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Abstract. We present Z. Naniewicz method of optimization a coercive integral functional J
with integrand being a minimum of quasiconvex functions. This method is applied to the mini-
mization of functional with integrand expressed as a minimum of two quadratic functions. This
is done by approximating the original nonconvex problem by appropriate convex ones.

1. Introduction

1.1. Outline of the origin of the problem. Minimization of the integral functional
of the form

I(v) :=
∫
Ω

f(x, v(x), Dv(x)) dx

lies at the heart of the calculus of variations. Here Ω is an open, bounded subset of Rn
with sufficiently smooth boundary, v is an element of a suitable Sobolev space V of
functions on Ω with values in Rm and integrand f : Ω × Rn × Rmn → R ∪ {+∞} is
assumed to satisfy certain regularity and growth conditions. In particular I has to be
bounded from below.

The problem has a history going back to C. F. Gauss, Lord Kelvin, G. L. Dirich-
let, B. Riemann and their wrong argumentation that the existence of minimum of the
prototype of I, the Dirichlet integral, is guaranteed by its boundedness from below.

2010 Mathematics Subject Classification: Primary 49J40, 49N15, 49J45; Secondary 46N10,
28E99.
Key words and phrases: Nonconvex optimization, Convex analysis, Duality, Young measures.
The paper is in final form and no version of it will be published elsewhere.

DOI: 10.4064/bc101-0-14 [169] c© Instytut Matematyczny PAN, 2014



170 P. PUCHAŁA

Karl Weierstrass’ counterexample and further effort of Arzela, Hilbert, Lebesgue, Tonelli,
Poincaré (and many others; we can also mention Stanisław Zaremba, who contributed
to the Dirichlet problem as well) has led to the method of minimizing I called ‘the
direct method’. In this method we consider a minimizing sequence for I, that is, a se-
quence (un) ⊂ V of functions belonging to the suitable function space V , such that
limn→∞ I(un) = inf{I(v) : v ∈ V }.

We have to prove that the sequence (un) is convergent (passing to a subsequence if
necessary) to some u0 ∈ V with respect to an appropriate topology. Here coercivity of I
is important. If we show next that I is sequentially lower semicontinuous with respect to
this topology then we are done, for (up to a subsequence) we have

inf{I(v) : v ∈ V } = lim
n→∞

I(un) ≥ I(u0).

It follows that u0 is a minimum of I. Usually the most challenging task when carrying
this procedure is proving lower semicontinuity of I.

It is known that weak (sequential) lower semicontinuity of I is equivalent to the
convexity of its integrand with respect to the third variable.

Variational problems outlined above are also met in applied sciences. In physics or
engineering, especially in nonlinear elasticity, we have m = n, v is called the displace-
ment of the elastic body Ω, f—the density of the internal energy, while I—the energy
functional.

However, it turns out that this convexity requirement is too restrictive for engineering
applications. More precisely, mere convexity of the energy density with respect to its third
variable is inconsistent with the principle of the material frame indifference. This raises
need for generalizations of the notion of convexity. One of them is quasiconvexity in the
Morrey sense.

Definition 1.1 ([Mor]). We say that a continuous function h : Rmn → R is quasiconvex
(in the Morrey sense), if for every ξ ∈ Rmn, for every bounded open subset ω ⊂ Rn
of Lebesgue measure meas(ω) and for every function z ∈ C1

0 (ω,Rm) the Jensen type
inequality is satisfied:

meas(ω)h(ξ) ≤
∫
ω

h(ξ +Dz(x)) dx.

It is also known ([AF], see also [D]) that if f : Ω×Rn×Rmn → R fulfils the conditions:

(i) Ω 3 x 7→ f(x, s, ξ) is measurable for all (s, ξ) ∈ Rm × Rmn,
(ii) for a.e. x ∈ Ω, Rm × Rmn 3 (s, ξ) 7→ f(x, s, ξ) is continuous;
(iii) 0 ≤ f(x, s, ξ) ≤ A(x) + C(|s|2 + |ξ|2),

where A(·) is a nonnegative summable function in Ω and C is a nonnegative con-
stant, then the functional I is sequentially weakly lower semicontinuous (swlsc for short)
on the Sobolev space H1(Ω;Rm) iff for every s ∈ Rm and a.e. x ∈ Ω the function
Rmn 3 ξ 7→ f(x, s, ξ) is quasiconvex.

The situation becomes much more complicated if the integrand is not quasiconvex.
In this case the minimized functional does not generally attain its infimum and any
minimizing (sub)sequence for I does not converge strongly but only weakly. The elements
of the minimizing sequence oscillate wildly around its weak limit. Basically, there are
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two ways to proceed in this case (see for instance references quoted in [NP]). The first
one is to ‘quasiconvexify’ the original functional and to gather “nonconvexities” into its
quasiconvex envelope. However, computing explicit form of the quasiconvex envelope is
very difficult in practice. Further, carrying out this procedure (when possible) erases some
important information concerning the behaviour of the minimizing sequences, because the
weak limit of each minimizing sequence does not provide by itself all interesting aspects of
the considered problem. Minimizers of quasiconvexifications themselves are not sufficient
to characterize properly oscillatory phenomena of such problems (microstructural features
describing fine mixtures of the phases in the phase transition problems, for instance).

Another way is to enlarge the space of admissible functions from Sobolev spaces to
the space of parametrized Young measures ([Y]). In this approach the Young measures
can be regarded as means of summarizing the spatial oscillatory properties of minimizing
sequences, thus conserving some of that information. From the application point of view,
the detailed structure of minimizing sequences including the behavioural characteristics
of the phases involved appears to be as much important as the minimizers themselves.
Unfortunately, it is a very difficult task to compute the parametrized Young measures
associated with a minimizing sequence.

1.2. Problem description. Nonconvex minimization was one of the fields of vast
mathematical interests of Professor Naniewicz. In this article we describe his original
method of solving a particular class of non-(quasi)convex minimization problems, namely
those involving integrands expressed as minimima of a finite number of (quasi)convex
functions, called phases. (Without loss of generality we can consider minimum of only
two such functions.) We do not present any new results here. The presentation consists
of two parts. In the first part we discuss the general case; the presented results form
the core of the paper [N]. They are further applied to the analysis of a variational prob-
lem involving double-well potential—this is second part of the article based on [NP] (see
also [NP1]—the version of [NP] accepted by professor Naniewicz, unchanged due to the
reviewers remarks).

From now on we will often write
∫
Ω
f(v) dΩ or

∫
Ω
f(v,Dv) dΩ instead of rather

lenghty
∫
Ω
f(x, v(x), Dv(x)) dx.

1.2.1. The first part. In this part we present those results contained in [N] which are
necessary to develop analysis of the double-well potential case. We consider the problem

inf
{
J (v) :=

∫
Ω

min{f1(v,Dv), f2(v,Dv)} dΩ : v ∈ H1(Ω;Rm)
}

:= α, (P)

under the hypothesis that the two integral functionals

v 7→
∫
Ω

f1(v,Dv) dΩ and v 7→
∫
Ω

f2(v,Dv) dΩ

are swlsc and coercive in H1(Ω;Rm). The functional J defined in (P) is not in general
swlsc, so it does not attain its infimum over H1(Ω;Rm). If a function u is a solution
of (P), then there exist functions χΩ1 and χΩ2 defined on Ω with values in {0, 1} such
that

J (u) :=
∫
Ω

min
{
f1(u,Du), f2(u,Du)

}
dΩ =

∫
Ω

[
χΩ1f1(u,Du) + χΩ2f2(u,Du)

]
dΩ = α.
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We want not only to find the weak limit of the minimizing subsequence, but to get
the lacking necessary information concerning its spatial oscillatory properties. In [N]
Z. Naniewicz proposed to search not only for u ∈ H1(Ω;Rm), but also for functions
χ1, χ2 : Ω → [0, 1] (associated with phases f1 and f2 respectively) with χ1 + χ2 ≡ 1,
together with a function R(u, χ1, χ2) (referred to as the relaxation term) such that∫

Ω

[
χ1f1(u,Du) + χ2f2(u,Du)

]
dΩ −R(u, χ1, χ2) = α.

We require that for χ1 and χ2 taking only values 0 or 1 we haveR = 0. It is also important
to find an explicit formula for R.

We can now state the extended version of the optimization problem (P):
Find u ∈ H1(Ω;Rm), χ1 : Ω → [0, 1], χ2 : Ω → [0, 1] with χ1 + χ2 ≡ 1 and the

function R = R(u, χ1, χ2) such that∫
Ω

[
χ1f1(u,Du) + χ2f2(u,Du)

]
dΩ −R(u, χ1, χ2) = α,

and [
χ1f1(u,Du) + χ2f2(u,Du) = min{f1(u,Du), f2(u,Du)}

]
⇒ R(u, χ1, χ2) = 0.

In order to solve this extended problem we approximate the ‘primal’ functional J by
suitably defined functionals J k. Despite not being quasiconvex they attain their infimum
αk over H1(Ω;Rm). For a sequence (uk) suitably constructed we also have J k(uk) = αk

and moreover, αk → α as k →∞.
It is now possible to take the advantage of the fact that uk is a minimizer of J k, by

constructing two sequences (χk1) and (χk2) of functions on Ω with values in the set {0, 1}.
The elements of these sequences are connected with each other by the relation: χk1+χk2 ≡ 1
for each k ∈ N. This enables us to write values of the approximating functionals J k on
the elements of (uk) as

J k(uk) =
∫
Ω

[
χk1(uk)f1(uk) + χk2(uk)f2(uk)

]
dΩ.

Further, it follows that (uk) is a minimizing sequence for J . As it is coercive by assump-
tion, there exists a weakly convergent (in H1(Ω;Rm)) subsequence of (uk). Its limit u is
a solution of (P), i.e. ∫

Ω

min
{
f1(u,Du), f2(u,Du)

}
dΩ = α

and χi = χΩi , i = 1, 2. Now the relaxation term R can be determined.

1.2.2. The second part. In the second part of the presentation we specialize our consid-
erations to the functional whose integrand is expressed as a minimum of two quadratic
functions. We formulate and fully solve the nonconvex optimization problem, that is, we
obtain an explicit formula for infimum.

The functional to be minimized is

J (v) :=
∫
Ω

min
{ 1

2a |ε(v) + C|2 , 1
2b |ε(v) +D|2

}
dx,
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where ε(v) ∈ L2(Ω;Rn×nsym ) is the symmetrized gradient of the function v ∈ H1
0 (Ω;Rn),

i.e. ε(v) := 1
2 (∇v +∇T v). The minimization problem is of the form

inf
{
J (v) : v ∈ H1

0 (Ω;Rn)
}

:= α. (Q)
The results of the previous section enable us to formulate convex optimization problems
approximating (Q). Next we formulate their Fenchel duals with solutions (pk). This makes
it possible to write down the representations for the sequence (αk) of approximate infima
in (Q). The next step is a compensated compactness type result for the sequences (pk)
and (uk)—a minimizing sequence for J . Now we are ready to state the main results of
this part. The first one is the explicit formula for α—the infimum of the functional with
nonconvex integrand. This formula involves:
— the weak limit of the sequence (uk);
— the weak limit of the sequence (pk);
— the weak∗ limits of the sequences of characteristic functions (χka) and (χkb ) related

to the phases 1
2a |ε(v) + C|2 and 1

2b |ε(v) +D|2, respectively.
The second main result is expressing the infimum α by the Young measures associated

with the minimizing sequence and establishing some relations between the weak∗ limit
of the sequence (ψk) = (χkb − χka) and the related parametrized measures.

2. General case—functional with integrand built of minimum of quasiconvex
functions. We want to minimize the integral functional

J (v) :=
∫
Ω

min
{
f1(x, v(x), Dv(x)), f2(x, v(x), Dv(x))

}
dx

subject to v ∈ H1(Ω;Rm). This is our problem (P). We further assume that:
(i) Ω is a bounded domain in Rn with Lipschitz continuous boundary;

the functions fi, i = 1, 2, satisfy Carathéodory conditions:
(ii) Ω 3 x 7→ fi(x, s, ξ) is measurable for every (s, ξ) ∈ Rm × Rmn;
(iii) for almost all (a.e., with respect to the Lebesgue measure dx) x ∈ Ω, the function

Rm × Rmn 3 (s, ξ) 7→ fi(x, s, ξ) is continuous;
and growth condition
(iv) a(x) + c

(
|s|2 + |ξ|2

)
≤ fi(x, s, ξ) ≤ A(x) + C

(
|s|2 + |ξ|2

)
,

where a(·) and A(·) are summable functions in Ω, c and C are positive constants.

2.1. Approximation result. The first step in constructing a minimizing sequence
for J is defining, for each k ∈ N, an open partition Πk = {Ωki }

lk
i=1 of Ω. This parti-

tion has the following properties:
(a) ∀i 6= j, 1 ≤ i, j ≤ lk, we have Ωki ∩Ωkj = ∅;
(b)

⋃lk
i=1 Ω

k

i = Ω;
(c) ∀i ∈ {1, . . . , lk} we have Ωki = interior(Ωki );
(d) ∀Ωki ∈ Πk ∃N k

i ⊂ {1, . . . , lk+1} such that Ωki =
⋃
j∈Nk

i
Ω
k+1
j , where Ωk+1

j ∈ Πk+1;
(e) diameter(Πk) := max

{
diameter(Ωki ) : 1 ≤ i ≤ lk

}
→ 0 as k →∞.
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Now for v ∈ H1(Ω;Rm) we define the approximation functional J k as follows.

J k(v) :=
lk∑
i=1

min
{∫

Ωk
i

f1(v) dΩ,
∫
Ωk

i

f2(v) dΩ
}
.

We also set
α := inf

{∫
Ω

min{f1(v), f2(v)} dΩ : v ∈ H1(Ω;Rm)
}
.

By definition, the functional J k, k ∈ N, is a global majorant of J . Moreover, thanks
to (d) above, the sequence (J k(v)) of real numbers, v ∈ H1(Ω;Rm), is decreasing.

We can state approximating optimization problems for (P):

inf
{
J k(v) : v ∈ H1(Ω;Rm)

}
:= αk, (Pk)

with (αk)—the decreasing sequence of approximate solutions. Indeed, the following propo-
sition is true.

Proposition 2.1. Assume that f1, f2 are quasiconvex and satisfy (ii), (iii), (iv) and that
(a), (b), (c), (d), (e) hold. Then the problem (Pk) has at least one solution, i.e. there
exists uk ∈ H1(Ω;Rm) such that

αk = J k(uk). (1)

Moreover,
αk ↘ α as k →∞. (2)

Proof. We will prove (1) first. We will show for k ∈ N that although J k is not in
general quasiconvex, it attains its infimum. Let (ũkj ) be a minimizing sequence for J k.
Its boundedness in H1(Ω;Rm) is guaranteed by the coercivity condition, so (up to a
subsequence) it is weakly convergent in H1(Ω;Rm) to some uk as j →∞.

By definition, Πk contains finite number of subregions Ωki , i = 1, . . . , lk, so passing
to an appropriate subsequence, if necessary, we may also suppose that for each Ωki ∈ Πk

and for all j ∈ N, either ∫
Ωk

i

f1(ũkj ) dΩ <

∫
Ωk

i

f2(ũkj ) dΩ,

or ∫
Ωk

i

f2(ũkj ) dΩ <

∫
Ωk

i

f1(ũkj ) dΩ,

or ∫
Ωk

i

f1(ũkj ) dΩ =
∫
Ωk

i

f2(ũkj ) dΩ.

Denote by Ikf1
, Ikf2

and Ik0 all of those indices from {1, . . . , lk} for which respectively the
first, the second and the third relation holds. Thus we have

J k(ũkj ) =
∫⋃

i∈Ik
f1
∪Ik

0
Ωk

i

f1(ũkj ) dΩ +
∫⋃

i∈Ik
f2
Ωk

i

f2(ũkj ) dΩ, j = 1, 2, . . .
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By the weak lower semicontinuity of these functionals we are led to

αk = lim
j→∞

J k(ũkj ) ≥
∫⋃

i∈Ik
f1
∪Ik

0
Ωk

i

f1(uk) dΩ +
∫⋃

i∈Ik
f2
Ωk

i

f2(uk) dΩ = J k(uk).

Observe that if the above inequality were sharp, it would contradict the definition of αk.
Equation (1) now follows.

We now sketch the proof of (2). Choose and fix an arbitrary w ∈ H1(Ω;Rm). We
claim that

J k(w)↘ J (w) as k →∞. (3)

Let us introduce:

— subsets of Ω:
Ωf1(w) :=

{
x ∈ Ω : f1(x,w(x), Dw(x)) < f2(x,w(x), Dw(x))

}
;

Ωf2(w) :=
{
x ∈ Ω : f1(x,w(x), Dw(x)) > f2(x,w(x), Dw(x))

}
;

Ω0(w) :=
{
x ∈ Ω : f1(x,w(x), Dw(x)) = f2(x,w(x), Dw(x))

}
,

— sets of indices:
i ∈ Ikf1

(w)⇔
∫
Ωk

i

f1(w) dΩ <

∫
Ωk

i

f2(w) dΩ;

i ∈ Ikf2
(w)⇔

∫
Ωk

i

f1(w) dΩ >

∫
Ωk

i

f2(w) dΩ;

i ∈ Ik0 (w)⇔
∫
Ωk

i

f1(w) dΩ =
∫
Ωk

i

f2(w) dΩ

— and further subsets of Ω:

Γkf1
(w) :=

⋃
i∈Ik

f1
(w)

Ωki ; Γkf2
(w) :=

⋃
i∈Ik

f2
(w)

Ωki ; Γk0(w) :=
⋃

i∈Ik
0 (w)

Ωki .

We know that f1 and f2 are measurable with respect to the first variable. By the Lusin
theorem, for any ε > 0 we can find a sufficiently small ω ⊂ Ω such that

— Ω \ ω is closed;
— f1

(
·, w(·), Dw(·)

)
and f2

(
·, w(·), Dw(·)

)
are continuous on Ω \ ω.

We can also suppose that

—
∫
ω

max
(
|f1(w)|, |f2(w)|

)
dΩ ≤ ε.

By the definition of J k and continuity of f1 and f2 on Ω \ ω we can write

lim
k→∞

J k(w) ≤
∫
Ωf1 (w)\ω

f1(w) dΩ +
∫
Ωf2 (w)\ω

f2(w) dΩ +
∫
Ω0(w)\ω

f1(w) dΩ + ε

≤
∫
Ωf1 (w)

f1(w) dΩ +
∫
Ωf2 (w)

f2(w) dΩ +
∫
Ω0(w)

f1(w) dΩ + 2ε = J (w) + 2ε,

and (3) follows. Let (ũj) be a minimizing sequence for J and an arbitrary ε > 0 be fixed.
For every sufficiently large j there exists K(j) ∈ N with the property we have

J k(ũj) ≤ J (ũj) + ε for all k ≥ K(j)
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and consequently
αk ≤ α+ 2ε

for sufficiently large k. Thus we have
α ≤ lim

k→∞
αk ≤ α+ 2ε,

which implies (2) and finishes the proof of Proposition 2.1.

We will now take advantage of the fact that uk is the minimizer of J k. We have
just proved that αk is an infimum in the approximation problem (Pk). For any
w ∈ H1(Ω;Rm) we define the functions χkfi

(w) : Ω → {0, 1}, i = 1, 2, by the follow-
ing formulae:

χkf1
(w)(x) :=

{
1, if x ∈ (Γkf1

(w) ∪ Γk0(w))
0, otherwise;

χkf2
(w)(x) :=

{
1, if x ∈ Γkf2

(w)
0, otherwise.

Obviously, the sequences (χkfi
(uk)), i = 1, 2, are bounded in L∞(Ω), so (up to a subse-

quence) we have χkfi
(uk) → χfi weakly∗ in L∞(Ω). The range of the limit functions is

the interval [0, 1] and χf1 + χf2 ≡ 1. With the help of these functions we can write

J k(uk) =
∫
Ω

[
χkf1

(uk)f1(uk) + χkf2
(uk)f2(uk)

]
dΩ.

From the definition of αk and the fact that uk is a minimizer of J k it also follows that
for every v, w ∈ H1(Ω;Rm)∫

Ω

[
χkf1

(uk)f1(uk) + χkf2
(uk)f2(uk)

]
dΩ ≤

∫
Ω

[
χkf1

(v)f1(w) + χkf2
(v)f2(w)

]
dΩ.

The coercivity condition ensures that the sequence (uk) is bounded in H1(Ω;Rm), so (up
to a subsequence) we have uk → u weakly in H1(Ω;Rm). Thus from Proposition 2.1 we
obtain that

J k(uk) =
∫
Ω

[
χkf1

(uk)f1(uk) + χkf2
(uk)f2(uk)

]
dΩ → J (u) as k →∞.

We can now sum up above considerations by stating the first of the main results of the
article.

Theorem 2.2. Suppose that f1 and f2 are quasiconvex and satisfy (ii), (iii), (iv). Then
there exist a sequence (uk) ⊂ H1(Ω;Rm), sequences (χkfi

), i = 1, 2, of functions from
H1(Ω;Rm) to {0, 1} with χkf1

(uk) + χkf2
(uk) ≡ 1, such that

(i′) uk → u weakly in H1(Ω;Rm) as k →∞;
(ii′) χkfi

(uk) → χfi
weakly∗ in L∞(Ω) as k → ∞, χfi

: Ω → [0, 1], i = 1, 2, and
χf1 + χf2 ≡ 1;

(iii′) limk→∞
∫
Ω

[
χkf1

(uk)f1(uk) + χkf2
(uk)f2(uk)

]
dΩ = α;

(iv′) for all v, w ∈ H1(Ω;Rm)∫
Ω

[
χkf1

(uk)f1(uk) + χkf2
(uk)f2(uk)

]
dΩ ≤

∫
Ω

[
χkf1

(v)f1(w) + χkf2
(v)f2(w)

]
dΩ.
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Remark 2.3. There is much more in the article [N] than it has been presented above:
(a) the sufficient condition for u to be a solution of (P) is stated and proved;
(b) there is a detailed analysis of the one-dimensional Dirichlet problem with the re-

laxation term R calculated explicitly;
(c) the optimization problem (P), where Ω is an elastic body in the three-dimensional

Euclidean space and integrand of J is of the form
min

{
Cijkl(v)εij(v)εkl(v), Dijkl(v)εij(v)εkl(v)

}
,

with C and D being Hooke’s tensors of elasticity and ε the strain tensor field with
respect to the displacement vector field v, is analyzed.

3. Special case—quadratic double-well energy. This section is devoted to the anal-
ysis of the special case of the problem described above. Namely, we want to minimize the
functional with integrand being a minimum of two quadratic functions:

J (u) =
∫
Ω

min
{ 1

2a |ε(u) + C|2 , 1
2b |ε(u) +D|2

}
dx,

where u : Ω ⊂ Rn → Rn is a competing vector-valued function from the Sobolev space
H1

0 (Ω;Rn), Ω ⊂ Rn—a bounded domain in Rn with sufficiently smooth boundary ∂Ω.
Further, the symbol “| · |” stands for the Euclidean norm in Rn×nsym , ε(u) ∈ L2(Ω;Rn×nsym )
is the symmetrized gradient of u ∈ H1

0 (Ω;Rn) (i.e. ε(v) := 1
2 (∇v + ∇T v)), C,D ∈

L∞(Ω;Rn×nsym ) and a, b ∈ L∞(Ω) are such that a(x), b(x) ≥ δ > 0 a.e. in Ω for a positive
constant δ.

3.1. Statement of the problem and its approximation. Our problem (Q) has the
form

inf
{
J (u) : u ∈ H1

0 (Ω;Rn)
}

:= α.

Theorem 2.2 ensures the existence of sequences uk ∈ H1
0 (Ω;Rn), χka ⊂ {0, 1} and χkb ⊂

{0, 1}, χka + χkb ≡ 1, with the properties that
(a) {uk} is a minimizing sequence for (Q),
(b) uk → u weakly in H1

0 (Ω;Rn) as k →∞,
(c) χka → χa, χkb → χb weak∗ in L∞(Ω) as k → ∞, where χa : Ω → [0, 1], χb : Ω →

[0, 1] with χa + χb ≡ 1,

(d)
∫
Ω

[ 1
2χ

k
aa|ε(uk) + C|2 + 1

2χ
k
b b|ε(uk) +D|2

]
dx := αk → α as k →∞,

(e)
∫
Ω

[ 1
2χ

k
aa|ε(uk) + C|2 + 1

2χ
k
b b|ε(uk) +D|2

]
dx

≤
∫
Ω

[ 1
2χ

k
aa|ε(w) + C|2 + 1

2χ
k
b b|ε(w) +D|2

]
dx ∀w ∈ H1

0 (Ω;Rn).

Let us now introduce the function which in some sense describes the behaviour of the
minimizing sequence {uk}:

ψk = χkb − χka (4)
with the property

(ψk)2 = 1. (5)
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Observe that we can write

χka = 1− ψk

2 and χkb = 1 + ψk

2 . (6)

From (e) above it follows that uk is a solution of the convex optimization problem

inf
{
J k(v) : v ∈ H1

0 (Ω;Rn)
}

:= αk, (Qk)

where

J k(v) =
∫
Ω

[ 1
2χ

k
aa|ε(v) + C|2 + 1

2χ
k
b b|ε(v) +D|2

]
dx, v ∈ H1

0 (Ω;Rn),

i.e.
J k(uk) = αk.

Convex problems (Qk) are approximating problems of the nonconvex one (Q). According
to Proposition 2.1 the sequence (αk) converges to α as k →∞.

Using the properties of the scalar product we get

χkaaC + χkb bC = aC + bD

2 + ψk
bD − aC

2 ,

1
2 χ

k
aa|C|2 + 1

2 χ
k
b b|D|2 = 1

2

(
a|C|2 + b|D|2

2 + ψk
b|D|2 − a|C|2

2

)
,

so that J k(·) admits the representation

J k(v) =
∫
Ω

[1
2(χkaa+ χkb b)|ε(v)|2 + (χkaaC + χkb bD)ε(v) + 1

2 χ
k
aa|C|2 + 1

2 χ
k
b b|D|2

]
dx.

It will be convenient to introduce the notation:
mk := χkaa+ χkb b,

A+ := aC + bD

2 , A− := bD − aC
2 ,

Bk := a|C|2 + b|D|2

2 + ψk
b|D|2 − a|C|2

2 .

(7)

With the help of the above and (6) we can write the approximation functional in the
form

J k(v) =
∫
Ω

[1
2m

k|ε(v)|2 + (A+ + ψkA−)ε(v) + 1
2B

k
]
dx. (R)

3.2. Fenchel dual of the approximating problems. Recall that if X is a Hilbert
space and a function f : X → R ∪ {+∞} has a nonempty domain, then its Fenchel
conjugate f c is defined by

X∗ 3 p 7→ f c := sup
{
〈p, x〉 − f(x) : x ∈ X

}
∈ R ∪ {+∞}.

Roughly speaking, the Fenchel idea is to associate with primal minimization problem S

its Fenchel dual S∗. Their (finite) infima, s and s∗ respectively, are linked by the equation
s+ s∗ = 0. See [A] (especially Chapter 3) for details.

Let m > 0 be fixed constant and consider the function

φ : Rn×nsym 3 ξ 7→ φ(ξ) := 1
2 |ξ|

2 + E · ξ ∈ R ∪ {+∞}.



NONCONVEX MINIMIZATION—APPROXIMATION BY CONVEX PROBLEMS 179

Calculating its Fenchel conjugate φc we get:

∀p ∈ Rn×nsym φc(p) = sup
{
p · ξ − φ(ξ) : ξ ∈ Rn×nsym

}
= p · 1

m (p− E)− φ( 1
m (p− E)) = 1

2m |p− E|
2.

Define next a continuous linear operator L as follows:

L : H1
0 (Ω;Rn) 3 v 7→ L(v) := ε(v) ∈ L2(Ω;Rn×nsym ),

with the transpose L∗ : L2(Ω;Rn×nsym )→ H−1(Ω;Rn) given by:

∀p ∈ L2(Ω;Rn×nsym ) ∀v ∈ H1
0 (Ω;Rn) 〈L∗p, v〉 =

∫
Ω

p · ε(v) dx.

The kernel of L∗ consists of all vectors p ∈ L2(Ω;Rn×nsym ) satisfying the equation∫
Ω
p · ε(v) dx = 0. Finally, define the integral operators Ik, k ∈ N:

Ik(q) :=
∫
Ω

[ 1
2mk

∣∣q − (A+ + ψkA−)
∣∣2 − 1

2 B
k
]
dx, q ∈ L2(Ω;Rn×nsym ).

We can now state the Fenchel dual of (Qk):

inf
{
Ik(q) : q ∈ KerL∗

}
:= βk. (Qk∗)

The Fenchel duality theorem now yields for each v ∈ H1
0 (Ω;Rn) and each q ∈ KerL∗

J k(v) ≥
∫
Ω

[1
2m

k|ε(uk)|2 + (A+ + ψkA−) · ε(uk) + 1
2 B

k
]
dx

= J k(uk) = αk = −βk = −Ik(pk)

= −
∫
Ω

[ 1
2mk

∣∣pk − (A+ + ψkA−)
∣∣2 − 1

2 B
k
]
dx

≥ −
∫
Ω

[ 1
2mk

∣∣q − (A+ + ψkA−)
∣∣2 − 1

2 B
k
]
dx = −Ik(q), (8)

where
pk = mkε(uk) +A+ + ψkA− ∈ KerL∗ (9)

is a solution of the dual problem (Qk∗). From the above formula we obtain

ε(uk) = 1
mk

(pk −A+ − ψkA−). (10)

To get various representations of approximate infima it would be convenient to introduce
some notation. Consider the obvious equalities

a = a+ b

2 − b− a
2 := m−m and b = a+ b

2 + b− a
2 := m+m.

Observe that for any element of the set

Ω0 := {x ∈ Ω : a(x) = b(x)} (11)

we have m = 0 and m = a.
Recalling (6) and definition of mk in (7) we can express mk as

mk = 1− ψk

2 (m−m) + 1 + ψk

2 (m+m),
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and (9) becomes

pk =
[1− ψk

2 (m−m) + 1 + ψk

2 (m+m)
]
ε(uk) +A+ + ψkA−, (12)

which allows us to write

ψkε(uk) = pk

m
− m

m
ε(uk)− 1

m
A+ − 1

m
ψkA−. (13)

This makes it possible to obtain various forms of αk.

3.3. Representations of the approximate infima. Since pk ∈ KerL∗ we have∫
Ω

pk · ε(uk) dx =
∫
Ω

[
mk|ε(uk)|2 + (A+ + ψkA−) · ε(uk)

]
dx = 0. (14)

Taking into account that αk = −Ik(pk) and equation (14) we get the following represen-
tations of αk:

αk = 1
2

∫
Ω

[
−mk|ε(uk)|2 + Bk

]
dx = 1

2

∫
Ω

[
(A+ + ψkA−) · ε(uk) + Bk

]
dx. (15)

From (10), (14) and (15) it follows that∫
Ω

[ 1
mk
|pk|2 − 1

mk
(A+ + ψkA−) · pk

]
dx = 0

and further

αk = −1
2

∫
Ω

[
− 1
mk
|pk|2 + 1

mk

∣∣A+ + ψkA−
∣∣2 − Bk] dx

= 1
2

∫
Ω

[ 1
mk

(A+ + ψkA−) · pk − 1
mk

∣∣A+ + ψkA−
∣∣2 + Bk

]
dx, (16)

which leads us to the equality∫
Ω

[
mk
∣∣ε(uk)

∣∣2 + 1
mk
|pk|2

]
dx =

∫
Ω

[ 1
mk

∣∣A+ + ψkA−
∣∣2] dx. (17)

After some algebraic manipulations we can write the right hand side of (17) as∫
Ω

(a+ b

2ab + ψk
a− b
2ab

)(
|A+|2 + 2ψkA+A− + |A−|2

)
dx.

Next, using the facts that χka + χkb = 1, (ψk)2 = 1 and that {ψk} is weakly∗ convergent
in L∞, it is possible to pass to the limit with k and get

lim
k→∞

∫
Ω

[
mk
∣∣ε(uk)

∣∣2 + 1
mk
|pk|2

]
dx = 1

2

∫
Ω

(
a|C|2 +b|D|2

)
dx+ 1

2

∫
Ω

ψ
(
b|D|2−a|C|2

)
dx.

Abbreviating

B := a|C|2 + b|D|2

2 + ψ
b|D|2 − a|C|2

2
we can write

lim
k→∞

∫
Ω

[
mk|ε(uk)|2 + 1

mk
|pk|2

]
dx =

∫
Ω

B dx. (18)
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Since in Ω \ Ω0 (with Ω0 given by (11)) the equation (13) is valid, we obtain from (15)
the following representation of an approximate infimum:

αk = 1
2

∫
Ω\Ω0

[
ab(C −D)
b− a

· ε(uk) + bD − aC
b− a

· pk

+ ab(|C|2 − |D|2)
2(b− a) − ψk ab|C −D|

2

2(b− a)

]
dx

+ 1
2

∫
Ω0

[
−a|ε(uk)|2 + a(|C|2 + |D|2)

2 + ψk · a(|D|2 − |C|2)
2

]
dx

+ 1
2

∫
Ω0

pk · ε(uk) dx.

(19)

If we observe that Bk = 1
a (|A+|2 + |A−|2 + 2ψkA+ ·A−) in Ω0 and recall that (ψk)2 = 1,

then we can use equation (16) to derive from (9) yet another representation of αk:

αk = 1
2

∫
Ω\Ω0

[
ab(C −D)
b− a

· ε(uk) + bD − aC
b− a

· pk + ab(|C|2 − |D|2)
2(b− a)

− ψk ab|C −D|
2

2(b− a)

]
dx+ 1

2

∫
Ω0

1
a
|pk|2 dx− 1

2

∫
Ω0

pk · ε(uk) dx. (20)

We will further use formulas (19) and (20) to express the infimum α in terms of weak
limits u, p and ψ.

3.4. Explicit formulas for infimum. In this section we will present the explicit for-
mulas for infimum in (Q) – the second of the main results of the article. The following
lemma will be of use.

Lemma 3.1. Let Ω ⊂ Rn be a bounded domain in Rn with Lipschitz continuous bound-
ary ∂Ω. Then

pk · ε(uk)→ p · ε(u) weakly in L1(Ω).

This can be proved with the help of the Rellich compactness theorem, Chacon’s biting
lemma, characterization of weak convergence in L1 via biting convergence (see Lemma 6.9
in [P]) and Vitali covering theorem (see [NP] for details). The weak lower semicontinuity
of convex functionals, the upper semicontinuity of concave functionals and Lemma 3.1
yield

lim inf
k→∞

1
2

∫
Ω0

1
a
|pk|2 dx ≥ 1

2

∫
Ω0

1
a
|p|2 dx,

lim sup
k→∞

1
2

∫
Ω0

[
−a|ε(uk)|2 + Bk

]
dx ≤ 1

2

∫
Ω0

[
−a|ε(u)|2 + B

]
dx,

lim
k→∞

1
2

∫
Ω0

pk · ε(uk) dx = 1
2

∫
Ω0

p · ε(u) dx,

where
B = a(|C|2 + |D|2)

2 + ψ
a(|D|2 − |C|2)

2 in Ω0,

and ψ = χb − χa.
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Consider now the first integral on the right hand side in (19). It can be shown
(see [NP]) that although the functions ab(C−D)

b−a and bD−aC
b−a are not assumed to belong to

L2(Ω \Ω0;Rn×nsym ), it is true that

lim
k→∞

1
2

∫
Ω\Ω0

[ab(C −D)
b− a

· ε(uk) + bD − aC
b− a

· pk

+ ab(|C|2 − |D|2)
2(b− a) − ψk ab|C −D|

2

2(b− a)

]
dx

= 1
2

∫
Ω\Ω0

[ab(C −D)
b− a

· ε(u) + bD − aC
b− a

· p

+ ab(|C|2 − |D|2)
2(b− a) − ψ ab|C −D|

2

2(b− a)

]
dx.

(21)

Now, for v ∈ H1
0 (Ω;Rn) and q ∈ KerL∗ let us set

I(v, q) :=∫
Ω\Ω0

[ab(C −D)
b− a

· ε(v) + bD − aC
b− a

· q + ab(|C|2 − |D|2)
2(b− a) − ψ ab|C −D|

2

2(b− a)

]
dx. (22)

Using the fact that for all k ∈ N we have pk ∈ KerL∗, (21) and passing to the limit as
k →∞ in (19) and (20) we obtain the system of inequalities

1
2

∫
Ω0

[
−a|ε(u)|2

]
dx+

∫
Ω0

p · ε(u) dx

≥ α+ 1
2

∫
Ω0

p · ε(u) dx− I(u, p)−
∫
Ω0

B dx

≥ 1
2

∫
Ω0

[1
a
|p|2 − 1

a

(
|A+|2 + |A−|2 + 2ψA+ · A−

)]
dx. (23)

Since p = aε(u) + A+ + ψA− and A− = aD−C2 in Ω0, ψ2 − 1 = −4χaχb it follows
from (23) that

0 ≥ α−
∫
Ω0

[
(A+ + ψA−) · ε(u) + B

]
dx− 1

2

∫
Ω0

p · ε(u) dx− I(u, p)

≥ −1
2

∫
Ω0

χaχb a|C −D|2 dx.

Thus we are allowed to conclude that there exists a θ ∈ [0, 1] such that

α =
∫
Ω0

[
(A+ + ψA−) · ε(u) + B

]
dx+ 1

2

∫
Ω0

p · ε(u) dx

+
∫
Ω\Ω0

[ab(C −D)
b− a

· ε(u) + bD − aC
b− a

· p+ ab(|C|2 − |D|2)
2(b− a) − ψ ab|C −D|

2

2(b− a)

]
dx

− θ

2

∫
Ω0

χaχb a|C −D|2 dx.

We can at last formulate the theorem being the main application of Theorem 2.2.
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Theorem 3.2. Let u ∈ H1
0 (Ω;Rn) be the weak limit of {uk}—the minimizing sequence

for J in (Q). Let p ∈ L2(Ω;Rn×nsym ) the weak limit of {pk}—the sequence of solutions of
the dual problems (Qk∗).

Then there exists θ ∈ [0, 1] such that the infimum α in the minimization problem (Q)
can be expressed as

α =
∫
Ω0

[(a(C +D)
2 + ψ

a(D − C)
2

)
· ε(u) + a(|C|2 + |D|2)

2

+ ψ
a(|D|2 − |C|2)

2

]
dx+ 1

2

∫
Ω0

p · ε(u) dx

+
∫
Ω\Ω0

[ab(C −D)
b− a

· ε(u) + bD − aC
b− a

· p+ ab(|C|2 − |D|2)
2(b− a)

− ψ ab|C −D|
2

2(b− a)

]
dx− θ

2

∫
Ω0

χaχb a|C −D|2 dx.

(24)

Moreover, the above formula allows us to express α in the following ways:

α =
∫
Ω0

[
−a|ε(u)|2 + a(|C|2 + |D|2)

2 + ψ
a(|D|2 − |C|2)

2

]
dx+ 3

2

∫
Ω0

p · ε(u) dx

+
∫
Ω\Ω0

[ab(C −D)
b− a

· ε(u) + bD − aC
b− a

· p+ ab(|C|2 − |D|2)
2(b− a)

− ψ ab|C −D|
2

2(b− a)

]
dx− θ

2

∫
Ω0

χaχb a|C −D|2 dx,

(25)

and
α =

∫
Ω0

1
a
|p|2 dx− 1

2

∫
Ω0

p · ε(u) dx

+
∫
Ω\Ω0

[ab(C −D)
b− a

· ε(u) + bD − aC
b− a

· p+ ab(|C|2 − |D|2)
2(b− a)

− ψ ab|C −D|
2

2(b− a)

]
dx+ 2− θ

2

∫
Ω0

χaχb a|C −D|2 dx,

(26)

and finally

α = 1
2

∫
Ω0

[1
a
|p|2 − a|ε(u)|2 + a(|C|2 + |D|2)

2 + ψ
a(|D|2 − |C|2)

2

]
dx

+
∫
Ω\Ω0

[ab(C −D)
b− a

· ε(u) + bD − aC
b− a

· p+ ab(|C|2 − |D|2)
2(b− a)

− ψ ab|C −D|
2

2(b− a)

]
dx+ 1− θ

2

∫
Ω0

χaχb a|C −D|2 dx+ 1
2

∫
Ω0

p · ε(u) dx.

(27)

3.5. Young measure representations for infimum. The last part of the article is
devoted to expressing the infimum in (Q) by the Young measure associated with the
minimizing for J sequence (uk). This is possible because of the structure of this se-
quence. We will also see that sometimes it is possible to calculate an explicit form of the
(nonhomogeneous) Young measure. We will need some notation.
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Denote by ω+
0 and ω−0 such subsets of Ω that ψk → 1 weakly in L1(ω+

0 ) and ψk → −1
weakly in L1(ω−0 ). Let ω0 := ω+

0 ∪ ω
−
0 and

h(x, λ) := min
{ 1

2a(x)|λ+ C(x)|2, 1
2b(x)|λ+D(x)|2

}
, λ ∈ Rn×nsym , x ∈ Ω.

Theorem 3.3. Let ν = {νx}x∈Ω be the parametrized Young measure associated with the
minimizing sequence {uk}. Then

α =
∫
Ω

∫
Rn

h(x, λ) dνx(λ) dx =
∫
Ω\Ω0

[ab(C −D)
b− a

· ε(u) + bD − aC
b− a

· p

+ ab(|C|2 − |D|2)
2(b− a) − ψ ab|C −D|

2

2(b− a)

]
dx+

∫
Ω0

[
−
∫
Rn×n

a |λ|2 dνx(λ)

+ a(|C|2 + |D|2)
2 + ψ

a(|D|2 − |C|2)
2

]
dx+ 3

2

∫
Ω0

p · ε(u) dx.

(28)

Moreover, we have
νx = δε(u(x)) a.e. in ω0. (29)

Sketch of the proof. Let us put for k ∈ N hk1 := a(x)
∣∣ε(uk(x))

∣∣2, x ∈ Ω. The equi-
integrability of the sequence (pk · ε(uk)) together with (9) multiplied by ε(uk) yields
the equiintegrability and weak convergence (by passing to a subsequence, if necessary) in
L1(Ω), of (hk1). Its weak limit, according to Theorem 6.2 in [P], equals

∫
Rn×n a|λ|2 dνx(λ).

Now from the inequality

h
(
x, ε(uk(x))

)
≤ 1

2m
k
∣∣ε(uk)

∣∣2 + (A+ + ψkA−) · ε(uk) + 1
2B

k

and Theorem 6.2 in [P] again we can conclude that the weak limit of the sequence
{h
(
x, ε(uk(x))

)
} is the same as in the right hand side of (28).

Strong convergence of the given sequence of measurable functions is the necessary and
sufficient condition for the Dirac measure to be the Young measure associated with this
sequence, as Proposition 6.12 in [P] states. We thus have to prove strong convergence of
(ε(uk)) in L2(ω0;Rn×nsym ) to establish (29). The fact that the upper Kuratowski limit of
the sequence {ψk} = {χkb − χka} is the set {−1, 1} allows us to use the Balder theorem
(see [V], Theorem 4) and to conclude that ψk → 1 a.e. in ω+

0 (ψk → −1 a.e. in ω−0 ),
by passing to a subsequence if necessary. Further, the equiintegrability of (|ε(uk)|2) and
Lemma 3.1 yield ∫

ω±0

b
∣∣ε(uk)

∣∣2 dx→ ∫
ω±0

b |ε(u)|2 dx.

Since we also have ε(uk) ⇀ ε(u) in L2(ω±0 ;Rn×nsym ), we can deduce the strong convergence
of (ε(uk)) in L2(ω0;Rn×nsym ).

Corollary 3.4. From (25) and (28) it follows that

lim
k→∞

∫
Ω0

a|ε(uk)|2 dx =
∫
Ω0

∫
Rn

a |λ|2 dνx(λ) dx =
∫
Ω0

a|ε(u)|2 dx

+ θ

2

∫
Ω0

χaχb a|C −D|2 dx,
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giving rise to the formula that allows us to calculate θ ∈ [0, 1]. Namely, if we let

d := lim
k→∞

∫
Ω0

a
∣∣ε(uk)

∣∣2 dx− ∫
Ω0

a |ε(u)|2 dx, (30)

then from the equation
d = θ

2

∫
Ω0

χaχb a|C −D|2 dx

we obtain

θ =


2d∫

Ω0
χaχb a|C −D|2 dx

if
∫
Ω0
χaχb a|C −D|2 dx > 0

0 otherwise,
(31)

or equivalently

θ =


2
∫
Ω0

∫
Rn a |λ|2 dνx(λ) dx−

∫
Ω0
a|ε(u)|2 dx∫

Ω0
χaχb a|C −D|2 dx

if
∫
Ω0
χaχb a|C −D|2 dx > 0

0 otherwise.
(32)

Remark 3.5. It is worth to point out that the formulas (25), (26), (27) make it possible
to express the infimum of (Q) via (31) in terms of the limits u, p, χa, χb, d only. On the
other hand, the formula (28) expresses it in terms of the parametrized Young measures
{νx(·)} which, in practice, are much more difficult to derive.

Example 3.6. Let ω0 = {x ∈ Ω : χa(x)χb(x) = 0}. Without loss of generality one can
suppose that ψ = 1 a.e. in ω0. Let ω−0k = {x ∈ ω0 : ψk(x) = −1}. Since ψk → 1 weak∗ in
L∞(ω0), we have

2|ω−0k| =
∫
ω0

(1− ψk) dx→ 0.

Thus ψk → 1 strongly in L1(ω0) (in fact, in Lp(ω0) for any p ≥ 1). By the above theorem
this means that νx = δε(u(x)) a.e. in ω0.

Remark. It should be stressed that the main ideas and techniques presented in this
article are essentially due to Professor Zdzisław Naniewicz, who prematurely died in
March 2012.
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