}$, and for simplicity of notation put

$$
v_{i, \mu}^{\prime}=v^{\prime}=\sum_{k \leq m} v_{k}^{\prime} \partial / \partial x_{k}
$$

Denote by $\partial_{w} \varphi$ the directional derivative of a function φ, i.e. $\sum \frac{\partial \varphi}{\partial x_{k}} w_{k}$, and by $\nabla_{w} z$ the covariant derivative in the flat (Euclidean) connection. Then we have

$$
\frac{d^{2}}{d \lambda^{*^{2}}} F=\partial_{v^{\prime}} \partial_{v^{\prime}} F=\sum_{k \leq m} \frac{\partial}{\partial x_{k}}\left(\sum_{l \leq m} \frac{\partial F}{\partial x_{l}} v_{l}^{\prime}\right) v_{k}^{\prime}=\partial_{\nabla_{v^{\prime}} v^{\prime}} F+\sum_{k, l} \frac{\partial^{2} F}{\partial x_{k} \partial x_{l}} v_{k}^{\prime} v_{l}^{\prime}
$$

The first term of the last expression is bounded because $|D F|$ is bounded and $\nabla_{v^{\prime}} v^{\prime}$ is bounded because v^{\prime} is Lipschitz and $\left|v^{\prime}\right|$ is bounded. The second term is bounded because of (3.6) and $\left|v^{\prime}\right| \lesssim d_{\partial A^{\prime}}$.

The proof of Proposition 4 is complete.
4.3. Proof of Proposition 2. Let $X_{s} \subset \mathbb{R}^{n}$ be a given finite family of sets in \mathfrak{A}_{i}, $i=1,3$. By induction with respect to d we shall prove the existence of a Lipschitz stratification $\mathfrak{Z}=\left\{Z^{j}\right\}$ of \mathbb{R}^{n}, compatible with all X_{s}, with skeletons Z^{j} in \mathfrak{A}_{i}, such that every stratum $Z^{j}, j<d$, is a finite union of LHrel \mathfrak{Z} sets in \mathfrak{A}_{i}.

The case $d=1$ is obvious.
For the induction step we start with any stratification $\mathfrak{S}=\left\{S^{j}\right\}$, compatible with all X_{s} 's, $S^{j} \in \mathfrak{A}_{i}$. By Proposition $4, \stackrel{\circ}{S}^{d}$ is a finite union of $W L H$ sets:

$$
\stackrel{\circ}{S}^{d}=\bigcup M_{r}
$$

Let

$$
Y=\bigcup \partial M_{r}
$$

Let $\mathfrak{Z}=\left\{Z^{j}\right\}$ be any stratification of \mathbb{R}^{n} compatible with all X_{s} 's and Y, such that every stratum $\check{Z}^{k}, k<d$, is a union of $W L H$ sets:

$$
\grave{Z}^{k}=\bigcup_{\beta \in B_{k}} A_{\beta}^{k}, \quad A_{\beta}^{k} \in \mathfrak{A}_{i}, \quad A_{\beta}^{k} \text { is LHrel } \mathfrak{Z}, \quad B_{k} \text { finite. }
$$

We shall prove that \check{Z}^{d} also is a union of LHrel \mathfrak{Z}-sets, and this will end the proof.
For every sequence $\bar{\beta}=(\beta(1), \ldots, \beta(d-1))$ such that $\beta(i) \in B_{i}$ for all i, put

$$
Z_{r \bar{\beta}}^{d}=\left\{x \in M_{r}: d_{k}(x)=d\left(x, \bar{A}_{\beta(k)}^{k}\right) \text { for all } k<d\right\}
$$

where, as usual, $d_{k}(x)=d\left(x, Z^{k}\right)$. Since \check{Z}^{d} is the union of all $Z_{r \bar{\beta}}^{d}$'s, it is enough to prove the following lemma:

Lemma 4.2. Every $Z_{r \bar{\beta}}^{d}$ is LHrel \mathfrak{Z}.

Proof. Let $p(\mu), q(\mu)$ be two curves in $Z_{r \bar{\beta}}^{d}$ having distances to skeletons of \mathfrak{Z} of dimension less than d of the same order. Let l be the smallest integer, naturally smaller than d, such that

$$
\operatorname{ord} d_{l}(p(\mu))=\operatorname{ord} d_{d-1}(p(\mu)) ;
$$

in other words,

$$
\begin{gathered}
d_{l}(p(\mu)) \simeq d_{d-1}(p(\mu)), \\
d_{l-1}(p(\mu)) \gg d_{l}(p(\mu))
\end{gathered}
$$

(i.e. $d_{l}(p(\mu)) / d_{l-1}(p(\mu)) \longrightarrow 0$ as $\mu \longrightarrow 0$). By the hypothesis on orders of distances of $p(\mu), q(\mu)$ to skeletons, l is also the smallest integer for which

$$
\operatorname{ord} d_{l}(q(\mu))=\operatorname{ord} d_{d-1}(q(\mu))
$$

Let us choose curves $p^{*}(\mu), q^{*}(\mu)$ in $A_{\beta(l)}^{l}$ such that

$$
\begin{aligned}
& \left|p(\mu)-p^{*}(\mu)\right| \leq 2 d\left(p(\mu), \bar{A}_{\beta(l)}^{l}\right) \\
& \left|q(\mu)-q^{*}(\mu)\right| \leq 2 d\left(q(\mu), \bar{A}_{\beta(l)}^{l}\right)
\end{aligned}
$$

Remark that for all $k<l$

$$
\begin{align*}
d_{k}\left(p^{*}(\mu)\right) & \simeq d_{k}(p(\mu)) \tag{4.14}\\
d_{k}\left(q^{*}(\mu)\right) & \simeq d_{k}(q(\mu)) \tag{4.15}
\end{align*}
$$

because

$$
d_{k}(p(\mu))-\left|p(\mu)-p^{*}(\mu)\right| \leq d_{k}\left(p^{*}(\mu)\right) \leq d_{k}(p(\mu))+\left|p(\mu)-p^{*}(\mu)\right|
$$

By hypothesis, there exists a $\underline{v}=\left(v_{1, \mu}, \ldots, v_{N, \mu}\right)$ which moves $p^{*}(\mu)$ to $q^{*}(\mu)$, and all $v_{i, \mu}$ are Lipschitz families of vector fields, tangent to \mathfrak{Z}.

Put

$$
\widetilde{q}(\mu)=\chi_{1}^{\underline{v}_{\mu}}(p(\mu))
$$

Observe that $\widetilde{q}(\mu) \in M_{r}$ for $\mu>0$; in fact, $p(\mu) \in M_{r}$ and the sets M_{r} are invariant under the flow of every $v_{i, \mu}$ since $M_{r} \subset \grave{Z}^{d}$ and $\partial M_{r} \subset Z^{d-1}$.

For all $k<d$,

$$
d_{k}(\widetilde{q}(\mu)) \simeq d_{k}(p(\mu)) \simeq d_{k}(q(\mu))
$$

this is proved as (4.14) and (4.15).
We claim that

$$
|\widetilde{q}(\mu)-q(\mu)| \lesssim d\left(\{q(\mu), \widetilde{q}(\mu)\}, Z^{d-1}\right) \simeq d\left(q(\mu), Z^{d-1}\right)
$$

In fact,

$$
\begin{aligned}
& |\widetilde{q}(\mu)-q(\mu)| \leq\left|\widetilde{q}(\mu)-q^{*}(\mu)\right|+\left|q^{*}(\mu)-q(\mu)\right| \\
& =\left|\chi_{1}^{\underline{v}_{\mu}}(p(\mu))-\chi_{1}^{\underline{v}_{\mu}}\left(p^{*}(\mu)\right)\right|+\left|q^{*}(\mu)-q(\mu)\right| \\
& \quad \lesssim\left|p(\mu)-p^{*}(\mu)\right|+\left|q^{*}(\mu)-q(\mu)\right| \\
& \quad \leq 2 d\left(p(\mu), Z^{d-1}\right)+2 d\left(q(\mu), Z^{d-1}\right) \simeq d\left(q(\mu), Z^{d-1}\right)
\end{aligned}
$$

Since $\widetilde{q}(\mu), q(\mu)$ lie in the same M_{r}, it follows that

$$
|\widetilde{q}(\mu)-q(\mu)| \lesssim d\left(q(\mu), \partial M_{r}\right)
$$

By hypothesis, M_{r} is $W L H$, so $\widetilde{q}(\mu)$ can be moved to $q(\mu)$ by a $\underline{w}=\left(w_{1, \mu}, \ldots, w_{N_{1}, \mu}\right)$. $w_{i, \mu}$ vanish on ∂M_{r}, so we may ask that they are defined on $\partial M_{r} \cup Z^{d-1}$ and take the value 0 on $Z^{d-1} \backslash M_{r}$. Now we extend every $w_{i, \mu}$ to a Lipschitz family, tangent to \mathfrak{Z}.

Now the $N+N_{1}$ vector fields $\left(\underline{v}_{\mu}, \underline{w}_{\mu}\right)=\left(v_{1, \mu}, \ldots, v_{N, \mu}, w_{1, \mu}, \ldots, w_{N_{1}, \mu}\right)$, after being multiplied by suitable numbers, move $p(\mu)$ to $q(\mu)$; this "normalisation" is similar to the introduction of the parameter λ^{*} on p. 205, so we omit the details.

Proposition 2 is thus proved.

References

[1] H. Federer, Geometric Measure Theory, Springer, New York, 1969.
[2] K. Kurdyka, W. Pawłucki, A subanalytic version of Whitney's extension theorem, Studia Math. 124 (1997), 269-280.
[3] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, London, 1967.
[4] T. Mostowski, Lipschitz Equisingularity, Dissertationes Math. (Rozprawy Mat.) 243, PWN, Warszawa, 1985.
[5] A. Parusiński, Lipschitz properties of semi-analytic sets, Ann. Inst. Fourier (Grenoble) 38 (1988), 189-213.
[6] A. Parusiński, Lipschitz stratification, in: Global Analysis in Modern Mathematics (Orono, 1991; Waltham, 1992), K. Uhlenbeck (ed.), Publish or Perish, Houston, 1993, 73-89.
[7] A. Parusiński, Lipschitz stratifications of subanalytic sets, Ann. Sci. École Norm. Sup. (4) 27 (1994), 661-696.
[8] A. Parusiński, Lipschitz properties of semi-analytic sets, Appendix, Preprint 101, Université d'Angers, mars 2000.

[^0]: 2000 Mathematics Subject Classification: Primary: 32B20, 32B25; Secondary: 14P10, 14P15. Supported partially by KBN grant 2 PO 3A 02017.
 The paper is in final form and no version of it will be published elsewhere.

