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Abstract. We study an integro-differential operator Φ : H̄1 → L2 of Fredholm type and give
sufficient conditions for Φ to be a diffeomorphism. An application to functional equations is
presented.

1. Introduction. Let us consider the Fredholm nonlinear integro-differential operator

Φ : H̄1 3 u( · ) 7→ u′( · )−
∫ b

a

F (·, τ, u(τ)) dτ ∈ L2, (1)

where [a, b] ⊆ R, F : [a, b] × [a, b] × Rn → Rn, n ∈ N and H̄1 is the space of absolutely
continuous functions u : [a, b] → Rn such that u(a) = 0 and u′( · ) ∈ L2 = L2([a, b],Rn),
i.e.

H̄1 =
{
u ∈ AC([a, b],Rn) : u(a) = 0, u′ ∈ L2}.

The operator (1) leads to the integro-differential equation

u′(t) =
∫ b

a

F (t, τ, u(τ)) dτ + α(t), t ∈ [a, b] a.e., (2)

with the initial condition
u(a) = 0, (3)

where α ∈ L2, which is quite frequently used in mathematical biology, electrodynamics
and economics (see [4, 7]).

The space H̄1 with the inner product

〈u1, u2〉 =
∫ b

a

〈
u′1(t), u′2(t)

〉
dt

is a Hilbert space.
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It is easy to see that the problem (2)–(3) can be written in an equivalent form as

u(t) =
∫ t

a

∫ b

a

F (s, τ, u(τ)) dτ ds+ y(t), t ∈ [a, b],

where y(t) =
∫ t
a
α(s) ds.

In the next theorem and later we shall use Palais–Smale (PS for short) condition. Let
X be a Banach space and ψ : X → R be a functional of class C1 in the Fréchet sense.
We say that (see [6]) the functional ψ satisfies the PS-condition if every sequence {uj}
in X such that {ψ(uj)} is bounded and ψ′(uj)→ 0 in X∗ has a convergent subsequence
(ψ′(uj) is the Fréchet differential of ψ at uj).

Our main tool is the following

Theorem 1.1. If f : H̄1 → H̄1 is of class C1 and the linear equation
f ′(u0)h = g (4)

has a unique solution for every u0, g ∈ H̄1 and the functional ϕy : H̄1 → R given by
ϕy(u) = 1

2‖f(u)− y‖2
H̄1 (5)

satisfies the PS-condition for every y ∈ H̄1, then the mapping f is a diffeomorphism, i.e.
the nonlinear equation

f(u) = y (6)

has a unique solution uy = f−1(y) for every y ∈ H̄1 and the operator y 7→ uy is Fréchet-
differentiable.

Proof. The above theorem is an obvious consequence of Theorem 3.1 from the paper [3]
for X = H = H̄1 (cf. also [3, Remark 3.1]).

Theorem 1.1 asserts that if the operator f is a local diffeomorphism (guaranteed
by (4)) and the corresponding functional ϕy, given by (5), satisfies the Palais–Smale
condition, then f is in fact a global diffeomorphism. Using this theorem we show that,
under assumptions (a1)–(a3) given in Section 2:

1. the Cauchy problem (2)–(3) has a unique solution uα for every α ∈ L2,
2. the solution uα depends continuously on the parameter α, i.e. the system (2)–(3)

is stable,
3. the operator L2 3 α 7→ uα ∈ H̄1 is Fréchet-differentiable.

The systems satisfying condition (3) are called robust systems and are frequently used in
the technical literature (see [8]).

2. Fundamental lemmas. We start with the following

Lemma 2.1. If the function F satisfies the assumptions:

(a1) F (·, ·, u) is measurable on Q := [a, b] × [a, b] for any u ∈ Rn and F (t, τ, ·) is of
class C1 on Rn for a.e. (t, τ) ∈ Q;

(a2) there exists a function w ∈ L2(Q,R+) such that ‖w‖L2 <
√

2
(b−a) and

|Fu(t, τ, u)| ≤ w(t, τ)
for a.e. (t, τ) ∈ Q, u ∈ Rn,
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then, for any u0, g ∈ H̄1, the integral equation

h(t) = g(t) +
∫ t

a

[∫ b

a

Fu(s, τ, u0(τ))h(τ) dτ
]
ds, t ∈ [a, b], (7)

has a unique solution in H̄1.

Proof. Let u0, g ∈ H̄1 and K : H̄1 → H̄1 be the operator given by

(Kh)(t) =
∫ t

a

[∫ b

a

Fu(s, τ, u0(τ))h(τ) dτ
]
ds. (8)

The equation (7) can be written as

h = g +Kh. (9)

Using an iterative method we shall prove that the above equation has a unique solution
in the space H̄1.

Indeed, let h0 = 0 and
hj+1 = g +Khj (10)

for j = 0, 1, 2, . . . . Of course,

h1 = g,

h2 = g +Kh1 = g +Kg,

h3 = g +Kh2 = g +Kg +K2g,

...
hj+1 = g +Kg + . . .+Kjg,

...

(11)

where Kjg = K(Kj−1g) for j = 1, 2, . . . and K0g = g. So, hj is the partial sum of the
Neumann series (see [1])

∞∑
i=0

Kig. (12)

Now, we shall show that there exist constants Mi such that

‖Kig‖H̄1 ≤Mi, i = 0, 1, . . .

and the series
∑∞
i=0Mi is convergent. Indeed, from (8) we have

‖Kg‖2
H̄1 =

∫ b

a

∣∣∣∫ b

a

Fu(s, τ, u0(τ))g(τ) dτ
∣∣∣2 ds

≤
∫ b

a

[∫ b

a

|Fu(s, τ, u0(τ))| |g(τ)| dτ
]2
ds

≤
∫ b

a

[(∫ b

a

∣∣Fu(s, τ, u0(τ))
∣∣2 dτ)1/2(∫ b

a

|g(τ)‖2 dτ
)1/2

]2
ds

= ‖g‖2L2

∫ b

a

∫ b

a

∣∣Fu(s, τ, u0(τ))
∣∣2 dτ ds.

(13)
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Using (a2) we get
‖Kg‖2

H̄1 ≤ ‖w‖2L2‖g‖2L2 .

In general,

‖Kjg‖2
H̄1 =

∫ b

a

∣∣∣∫ b

a

Fu(s, τ, u0(τ))(Kj−1g)(τ) dτ
∣∣∣2 ds ≤ ‖w‖2L2‖Kj−1g‖2L2

and

‖Kjg‖2L2 =
∫ b

a

∣∣K(Kj−1g)(t)
∣∣2 dt

=
∫ b

a

∣∣∣∣∫ t

a

[∫ b

a

Fu(s, τ, u0(τ))(Kj−1g)(τ) dτ
]
ds

∣∣∣∣2 dt
≤
∫ b

a

(∫ t

a

[∫ b

a

∣∣Fu(s, τ, u0(τ))
∣∣∣∣(Kj−1g)(τ)

∣∣ dτ] ds)2
dt

≤ ‖Kj−1g‖2L2

∫ b

a

(∫ t

a

[∫ b

a

∣∣Fu(s, τ, u0(τ))
∣∣2 dτ]1/2 ds)2

dt

≤ ‖Kj−1g‖2L2

∫ b

a

(t− a)
(∫ t

a

∫ b

a

∣∣Fu(s, τ, u0(τ))
∣∣2 dτ ds) dt

≤ ‖Kj−1g‖2L2‖w‖2L2
(b− a)2

2
for j = 1, 2, . . . . So,

‖Kg‖2L2 ≤ ‖g‖2L2‖w‖2L2
(b− a)2

2 ,

‖K2g‖2L2 ≤ ‖g‖2L2‖w‖4L2
(b− a)4

22 ,

‖K3g‖2L2 ≤ ‖g‖2L2‖w‖6L2
(b− a)6

23 ,

...

‖Kjg‖2L2 ≤ ‖g‖2L2‖w‖2jL2
(b− a)2j

2j ,

...

Consequently,

‖Kjg‖H̄1 ≤ ‖g‖L2‖w‖L2

(√
2

2 (b− a)‖w‖L2

)j−1
=: Mj (14)

for j = 1, 2, . . . . Additionally, we put M0 = ‖g‖H̄1 . From assumption (a2) and inequal-
ity (14) it follows that the sequence {hj} of functions defined by (10) is convergent in H̄1

to some function h0. It is easy to see (cf. (13) and ‖g‖2L2 ≤ (b − a)2‖g‖2
H̄1 for g ∈ H̄1)

that the operator K given by (8) is continuous. Hence, using (10) we conclude that h0
satisfies the equation (9), i.e.

h0 = g +Kh0.
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To begin the proof of the uniqueness of the solution h0, we suppose that there exists
another solution h1 ∈ H̄1 of the equation (9). Then,

h1 − h0 = K(h1 − h0) = K2(h1 − h0) = . . . = Kj(h1 − h0)

for j = 1, 2, . . . . So, by (14),

‖h1 − h0‖H̄1 ≤ ‖h1 − h0‖L2‖w‖L2

(√
2

2 (b− a)‖w‖L2

)j−1

for j = 1, 2, . . . . Since the right hand side of the inequality tends to 0 as j →∞ (cf. (a2)),

h1(t) = h0(t) for t ∈ [a, b].

Our solution is thus unique and the proof is completed.

Let f : H̄1 → H̄1 be the operator given by

f(u)(t) = u(t)−
∫ t

a

∫ b

a

F (s, τ, u(τ)) dτ ds, (15)

ϕy : H̄1 → R — the functional given by (5) for any fixed y ∈ H̄1. We also put

ϕ := ϕ0. (16)

It is easy to show that under the assumptions (a1)–(a2) the operator f and, consequently,
the functional ϕy are of class C1. From the theorem on the differentiability of composite
mapping it follows that the differential ϕ′y(u) at a point u ∈ H̄1 is given by

ϕ′y(u)h = 〈f(u)− y, f ′(u)h〉

for h ∈ H̄1 and

f ′(u)h(·) = h(·)−
∫ ·
a

∫ b

a

Fu(s, τ, u(τ))h(τ) dτ ds,

for h ∈ H̄1.
We now prove

Lemma 2.2. If the function F satisfies the assumptions of Lemma 2.1 and

(a3) there exist functions A,B ∈ L2(Q,R+) such that ‖A‖L2 <
√

2
2(b−a) , and

|F (t, τ, u)| ≤ A(t, τ)|u|+B(t, τ) for a.e. (t, τ) ∈ Q, u ∈ Rn,

then the functional ϕy satisfies PS-condition for every y ∈ H̄1.

Proof. Let y ∈ H̄1. First, we prove that every PS-sequence {uk} ⊂ H̄1 for the functional
ϕy is bounded. This will be done if we prove that ϕy is coercive, i.e. ϕy(u) → ∞ when
‖u‖ → ∞. Of course, ϕy is coercive whenever ϕ is. We have to notice that ϕ is Fréchet
differentiable and bounded from below. So, if it satisfies the PS-condition, then it is
coercive (see [5, Theorem 7]). We have

2ϕ(u) = ‖u‖2
H̄1 − 2

∫ b

a

〈
u′(t),

∫ b

a

F (t, τ, u(τ)) dτ
〉
dt+

∫ b

a

∣∣∣∣∫ b

a

F (t, τ, u(τ)) dτ
∣∣∣∣2 dt

≥ ‖u‖2
H̄1 − 2

∫ b

a

[
|u′(t)|

∫ b

a

(
A(t, τ)|u(τ)|+B(t, τ)

)
dτ

]
dt (17)
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Moreover, from the Schwarz inequality

|u(t)| ≤
∫ t

a

|u′(τ)| dτ ≤
√
t− a ‖u‖H̄1

for u ∈ H̄1 and t ∈ [a, b]. Hence∫ b

a

|u(t)|2 dt ≤ ‖u‖2
H̄1

∫ b

a

(t− a) dt = 1
2 (b− a)2‖u‖2

H̄1 . (18)

Consequently, from (17), (18) and the Schwarz inequality

2ϕ(u) ≥ ‖u‖2
H̄1

− 2
∫ b

a

|u′(t)|
((∫ b

a

A2(t, τ) dτ
)1/2(b− a√

2
‖u‖H̄1

)
+
(

(b− a)
∫ b

a

B2(t, τ) dτ
)1/2

)
dt

≥ ‖u‖2
H̄1 −

√
2(b− a)‖u‖H̄1

(∫ b

a

|u′(t)|2dt
)1/2

(∫ a

b

(∫ b

a

A2(t, τ) dτ
)
dt

)1/2

− 2
√
b− a

(∫ b

a

|u′(t)|2 dt
)1/2

(∫ b

a

(∫ b

a

B2(t, τ) dτ
)
dt

)1/2

≥
(
1−
√

2(b− a)‖A‖L2
)
‖u‖2

H̄1 − 2
√
b− a ‖B‖L2‖u‖H̄1 .

Given these facts, we get that ϕ(u) ≥ c‖u‖2
H̄1 − d‖u‖H̄1 , where

c = 1
2
(
1−
√

2(b− a)‖A‖L2
)
,

d =
√
b− a‖B‖L2

with c positive (by (a3)). Therefore,

ϕ(u)→∞ as ‖u‖H̄1 →∞. (19)

Let {uk} ⊂ H̄1 be a PS-sequence for the functional ϕy. According to (19) this sequence
is bounded in H̄1 and hence weakly compact in H̄1. Without loss of generality, we may
assume that it is weakly convergent in H̄1 to some u0. We shall show that uk → u0 with
respect to the norm.

Indeed,

ϕ′y(u)h =
∫ b

a

〈u′(t), h′(t)〉 dt−
∫ b

a

〈y′(t), h′(t)〉 dt

−
∫ b

a

〈
h′(t),

∫ b

a

F (t, τ, u(τ)) dτ
〉
dt

−
∫ b

a

〈
u′(t),

∫ b

a

Fu(t, τ, u(τ))h(τ) dτ
〉
dt

+
∫ b

a

〈
y′(t),

∫ b

a

Fu(t, τ, u(τ))h(τ) dτ
〉
dt

+
∫ b

a

〈∫ b

a

F (t, τ, u(τ)) dτ,
∫ b

a

Fu(t, τ, u(τ))h(τ) dτ
〉
dt.
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Consequently,

(ϕ′y(uk)− ϕ′y(u0))(uk − u0) = ‖uk − u0‖2H̄1 +
6∑
i=1

ψi(uk) (20)

where

ψ1(uk) = −
∫ b

a

〈
u′k(t)− u′0(t),

∫ b

a

(
F (t, τ, uk(τ))− F (t, τ, u0(τ))

)
dτ

〉
dt,

ψ2(uk) = −
∫ b

a

〈
u′k(t),

∫ b

a

Fu(t, τ, uk(τ))(uk(τ)− u0(τ)) dτ
〉
dt,

ψ3(uk) =
∫ b

a

〈
u′0(t),

∫ b

a

Fu(t, τ, u0(τ))(uk(τ)− u0(τ)) dτ
〉
dt,

ψ4(uk) =
∫ b

a

〈
y′(t),

∫ b

a

(
Fu(t, τ, uk(τ))− Fu(t, τ, u0(τ))

)
(uk(τ)− u0(τ)) dτ

〉
dt,

ψ5(uk) =
∫ b

a

〈∫ b

a

F (t, τ, uk(τ)) dτ,
∫ b

a

Fu(t, τ, uk(τ))(uk(τ)− u0(τ)) dτ
〉
dt,

ψ6(uk) = −
∫ b

a

〈∫ b

a

F (t, τ, u0(τ)) dτ,
∫ b

a

Fu(t, τ, u0(τ))(uk(τ)− u0(τ)) dτ
〉
dt.

The left hand side of equality (20) tends to zero. Indeed,∣∣ϕ′y(uk)(uk − u0)
∣∣ ≤ ‖ϕ′y(uk)‖L(H̄1,R)‖uk − u0‖

and ϕ′y(uk)(uk − u0) −→
k→∞

0, because ϕ′(uk) −→
k→∞

0 and the sequence {uk} is bounded.
Furthermore, ϕ′y(u0)(uk − u0) tends to zero, because the sequence {uk} is weakly con-
vergent to u0 in H̄1. To conclude the proof, we need to show that ψi(uk) −→

k→∞
0 for

i = 1, . . . , 6. As mentioned before, the sequence {uk} converges weakly to u0 in H̄1,
which implies the uniform convergence of {uk} on [a, b] to u0 and the weak convergence
of {u′k} to u′0 in L2.

First, consider the term ψ1(uk). From the Lebesgue dominated convergence theorem
it follows that ∫ b

a

(
F (t, τ, uk(τ))− F (t, τ, u0(τ))

)
dτ −→

k→∞
0

for a.e. t ∈ [a, b]. Moreover, by (a3) and the Schwarz inequality∣∣∣∣∫ b

a

(
F (t, τ, uk(τ))− F (t, τ, u0(τ))

)
dτ

∣∣∣∣2 ≤ (2
∫ b

a

(A(t, τ)M +B(t, τ)) dτ
)2

≤ 4(b− a)
∫ b

a

(A(t, τ)M +B(t, τ))2 dτ,

where M > 0 is such that
∣∣uk(τ)

∣∣ ≤M for τ ∈ [a, b], k = 0, 1, . . . . Since the function

[a, b] 3 t 7→
∫ b

a

(
A(t, τ)M +B(t, τ)

)2
dτ

is integrable, therefore again by the Lebesgue dominated convergence theorem we con-
clude that

∫ b
a

(
F (·, τ, uk(τ))−F (·, τ, u0(τ))

)
dτ −→

k→∞
0 in L2. Consequently, ψ1(uk) tends
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to zero as a scalar product in L2 of the functions

u′k( · )− u′0( · ) and
∫ b

a

(
F (·, τ, uk(τ))− F (·, τ, u0(τ))

)
dτ.

Next, consider the term ψ2(uk). As above,∫ b

a

Fu(t, τ, uk(τ))(uk(τ)− u0(τ)) dτ −→
k→∞

0

for a.e. t ∈ [a, b] and ∫ b

a

Fu(·, τ, uk(τ))(uk(τ)− u0(τ)) dτ −→
k→∞

0

in L2. Therefore, ψ2(uk) tends to zero as a scalar product in L2 of the functions u′k( · )
and

∫ b
a
Fu(·, τ, uk(τ))(uk(τ)− u0(τ)) dτ .

In a similar way one shows that ψi(uk)→ 0 as k →∞ for i = 3, 4, 5, 6.

3. Main result and example. Now we are in a position to prove the main theorem of
the paper

Theorem 3.1. If the function F satisfies the assumptions (a1), (a2) and (a3), then the
operator f defined by (15) is a diffeomorphism between H̄1 and H̄1.

Proof. From Lemmas 2.1 and 2.2 it follows that the operator f given by (15) satisfies
the assumptions of Theorem 1.1 and consequently it is a diffeomorphism.

From the above theorem we conclude that

Theorem 3.2. If the function F satisfies the assumptions (a1), (a2) and (a3), then the
integro-differential operator Φ given by (1) is a diffeomorphism between the spaces H̄1

and L2. Consequently, the Cauchy problem (2)–(3) has a unique solution uα ∈ H̄1 for
every α ∈ L2 and the mapping L2 3 α 7→ uα ∈ H̄1 is Fréchet-differentiable.

To illustrate the above theorem we give some example.

Example 3.3. Let us consider the integro-differential operator

Φ : H̄1 3 u( · ) 7→ u′( · )−
∫ b

a

F (·, τ, u(τ)) dτ ∈ L2([0, 1],R
)

where F (t, τ, u) = (4tτ−1)u+4tτu3

3(1+u2) . The function F can be written as

F (t, τ, u) = 4
3 tτu−

u

3(1 + u2)

and therefore Fu(t, τ, u) = 4
3 tτ + u2−1

3(1+u2)2 . Let us put

A(t, τ) = 4
3 tτ, B(t, τ) = 1

3
and w(t, τ) = A(t, τ) +B(t, τ). Then∣∣F (t, τ, u)

∣∣ ≤ A(t, τ)|u|+B(t, τ),∣∣Fu(t, τ, u)
∣∣ ≤ w(t, τ).
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Moreover,

‖A‖2L2 =
∫ 1

0

∫ 1

0

16
9 t2τ2 dτ dt = 16

81 <
1
2 =

(√2
2

)2

and
‖w‖2L2 =

∫ 1

0

∫ 1

0

(4
3 tτ + 1

3

)2
dτ dt = 43

81 < 2.

So, the function F satisfies the assumptions of Theorem 3.2. Consequently, the oper-
ator Φ is a diffeomorphism between H̄1 and L2([0, 1],R

)
. In conclusion, the equation

u′(t)−
∫ 1

0

(4tτ − 1)u(τ) + 4tτu3(τ)
3
(
1 + u2(τ)

) dτ = α(t), t ∈ [0, 1],

possesses a unique solution uα ∈ H̄1 for any α ∈ L2([0, 1],R
)
and the mapping

L2([0, 1],R
)
3 α 7→ uα ∈ H̄1

is differentiable.

4. Concluding remarks. Example 3.3 is purely theoretical but these kinds of equations
are used in electrodynamics, biomechanics and elasticity (see for instance [2, 7]). The
analysis of such models could be long and quite complex, therefore we are going to
devote them a separate paper.

The Cauchy problem for an integro-differential equation of Volterra type was con-
sidered in the paper [3]. Using an infinite dimensional theorem on diffeomorphisms (cf.
[3, Theorem 3.1]) and Banach’s contraction principle we have proved a result similar to
Theorem 3.2. Unfortunately, in the case of Fredholm integro-differential operators, the
contraction principle cannot be applied. In this paper we used the Neumann method
instead (Lemma 2.1).

The approach proposed in our paper is quite general and works for hyperbolic oper-
ators of the form

Φ(z)(x, y) = zxy(x, y) +
∫ x

a

∫ y

c

F
(
t, τ, zx(t, τ), zy(t, τ), z(t, τ)

)
dt dτ,

where (x, y) ∈ [a, b]× [c, d] ⊂ R2.
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