
CALCULUS OF VARIATIONS AND PDEs
BANACH CENTER PUBLICATIONS, VOLUME 101

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2014

SOME NEW PROBLEMS IN SPECTRAL OPTIMIZATION

GIUSEPPE BUTTAZZO
Dipartimento di Matematica, Università di Pisa
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Abstract. We present some new problems in spectral optimization. The first one consists in
determining the best domain for the Dirichlet energy (or for the first eigenvalue) of the metric
Laplacian, and we consider in particular Riemannian or Finsler manifolds, Carnot-Carathéodory
spaces, Gaussian spaces. The second one deals with the optimal shape of a graph when the
minimization cost is of spectral type. The third one is the optimization problem for a Schrödinger
potential in suitable classes.

1. Introduction. Spectral optimization theory goes back to 1877, when Lord Rayleigh
conjectured, in his book The Theory of Sound [22], that among all drums of prescribed
area the circular one had the lowest sound. Here are his precise words:

If the area of a membrane be given, there must evidently be some form of boundary
for which the pitch (of the principal tone) is the gravest possible, and this form can be no
other than the circle. . .

Since then, many other optimization problems involving the spectrum of the Laplace
operator have been considered (see for instance the survey paper [6] and the books [4], [17],
[19]), showing the existence of optimal shapes and their qualitative properties together
with the corresponding necessary conditions of optimality. However, in spite of the strong
development of the theory, many problems still remain open and many conjectures are
still waiting for a proof.
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In this paper we present some different directions of research; our goal is to consider
spectral optimization issues for the following three classes of problems.

• Optimization with respect to the domain for functionals like the Dirichlet energy
or the first Dirichlet eigenvalue related to the metric Laplacian. This operator is
in general non-linear and acts on functions defined on a general metric space; of
particular interest are the cases when the metric space consists in a Riemannian or
Finsler manifold, in a Carnot–Carathéodory space, in a Gaussian space.

• Optimization of the shape of a graph with respect to the Dirichlet energy or to the
first eigenvalue. In this case some explicit examples can be provided, together with
some general necessary conditions of optimality.

• Optimization of the potential V (x) in a Schrödinger equation of the form −∆u +
V (x)u = f(x). The potential will be submitted to some suitable integral constraints
and an existence result will be provided for several cost functionals.

The three cases above will be treated in Sections 2, 3 and 4, respectively. In all the
cases Dirichlet boundary conditions will be considered; other kinds of boundary condi-
tions would require completely different mathematical tools that in many cases are only
partially developed. Our main concern is addressed to the existence of optimal solutions;
other very interesting questions, like for instance the regularity of optimal solutions, have
at present only limited and partial answers. In all the three cases, the existence of an
optimal domain is obtained through the direct methods of the calculus of variations, that
require two main ingredients: compactness of the space of competitors and semi-continuity
of the cost functional. In the literature (see for instance [4]) some useful topologies on
the family of admissible domains have been introduced, in order to provide the necessary
compactness properties. The semi-continuity of the cost functional is a more involved
issue and requires some careful analysis.

The purpose of the present paper is not to provide new proofs or new results but
mainly to illustrate the field of spectral optimization problems through some examples
and to discuss some crucial issues by proposing some interesting problems that, to the
best of our knowledge, are still open.

In Section 2 we consider the general framework of metric spaces on which the metric
Laplacian operator can be defined, together with the related energy and spectral eigen-
values. We recall a general existence result of an optimal domain, obtained in [10], and
we show some related examples concerning Riemannian or Finsler manifolds, Carnot–
Carathéodory spaces, Gaussian spaces.

In Section 3 we consider the case of spectral optimization problems for graphs, and
in some cases we are able to provide explicitly the optimal shapes. We consider a natural
convergence on the set of metric graphs in terms of the connectivity matrices of the
graphs and the lengths of the edges. It is not hard to check that the spectral functionals
we consider are continuous with respect to this convergence. On the other hand, the family
of admissible graphs endowed with such a convergence is not even complete, which gives
raise to some counterexamples to the existence. Thus, we investigate the problem in a
wider, more appropriate class of competitors.
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In the last Section 4 we consider potentials for Schrödinger equations and the related
optimization problems. In this case the admissible set of choices is just L1

+(Ω), the set
of positive integrable functions on Ω, and the constraints are given by some integral
inequalities. In this case, both the compactness of the optimizing sequences and the
semi-continuity of the cost functional are quite involved questions, and the existence of
optimal potentials is only known in some particular cases, leaving several interesting
problems still open.

2. Spectral optimization in metric spaces. In this section we consider spectral
optimization problems in the class of subsets of some ambient metric space (X, d) endowed
with a finite Borel measure m. We do not assume any compactness or boundedness of X
with respect to the distance d. Our main assumption is the compactness of the inclusion
L2(m) ⊂ H1(X,m), where H1(X,m) is a Sobolev space of functions on (X,m), which
we define in each of the cases we consider.

2.1. Metric measure spaces. In [10] we consider a separable metric space (X, d) en-
dowed with a finite Borel measure m and a Riesz subspace H of L2(m) satisfying the
Stone property, i.e.

if u ∈ H, then u ∧ 1 ∈ H and |u| ∈ H.

Let D : H → L2
+(m) be a convex, 1-homogeneous map which is also local, i.e.

D(u ∨ v) = Du · I{u>v} +Dv · I{u≤v}, ∀u, v ∈ H.

We consider H endowed with the norm

‖u‖H =
(
‖u‖2L2 + ‖Du‖2L2

)1/2
.

Moreover, we assume that

(H1) the inclusion i : H ↪→ L2 is compact,
(H2) the norm of the gradient is lower semi-continuous with respect to the L2 conver-

gence, i.e. for each sequence un bounded in H and convergent in the strong L2

norm to a function u ∈ L2(m), we have that u ∈ H and∫
X

|Du|2 dm ≤ lim inf
n→∞

∫
X

|Dun|2 dm,

(H3) the linear subspace H ∩ C(X), where C(X) denotes the set of real continuous
functions on X, is dense in H with respect to the norm ‖ · ‖H .

An interesting example of subspace H with the properties above is given by the
Sobolev space H1(X,m) in the sense of Cheeger [11].

For any set Ω ⊂ X, we define the space

H0(Ω) =
{
u ∈ H

∣∣ cap({u 6= 0} \ Ω) = 0
}
,

where the capacity cap(E) of a generic set E ⊂ X, is defined by

cap(E) = inf
{
‖u‖2H

∣∣ u ∈ H, u ≥ 0 on X, u ≥ 1 in a neighbourhood of E
}
.
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Definition 2.1. For each Borel set Ω and each k ≥ 1, we define

λk(Ω) = inf
K⊂H0(Ω)

sup
{∫

Ω
|Du|2 dm

∣∣∣ u ∈ K, ∫
Ω
u2 dm = 1

}
, (2.1)

where the infimum is over all k-dimensional linear subspaces K of H0(Ω).
Definition 2.2. For each Borel set Ω and each f ∈ L2(Ω,m), the Dirichlet energy of Ω
is defined as

Ef (Ω) = inf
{1

2

∫
Ω
|Du|2 dm+ 1

2

∫
Ω
u2 dm−

∫
Ω
uf dm

∣∣ u ∈ H0(Ω)
}
. (2.2)

Remark 2.3. In the cases when we have the inequality ‖u‖L2(m) ≤ C‖Du‖L2(m), for
each u ∈ H, it is more convenient to define the energy Ef (Ω) as

Ef (Ω) = inf
{1

2

∫
Ω
|Du|2 dm−

∫
Ω
uf dm

∣∣ u ∈ H0(Ω)
}
. (2.3)

Also in this case the statement of the following theorem remains valid.
Theorem 2.4. Suppose that (X, d) is a separable metric space with a finite Borel mea-
sure m and suppose that H ⊂ L2(X,m) and D : H → L2(X,m) are as above. Then the
shape optimization problems

min
{
Ef (Ω)

∣∣ Ω ⊂ X, m(Ω) ≤ 1
}
,

and
min

{
λk(Ω)

∣∣ Ω ⊂ X, m(Ω) ≤ 1
}
,

have solutions which are quasi-open sets, i.e. level sets of the form {u > 0} for some
function u ∈ H.
Remark 2.5. The existence result of Theorem 2.4 holds, in the same form, for several
other shape functionals F (Ω); the only required assumptions (see [10]) are:

— F is monotone decreasing with respect to the inclusion, that is
F (Ω1) ≤ F (Ω2) whenever Ω2 ⊂ Ω1;

— F is γ-lower semi-continuous, that is
F (Ω) ≤ lim inf

n→∞
F (Ωn) whenever wΩn

→ wΩ in L2(X,m)

where wΩ is the solution of the minimization problem (2.2) with f = 1.
For instance, the following cases belong to the class above.
Integral functionals. Given a right-hand side f we consider the PDE formally written as

−∆u+ u = f in Ω, u ∈ H0(Ω),
whose precise meaning is given through the minimization problem (2.2), and which pro-
vides, for every admissible domain Ω, a unique solution uΩ that we assume extended by
zero outside of Ω. The cost F (Ω) = J(uΩ) is then obtained by taking

J(u) =
∫

X

j(x, u(x)) dm

for a suitable integrand j. If f ≥ 0 and j(x, ·) is decreasing, this cost verifies the conditions
above.
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Spectral optimization. For every admissible domain Ω we consider the eigenvalues λk(Ω)
of Definition 2.1 and the spectrum λ(Ω) = (λk(Ω))k. Taking the cost

F (Ω) = Φ(λ(Ω))

we have that the assumptions above are satisfied as soon as the function Φ : [0,+∞]N →
[0,+∞] is lower semicontinuous and increasing, in the sense that

λh
k → λk ∀k ∈ N ⇒ Φ(λ) ≤ lim inf

h→∞
Φ(λh) ,

λk ≤ µk ∀k ∈ N ⇒ Φ(λ) ≤ Φ(µ) .

2.2. Finsler manifolds. Consider a differentiable manifold M of dimension d endowed
with a Finsler structure, i.e. with a map F : TM → [0,+∞) which has the following
properties:

1. F is smooth on TM \ {0};
2. F is 1-homogeneous, i.e. F (x, λX) = |λ|F (x,X), ∀λ ∈ R;
3. F is strictly convex, i.e. the Hessian matrix gij(x) = 1

2
∂2

∂Xi∂Xj [F 2](x,X) is positive
definite for each (x,X) ∈ TM .

With these properties, the function F (x, ·) : TxM → [0,+∞) is a norm on the tangent
space TxM , for each x ∈ M . We define the gradient of a function f ∈ C∞(M) as
Df(x) := F ∗(x, dfx), where dfx stays for the differential of f at the point x ∈ M and
F ∗(x, ·) : T ∗xM → R is the co-Finsler metric, defined for every ξ ∈ T ∗xM as

F ∗(x, ξ) = sup
y∈TxM

ξ(y)
F (x, y) .

The Finsler manifold (M,F ) is a metric space with the distance

dF (x, y) = inf
{∫ 1

0
F (γ(t), γ̇(t)) dt

∣∣∣ γ : [0, 1]→M, γ(0) = x, γ(1) = y

}
.

For any finite Borel measure m on M , we define H := H1
0 (M,F,m) as the closure of the

set of differentiable functions with compact support C∞c (M), with respect to the norm

‖u‖ :=
√
‖u‖2L2(m) + ‖Du‖2L2(m) .

The functionals λk and Ef are defined as in (2.1) and (2.2), on the class of quasi-open
sets, related to the H1(M,F,m) capacity. Various choices for the measure m are avail-
able, according to the nature of the Finsler manifold M . For example, if M is an open
subset of Rd, it is natural to consider the Lebesgue measure m = Ld. In this case,
the non-linear operator associated to the functional

∫
F ∗(x, dux)2 dx is called Finsler

Laplacian. On the other hand, for a generic manifold M of dimension d, a canonical
choice for m is the Busemann–Hausdorff measure mF , i.e. the d-dimensional Hausdorff
measure with respect to the distance dF . The non-linear operator associated to the func-
tional

∫
F ∗(x, dux)2 dmF (x) is the generalization of the Laplace–Beltrami operator and

its eigenvalues are defined as in (2.1). In view of Theorem 2.4, we have the following
existence results.
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Theorem 2.6. Given a compact Finsler manifold (M,F ) with Busemann–Hausdorff
measure mF , the following problems have solutions:

min
{
λk(Ω)

∣∣ mF (Ω) ≤ c, Ω quasi-open, Ω ⊂M
}
,

min
{
Ef (Ω)

∣∣ mF (Ω) ≤ c, Ω quasi-open, Ω ⊂M
}
,

for any k ∈ N, 0 < c ≤ mF (M) and f ∈ L2(M,mF ).

Theorem 2.7. Consider an open set M ⊂ Rd endowed with a Finsler structure F and
the Lebesgue measure Ld. If the diameter of M with respect to the Finsler metric dF is
finite, then the following problems have solutions:

min
{
λk(Ω)

∣∣ |Ω| ≤ c, Ω quasi-open, Ω ⊂M
}
,

min
{
Ef (Ω)

∣∣ |Ω| ≤ c, Ω quasi-open, Ω ⊂M
}
,

where k ∈ N, |Ω| denotes the Lebesgue measure of Ω, c is a constant such that 0 < c ≤ |M |
and f ∈ L2(M).

Remark 2.8. In [14] it was shown that if the Finsler metric F (x, ·) on Rd does not
depend on x ∈ Rd, then the solution of the optimization problem

min
{
λ1(Ω)

∣∣ |Ω| ≤ c, Ω quasi-open, Ω ⊂ Rd
}

is the ball of measure c. It is clear that it is also the case when in the hypotheses of
Theorem 2.7 one considers c > 0 such that there is a ball of measure c contained in M .
On the other hand, if c is big enough the solution is not, in general, the geodesic ball
in M (see [18]). If the Finsler metric is not constant in x, the solution will not be a ball
even for small c. In this case it is natural to ask whether the optimal set gets close to
the geodesic ball as c → 0. In [21] this problem was discussed in the case when M is a
Riemannian manifold. The same question for a generic Finsler manifold is still open.

2.3. Gaussian spaces. Consider the Euclidean space R2 endowed with the Gaussian
measure

m = (2π)−1 exp
(
−x

2
1 + x2

2
2

)
dx1 dx2.

Note that an orthonormal basis on L2(m) is given by the functions Hn,k(x1, x2) :=
Hn(x1)Hk(x2), n, k ∈ N, where Hn : R→ R are the Hermite polynomials

Hn(x) := (−1)n

√
n!

exp(x2/2) ∂n
x

(
exp(−x2/2)

)
,

which satisfy

∂xHn(x) =
√
nHn−1(x), ∂2

xHn(x)− xHn(x) = nHn(x).

We define the Sobolev space W 1,2(R2,m) as

W 1,2(R2,m) =
{
u ∈ L2(m)

∣∣ |∇u| ∈ L2(m)
}
, (2.4)

where ∇u is the distributional gradient of u. It can be characterized using the basis
{Hn,k}n,k as

W 1,2(R2,m) =
{
u ∈ L2(m)

∣∣∣ ∑
n,k

(n+ k)u2
n,k < +∞

}
, (2.5)
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where un,k :=
∫
R2 Hn,ku dm. At this point it is clear that the inclusion W 1,2(R2,m) ⊂

L2(m) is compact and that the estimate ‖u‖L2(m) ≤ ‖∇u‖L2(m) holds. Moreover, the
linear combinations of Hermite polynomials are dense in W 1,2(R2,m) and so C∞(R2) ∩
W 1,2(R2,m) is dense in W 1,2(R2,m). Thus, we can define the capacity cap(E) of
any set E ⊂ R2 and the space W 1,2

0 (Ω,m) of functions u ∈ W 1,2(R2,m) such that
cap({u 6= 0} ∩ Ωc) = 0. For any f ∈ L2(m), there is a unique w ∈ W 1,2

0 (Ω,m) which
minimizes the functional

Jf (u) = 1
2

∫
Ω
|∇u|2 dm−

∫
Ω
fu dm,

and defines the energy of Ω as Ef (Ω) := Jf (w). We note that for any v ∈W 1,2
0 (Ω,m) we

have ∫
Ω
∇w · ∇v dm =

∫
Ω
fw dm,

and so, we say that w is the weak solution of the problem −∆w+x·∇w = f in W 1,2
0 (Ω,m).

Since ‖∇u‖L2(m) ≤ ‖f‖L2(m), we see that the operator RΩ : L2(m) → L2(m) which
associates to each f ∈ L2(m) the function RΩ(f) := w is compact. Thus RΩ is the
resolvent of an operator −∆ +x ·∇, which is the Ornstein–Uhlenbeck operator on Ω and
which has a discrete spectrum σ(Ω), given by the sequence 0 ≤ λ1(Ω) ≤ λ2(Ω) ≤ . . . .
Note that, in the case Ω = R2, the spectrum is given by σ(R2) = {n + k |n, k ∈ N}. In
particular, λ1(R2) = 0 and λ2(R2) = λ3(R2) = 1. We also note that the k-th eigenvalue
λk(Ω) can be represented as in (2.1) and so, if Ω 6= R2, then λ1(Ω) > 0. Applying
Theorem 2.4, we obtain the existence of optimal domains for any λk.

Theorem 2.9. Consider R2 endowed with a non-degenerate Gaussian measure m, i.e.
with invertible covariance matrix. Then, for any k ∈ N, f ∈ L2(m) and 0 ≤ c ≤ 1, the
following optimization problems have solutions:

min
{
λk(Ω)

∣∣ Ω ⊂ R2, m(Ω) ≤ c
}
,

min
{
Ef (Ω)

∣∣ Ω ⊂ R2, m(Ω) ≤ c
}
,

which are quasi-open sets.

Remark 2.10. This result is already known in the specific case of the first Dirichlet eigen-
value and the classical Gaussian measure. Indeed, in [3], by a symmetrization technique,
it is proved that the minimizer is the half-space. In the recent paper [12] the analogous
result is proved for the first Neumann eigenvalue.

Remark 2.11. Theorem 2.9 also applies to penalized problems, i.e. for any Λ > 0, k ∈ N
and f ∈ L2(m), there is a solution of the problems

min
{
λk(Ω) + Λm(Ω)

∣∣ Ω ⊂ R2}, (2.6)
min

{
Ef (Ω) + Λm(Ω)

∣∣ Ω ⊂ R2}, (2.7)

which is a quasi-open set. As we will see in the example below, these problems are
sometimes easier to treat when we come to regularity questions and qualitative study of
the optimal sets.
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Example 2.12. Let f be the constant 1 in Rd. By Remark 2.11, problem (2.7) has a
solution Ω. Using the symmetrization technique from [3] and [13], it is possible to prove
that the half-space is a minimizer of (2.7). Here below, we deduce an optimality condition
for the set Ω, which can be useful also in more general situations.

Suppose that the solution Ω of (2.7) is open with boundary ∂Ω of class C2 (that we
expect to be true), we can perform the shape derivative of the energy E1 with respect to
some vector field V regular enough. Indeed, following [19, Chapter 5], let V : Rd → Rd

be a C∞c vector field and for each t > 0 small enough, define Φt(x) = x + tV (x) and
Ωt = Φt(Ω). Then, we have

dE1(Ωt)
dt

∣∣∣
t=0

= −1
2

∫
Ω
w′ dm, (2.8)

where w′ is the solution of {
−∆w′ + x · ∇w′ = 0 in Ω,
w′ = −V · ∇w on ∂Ω.

(2.9)

We denote by w the (strong) solution of

−∆w + x · ∇w = 1, w ∈W 1,2
0 (Ω,m),

and integrate by parts in (2.8) obtaining
dE1(Ωt)

dt

∣∣∣
t=0

= −1
2

∫
Ω

(−∆w + x · ∇w)w′ dm

= − 1
4π

∫
∂Ω

∣∣∣∂w
∂n

∣∣∣2V · n e−|x|2/2 dHd−1, (2.10)

where n is the exterior normal on ∂Ω and w is the energy function on Ω, that is the
solution of the Ornstein–Uhlenbeck PDE

−∆w + x · ∇w = 1 in Ω, w ∈W 1,2
0 (Ω,m).

On the other hand, we have
dm(Ωt)
dt

∣∣∣∣
t=0

= 1
2π

∫
∂Ω
e−|x|

2/2 V · ndHd−1, (2.11)

and so, by the optimality of Ω,(dE1(Ωt)
dt

+ Λdm(Ωt)
dt

)∣∣∣∣
t=0

= 0

for any vector field V . By (2.10) and (2.11) we obtain∣∣∣∂w
∂n

∣∣∣ =
√

2Λ on ∂Ω.

Summarizing, we have obtained that if an optimal domain Ω is regular enough, then
the following overdetermined boundary value problem has a solution:

−∆w + x · ∇w = 1 in Ω,
w = 0 on ∂Ω,
∂w
∂n = −

√
2Λ on ∂Ω.

(2.12)
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It is straightforward to check that the following domains satisfy this condition:

• the half-space Ω = {x1 > c}, for a given c ∈ R,
• the strip Ω = {|x1| < a}, for some a > 0,
• the euclidean ball Ω = {|x| < r}, for some r > 0,
• the external domain of a ball Ω = {|x| > r}, for r > 0.

We do not know if there are other domains Ω for which the overdetermined problem
(2.12) has a solution.

2.4. Carnot–Carathéodory spaces. Consider a bounded open and connected set
D ⊂ Rd and C∞ vector fields Y1, . . . , Yn defined on a neighbourhood U of D. We say
that the vector fields satisfy the Hörmander condition on U , if the Lie algebra generated
by Y1, . . . , Yn has dimension d in each point x ∈ U .

We define the Sobolev space W 1,2
0 (D;Y ) on D with respect to the family of vector

fields Y = (Y1, . . . , Yn) as the closure of C∞c (D) with respect to the norm

‖u‖Y =
(
‖u‖2L2 +

n∑
j=1
‖Yju‖2L2

)1/2
,

where the derivation Yju is intended in sense of distributions. For u ∈ W 1,2
0 (D;Y ), we

define the gradient Y u = (Y1u, . . . , Ynu) and set |Y u| =
(
|Y1u|2+. . .+|Ynu|2

)1/2 ∈ L2(D).
Setting Du := |Y u| and H := W 1,2

0 (D;Y ), we define, for any Ω ⊂ D, the energy
Ef (Ω) and the k-th eigenvalue λk(Ω) of the operator Y 2

1 + . . .+Y 2
n , as in (2.2) and (2.1).

The following existence result is a consequence of Theorem 2.4.

Theorem 2.13. Consider a bounded open set D ⊂ Rd and a family Y = (Y1, . . . , Yn)
of C∞ vector fields defined on an open neighbourhood U of the closure D of D. If
Y1, . . . , Yn satisfy the Hörmander condition on U , then for any k ∈ N, 0 < c ≤ |D|
and f ∈ L2(D), the following shape optimization problems admit a solution:

min
{
λk(Ω)

∣∣ Ω ⊂ D, Ω quasi-open, |Ω| ≤ c
}
, (2.13)

min
{
Ef (Ω)

∣∣ Ω ⊂ D, Ω quasi-open, |Ω| ≤ c
}
. (2.14)

Proof. It is straightforward to check that the space H := W 1,2
0 (D;Y ) and the application

Du := |Y u| satisfy the assumptions of Theorem 2.4. The only non-trivial claim is the
compact inclusion H ⊂ L2(D), which follows since Y1, . . . , Yn satisfy the Hörmander
condition on U . In fact, by the Hörmander Theorem (see [20]), there is some ε > 0 and
some constant C > 0 such that for any ϕ ∈ C∞c (D)

‖ϕ‖Hε ≤ C
(
‖ϕ‖L2 +

k∑
j=1
‖Yjϕ‖L2

)
, (2.15)

where we set
‖ϕ‖Hε =

(∫
Rd

|ϕ̂(ξ)|2(1 + |ξ|2)ε dξ
)1/2

,

ϕ̂ being the Fourier transform of ϕ. Let Hε
0(D) be the closure of C∞c (D) with respect to

the norm ‖·‖Hε . Since the inclusion L2(D) ⊂ Hε
0(D) is compact, we have the conclusion.
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Remark 2.14. In the hypotheses of Theorem 2.13, the following optimization problems
have a solution:

min
{
λk(Ω) + Λ|Ω|

∣∣ Ω ⊂ D, Ω quasi-open
}
, (2.16)

min
{
Ef (Ω) + Λ|Ω|

∣∣ Ω ⊂ D, Ω quasi-open
}
, (2.17)

where k ∈ N, Λ > 0 and f ∈ L2(D) are given.

Example 2.15. Consider a bounded open set D ⊂ R2 and the vector fields X = ∂
∂x and

Y = x ∂
∂y . Since [X,Y ] = ∂

∂y , we can apply Theorem 2.13 and so, the shape optimization
problem (2.17) has a solution Ω ⊂ D. Assuming that Ω is regular enough we may repeat
the argument from Section 2.3. Indeed, suppose that V is a vector field on ∂Ω and note
that the map Φt = Id+ tV is a differomorphism for t small enough. Defining Ωt = Φt(Ω)
and w the (strong) solution of

−
(
∂2

x + x2∂2
y

)
w + w = f, w ∈W 1,2

0 (Ω;X,Y ), (2.18)

where f ∈ L2(D), we have
dEf (Ωt)

dt

∣∣∣
t=0

= −1
2

∫
Ω
fw′ dx, (2.19)

where w′ is the weak solution of

−
(
∂2

x + x2∂2
y

)
w′ + w′ = 0, w′ + V · ∇w ∈W 1,2

0 (Ωt;X,Y ).

Using (2.18) and integrating by parts in (2.19), we obtain
dEf (Ωt)

dt

∣∣∣
t=0

= −1
2

∫
∂Ω

(V · ∇w)
(
n · (∂xw, x

2∂yw)
)
dH1. (2.20)

Since
d|Ωt|
dt

∣∣∣
t=0

=
∫

∂Ω
V · ndH1, (2.21)

the energy function w is a solution of the following overdetermined boundary value prob-
lem on the optimal set Ω:

−
(
∂2

x + x2∂2
y

)
w + w = f in Ω,

w = 0 on ∂Ω,(
n · (∂xw, x

2∂yw)
)

∂w
∂n = 2Λ on ∂Ω.

(2.22)

The characterization of the solutions of (2.22) is an open problem even in the case f = 1.

3. Spectral optimization for metric graphs. In this section we study the problem
of the optimization of the torsion rigidity of a one-dimensional structure in Rd connecting
a prescribed set of fixed points. Before we introduce the optimization problem we will
examine some of the basic tools from the analysis of one-dimensional sets.

Consider a closed connected set C ⊂ Rd of finite length H1(C) <∞, where by H1 we
denote the one-dimensional Hausdorff measure in Rd. The natural choice of a distance
on C is

dC(x, y) = inf
{∫ 1

0
|γ̇(t)| dt

∣∣∣ γ : [0, 1]→ Rd Lip., γ([0, 1]) ⊂ C, γ(0) = x, γ(1) = y
}
,
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which, in turn, gives a pointwise definition of a gradient

|u′|(x) = lim sup
y→x

|u(y)− u(x)|
d(x, y) ,

which is a function in L2(H1), at least in the case when u : C → R is Lipschitz with
respect to the distance dC . For any function u : C → R, Lipschitz with respect to the
distance dC , we define the norm

‖u‖2H1(C) =
∫

C

u2 dH1 +
∫

C

|u′|2 dH1,

and the Sobolev space H1(C), as the closure of the Lipschitz functions on C with respect
to this norm. By the Second Rectifiability Theorem (see [2, Theorem 4.4.8]) the set
C consists of a countable family of injective arc-length parametrized Lipschitz curves
γi : [0, li] → C, i ∈ N, i.e. there is an H1-negligible set N ⊂ C such that C = N ∪(⋃

i γi([0, li])
)
. On each curve γi we have the chain rule

∣∣ d
dt u(γi(t))

∣∣ = |u′|(γi(t)) (see
[9, Lemma 3.1] for a proof) and thus, we obtain the following expression for the norm of
u ∈ H1(C):

‖u‖2H1(C) =
∫

C

u2 dH1 +
∑

i

∫ li

0

∣∣∣ d
dt
u(γi(t))

∣∣∣2 dt. (3.1)

Given a set of distinct points D1, . . . , Dk ∈ Rd we define the admissible class of sets
AC(D1, . . . , Dk) as the family of closed connected sets C ⊂ Rd containing D1, . . . , Dk.
For any C ∈ AC(D1, . . . , Dk) we consider the space of Sobolev functions which satisfy a
Dirichlet condition at the points Di:

H1
0 (C;D1, . . . , Dk) = {u ∈ H1(C) |u(Dj) = 0, j = 1, . . . , k}.

For the points Dj we use the term Dirichlet points. The Dirichlet Energy of the set C
with respect to D1, . . . , Dk is defined as

E(C;D1, . . . , Dk) = min
u∈H1

0 (C;D1,...,Dk)

(1
2

∫
C

|u′|2 dH1 −
∫

C

u dH1
)
. (3.2)

We study the following shape optimization problem:

min
{
E(C;D1, . . . , Dk)

∣∣ C ∈ AC(D1, . . . , Dk), H1(C) ≤ l
}
. (3.3)

Remark 3.1. We note that the admissible sets C can be reduced to the set of graphs
embedded in Rd. For sake of simplicity, we limit ourselves to the case of three points
D1, D2, D3 ∈ Rd (for the general result see [9]). Let C ∈ AC(D1, D2, D3) be such that
H1(C) ≤ l and let η : [0, a] → C be a geodesic in C connecting D1 to D2. We suppose
that η does not pass through D3. Let ξ : [0, b]→ C be a geodesic in C connecting D3 to
D1 and let l3 ∈ [0, b] be the smallest real number such that ξ(l3) ∈ η([0, a]). We define

γ1 = η|[0,l1], γ2 = η(dC(D1, D2)− ·)|[0,l2], γ3 = ξ|[0,l3],

where l1 and l2 are such that η(l1) = ξ(l3) and l2 = dC(D1, D2)− l1.
The curves γ1, γ2 and γ3 are geodesics in C which do not intersect each other

in internal points (note that it is possible that one of them is degenerate, i.e. con-
stant). Consider the set C ′ =

⋃
i γi([0, li]) ⊂ C. By construction C ′ is connected and
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D1

γ1
γ2

D2
γ3

D3

D1

γ1
γ2

D2

σ

γ3

D3

1

D1

γ1
γ2

D2
γ3

D3

D1

γ1
γ2

D2

σ

γ3

D3

1

Fig. 1. The set C′ (on the left) and C̃ (on the right)

contains D1, D2 and D3. Let w ∈ H1
0 (C;D1, D2, D3) be a positive function and let

v : [0,H1(C \ C ′)] → R be a monotone increasing function such that |{v ≤ τ}| =
H1({w ≤ τ} ∩ Γ). By the Polya–Szegö inequality (see [9, Remark 2.6] or [15]), we have

1
2

∫ H1(Γ)

0
|v′|2 dx−

∫ H1(Γ)

0
v dx ≤ 1

2

∫
Γ
|w′|2 dH1 −

∫
Γ
w dH1. (3.4)

Let σ : [0,H1(C \ C ′)]→ Rd be an injective arc-length parametrized curve such that
Im(σ) ∩ C ′ = σ(0) = x′, where x′ ∈ C ′ is the point where w|C′ achieves its maximum.
Then the closed connected set C̃ = C ′ ∪ σ([0,H1(C \ C ′)]) is admissible and has lower
energy than C. In particular, in problem (3.3) with three fixed points, we can restrict our
attention to sets which are representations of metric graphs (i.e. combinatorial graphs
with weighted edges) in Rd. More precisely, we can consider graphs C such that

1. C is a tree, i.e. it does not contain any closed loop;
2. C has at most 6 vertices; if a vertex has degree three or more, we call it Kirchhoff

point;
3. there is at most one vertex of degree one for C which is not a Dirichlet point. In

this vertex the energy function w satisfies Neumann boundary condition w′ = 0
and so we call it Neumann point.

In the setting described above, the topology on the set of admissible graphs is quite
natural, i.e. we say that Cn converges to C, if the weighted connectivity matrices of
the graphs Cn converge to that of C, where the element mij of the connectivity matrix
M = (mij)ij is equal to the length of the edge connecting the two vertices Vi and Vj

with the convention that mij = +∞ if there is no edge connecting the two vertices and
mij = 0, if the two vertices coincide. It is quite clear that with this topology the set
of connected metric trees of at most N vertices is compact. On the other hand, as the
following example shows, the energy E(C,D) is not semi-continuous.

Example 3.2. Consider the points D1 = (0, 0), D2 = (1, 0) and D3 = (2, 0) and the
set Cn ⊂ R2 consisting of the graphs of the functions y(x) = x(x − 1) for x ∈ [0, 1] and
yn(x) = − 1

nx(x − 2) for x ∈ [0, 2]. Passing to the limit as n → ∞, we deduce that the
arc connecting D1 to D3 passes through the Dirichlet point D2, which causes the energy
to suddenly increase.
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Remark 3.3. The lack of semi-continuity does not necessarily imply the non-existence
of a solution of (3.3), but it suggests the nature of a possible counter-example. Following
this idea, it was proved in [9] that if D = {D1, D2, D3} ⊂ R2 is a set of points, with
coordinates (−1, 0), (1, 0) and (n, 0) respectively, and l = n + 2 is a given length, then,
for n large enough, the problem (3.3) does not have a solution.

In order to obtain an existence result for the problem (3.3), we consider, as in [9],
a larger class of admissible sets. Indeed, let Γ be a combinatorial graph with vertices
{Vi}i=1,...,N and edges {eij}ij . We call Γ a metric graph, if to each edge eij there is
associated a positive real number lij , which we interpret as the length of the edge. Thus,
the total length of Γ is given by l(Γ) :=

∑
i<j lij .

A function u : Γ → Rn on the metric graph Γ is a collection of functions
uij : [0, lij ]→ R, for 1 ≤ i 6= j ≤ N , such that:

1. uji(x) = uij(lij − x) for each 1 ≤ i 6= j ≤ N ,
2. uij(0) = uik(0) for all {i, j, k} ⊂ {1, . . . , N}.

We say that u is continuous (u ∈ C(Γ)), square integrable (u ∈ L2(Γ)) or Sobolev
(u ∈ H1(Γ)), if uij is respectively continuous, square integrable or Sobolev on each
edge eij . We also note that, if u ∈ H1(Γ), then |u′| ∈ L2(Γ) and so we can define

E(Γ; {V1, . . . , Vk}) = min
u∈H1

0 (Γ;{V1,...,Vk})

(1
2

∫
Γ
|u′|2 dH1 −

∫
Γ
u dH1

)
, (3.5)

where H1
0 (Γ; {V1, . . . , Vk}) is the subspace of H1(Γ) of the functions vanishing on each of

the vertices V1, . . . , Vk and we also use the notation∫
Γ
|u′|2 dH1 :=

∑
ij

∫ lij

0
|u′ij |2 dx,

∫
Γ
u dH1 :=

∑
ij

∫ lij

0
uij dx.

We say that the continuous function γ = (γij)1≤i 6=j≤N : Γ → Rd is an immersion of
the metric graph Γ into Rd, if for each 1 ≤ i 6= j ≤ N the function γij : [0, lij ]→ Rd is an
injective arc-length parametrized curve. Given a set of distinct points D1, . . . , Dk ∈ Rd,
we define the admissible set A(D1, . . . , Dk) as the set of metric graphs Γ for which there
is an immersion γ : Γ → Rd such that γ(Vi) = Di, where V1, . . . , Vk are vertices of Γ.
In [9] the following result was proved.

Theorem 3.4. Consider a set of distinct points D1, . . . , Dk ∈ Rd and a real number l
such that there is a closed set C ⊂ Rd which contains D1, . . . , Dk and such that H1(C) ≤ l.
Then the following problem has a solution:

min
{
E(Γ; {V1, . . . , Vk})

∣∣ Γ ∈ A(D1, . . . , Dk), l(Γ) ≤ l
}
. (3.6)

In some situations, we can use Theorem 3.4 to obtain an existence result for (3.3).

Proposition 3.5. Suppose that D1, D2 and D3 be three distinct, non-colinear points
in Rd and let l > 0 be a real number such that there exists a closed set of length l

connecting D1, D2 and D3. Then the problem (3.3) has a solution.

Proof. Let the graph Γ be a solution of (3.6) and let γ : Γ → Rd be an immersion of Γ
such that γ(Vj) = Dj for j = 1, 2, 3. Note that if the immersion γ is such that the set
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γ(Γ) ⊂ Rd is represented by the same graph Γ, then γ(Γ) is a solution of (3.3) since

E(Γ; {V1, V2, V3}) = E(C;D1, D2, D3).

Reasoning as in Remark 3.1, we can suppose that Γ is obtained by a tree Γ′ with vertices
V1, V2 and V3 by attaching a new edge (with a new vertex in one of the extrema) to
some vertex or edge of Γ′. Since we are free to choose the immersion of the new edge,
we only need to show that we can choose γ such that the set γ(Γ′) is represented by Γ′.
On the other hand, we have only two possibilities for Γ′ and both of them can be seen
as embedded graphs in Rd with vertices D1, D2 and D3.

Remark 3.6. Similarly to the existence proof of a classical optimal graph of Proposition
3.5 we believe that a more general result should hold: if D1, . . . , Dk are k distinct points
in Rd such that none of them can be expressed as a convex combination of the others,
then (3.3) has a solution. We do not yet have a complete proof of this fact.

Example 3.7. Let D1 and D2 be two distinct points in Rd and let l ≥ |D1 −D2| be a
real number. Then the optimization problem (3.6) has a solution Γ which is actually a
classical graph C given by the connected set (see Figure 2)

C = [D1, D2] ∪
[
D1 +D2

2 , D3

]
with

∣∣∣D3 −
D1 +D2

2

∣∣∣ = l − |D1 −D2|.

V1
l−ε
2

V3
l−ε
2

V2

ε
V4

1

Fig. 2. The optimal graph with two Dirichlet points

Example 3.8. Let D1, D2 and D3 be the vertices of an equilateral triangle of side 1
in R2, i.e.

D1 =
(
−
√

3
3 , 0

)
, D2 =

(√3
6 ,−1

2

)
, D3 =

(√3
6 ,

1
2

)
.

We study in [9] the problem (3.3) with D = {D1, D2, D3} and l >
√

3. We show that the
solutions may have different qualitative properties for different l and that there is always
a symmetry breaking phenomenon, i.e. the solutions do not have the same symmetries
as the initial configuration D. Indeed, an explicit estimate of the energy shows that (see
Figure 3):

1. if
√

3 ≤ l ≤ 1+
√

3/2, then the solution of the problem (3.3) with D = {D1, D2, D3}
is of the form Γ1;

2. if l > 1 +
√

3/2, then the solution of the problem (3.6) with D = {D1, D2, D3} is of
the form Γ3.
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4. Spectral optimization for Schrödinger operators. Consider a bounded open
set Ω ⊂ Rd and a functional F defined on a class of nonnegative measurable functions
V : Ω → R that play the role of a potential in the Schrödinger operator −∆ + V . The
question of optimizing F (V ), when F is a function of the spectrum of −∆ + V and V

satisfies some integral constraint of the form
∫

Ω V
p dx ≤ 1, was extensively studied in

the literature (see for instance [17, Chapter 8] and the references therein for a detailed
introduction to the topic). Another typical functional is the Dirichlet energy, related to
a function f ∈ L2(Ω) and a potential V ≥ 0 on Ω, defined as

Ef (V ) = min
u∈H1

0 (Ω)

(
1
2

∫
Ω
|∇u|2 dx+ 1

2

∫
Ω
u2V dx−

∫
Ω
uf dx

)
. (4.1)

It is clear, from the definition of Ef , that for p > 0 the minimum is achieved by V = 0.
On the contrary, maximizing the energy under the same constraints gives the following
results.

• If p < 1 a maximizing potential does not exist. In fact, for any p < 1, one may
construct a sequence of functionals Vn such that

∫
Ω V

p
n dx = 1 and Ef (Vn)→ 0 as

n→∞.
• If p > 1 the optimal potential Vp exists and is given by

Vp = |u|2/(p−1) ·
(∫

Ω
|u|2p/(p−1) dx

)−1/p

where u is the solution of the minimum problem

min
u∈H1

0 (Ω)

(
1
2

∫
Ω
|∇u|2 dx+ 1

2

(∫
Ω
|u|2p/(p−1) dx

)(p−1)/p

−
∫

Ω
uf dx

)
,

which is also the strong solution of −∆u+ uVp = f in Ω.
• If p = 1 the optimal potential V1 exists and is given by

V1 = f

M

(
1ω+ − 1ω−

)
,

where M = ‖u1‖L∞(Ω), ω+ = {u1 = M}, ω− = {u1 = −M}, and u1 ∈ H1
0 (Ω) ∩

H2(Ω) is the unique minimizer of the functional J1 : L2(Ω)→ R, defined as

J1(u) := 1
2

∫
Ω
|∇u|2 dx+ 1

2‖u‖
2
L∞(Ω) −

∫
Ω
uf dx.
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In particular, we have∫
ω+

f dx−
∫

ω−

f dx = M, f ≥ 0 on ω+, f ≤ 0 on ω− .

Example 4.1. Let Ω = (−1, 1) and f be a positive constant on Ω. Then u1 is positive
and, by a symmetrization argument, it is also radially symmetric and decreasing. Thus,
ω+ = (−a, a) for some a ∈ (0, 1) and since |ω+|M = 1, we have a = 1

2M . Since u′( 1
2M ) = 0

and u′′ = −f on ( 1
2M , 1), we have (1− 1

2M )2f = 2M , which uniquely determines M and
so, the optimal potential V1 = 1

M 1(−1/(2M),1/(2M)).

When p < 0 the minimization problem

min
{
Ef (V )

∣∣ V : Ω→ [0,+∞],
∫

Ω
V p dx = 1

}
, (4.2)

becomes meaningful.

Proposition 4.2. Let Ω ⊂ Rd be a bounded open set and let f ∈ L2(Ω). Then, for every
p < 0, the problem (4.2) has a solution.

Proof. By the definition of Ef (V ), interchanging the two min operators, we find that the
optimal potential Vp is given by

Vp = |u|2/(p−1) ·
(∫

Ω
|u|2p/(p−1) dx

)−1/p

(4.3)

where u is the solution of the minimum problem

min
u∈H1

0 (Ω)

(
1
2

∫
Ω
|∇u|2 dx+ 1

2

(∫
Ω
|u|2p/(p−1) dx

)(p−1)/p

−
∫

Ω
uf dx

)
. (4.4)

Note that, since p < 0, the quantity q = 2p/(p− 1) is such that 0 < q < 2. The existence
of a solution for problem (4.4) is straightforward, which gives the existence of the optimal
potential Vp through equality (4.3).

When we consider more general cost functionals F (V ), like for instance spectral costs
depending on the eigenvalues of the Schrödinger operator −∆+V , the proof above cannot
be repeated; nevertheless, using finer tools like γ-convergence for Dirichlet problems, the
following more general result can be obtained (see [8]).

Theorem 4.3. Consider a cost functional F : B+(Ω) → R, where B+(Ω) denotes the
space of Borel measurable positive functions on Ω. Suppose that F is

1. increasing, i.e. F (V ) ≥ F (W ), whenever V ≥W ;
2. lower semi-continuous with respect to the strong convergence of the resolvents

RV = (−∆ + V )−1 : L2(Ω)→ L2(Ω).

Then, for any p < 0, the optimization problem

min
{
F (V )

∣∣ V : Ω→ [0,+∞],
∫

Ω
V p dx = 1

}
,

has a solution.
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