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Abstract. In this expository article we use topological ideas, notably compactness, to estab-
lish certain basic properties of orderable groups. Many of the properties we shall discuss are
well-known, but I believe some of the proofs are new. These will be used, in turn, to prove
some orderability results, including the left-orderability of the group of PL homeomorphisms of
a surface with boundary, which are fixed on at least one boundary component.

1. Orderable groups. A group G is left-orderable if there is a strict total ordering <
of its elements which is left-invariant, that is g < h implies fg < fh for all f, g, h ∈ G.

It is easy to check that, given a left-ordering < of G, the positive cone P = P< :=
{g ∈ G |1 < g} satisfies:

(1) P · P ⊂ P (that is, P is a sub-semigroup)
(2) For each g ∈ G, exactly one of g = 1, g ∈ P , or g−1 ∈ P holds. (G is partitioned:

G = {1} t P t P−1.)
Conversely, given a subset P of G satisfying (1) and (2), one can define a left-ordering

of G by
g < h ⇐⇒ g−1h ∈ P.

The correspondence <→ P< is a bijection between the set of left orderings and the set
of subsets of G satisfying (1) and (2). It is sometimes more convenient to consider the
left-ordering to be a subset of G, in other words an element of the power set P(G), rather
than a relation on the elements of G; we will adopt this viewpoint.

It is easy to see that a left-orderable group is also right-orderable; the criterion
g ≺ h ⇐⇒ gh−1 ∈ P defines a right-ordering with the same positive cone. In fact
the literature is about evenly divided between discussing left- and right-ordered groups.
If G has a left-ordering which is also right-invariant, we say it is bi-orderable. This is
equivalent to the positive cone being normal:

(3) g−1Pg ⊂ P for all g ∈ G.
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Useful reference books on orderable groups are [2], [14] and [20]. The article [9] is also
highly recommended.

1.1. Algebraic properties of orderable groups. Knowing that a group is orderable
tells us that it has certain special algebraic properties.
• Left-ordered groups G are torsion-free.
For if 1 < g, then g < g2, g2 < g3 and by transitivity 1 < gn for all n. Similarly, if

g < 1 no positive power of g can equal the identity.
• Suppose ϕ : G→ H is a surjective homomorphism with kernel K. If K and H are

left-orderable, then so is G.
In fact, one can take a positive cone for G the union of the positive cone of K and the

preimage under ϕ of the positive cone of H. This does not hold for biorderable groups
unless there is a biordering of K invariant under conjugation by elements of G.
• Left-orderable groups G satisfy the zero-divisor conjecture, that is, the group ring

ZG has no zero divisors.
The proof is not difficult, but we omit it here. It is unknown whether the integral

group ring of an arbitrary torsion-free group can have zero divisors.
• If G is left-orderable and H is any group, and ZG and ZH are isomorphic as rings,

then G and H are isomorphic as groups. This is proved in [21].
• Bi-ordered groups do not have generalized torsion: if g is not the identity, then any

product of conjugates of g cannot be the identity.
This is because if g > 1 such a product must also be positive, and if g < 1 the product

will be less than the identity too.
• Bi-ordered groups have unique roots: gn = hn, n > 0 =⇒ g = h.
To see this, one easily checks that in a biordered group inequalities multiply: g < h

and g′ < h′ imply gg′ < hh′ (this does not necessarily hold in a left-ordered group). So
if g < h we conclude g2 < h2, g3 < h3, etc. The powers can never be equal.
• In a bi-ordered group, if gn commutes with h for some n > 0, then g commutes

with h.
For if g and h do not commute, say g < h−1gh. Multiply this inequality by itself

repeatedly to conclude gn < h−1gnh.

1.2. Examples. Many groups of interest to topologists are orderable.
• Zn is bi-orderable, as an additive group. For example, use the lexicographic ordering.

There are uncountably many possible orderings of Zn for n ≥ 2. For Z2, one may take
all integral lattice points to one side of a line through the origin with irrational slope as
an example of a positive cone.
• Free groups are bi-orderable. More generally, Vinogradov [31] proved the free prod-

uct of biorderable groups is biorderable.
• Braid groups are left-orderable (Dehornoy [11]) but not bi-orderable for more than

two strands.
That wonderful and surprising result is what first got me interested in orderable

groups.
• Pure braid groups are bi-orderable. [27] [19]
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• Fundamental groups of surfaces are bi-orderable, except the Klein bottle group
〈x, y |x−1yx = y−1〉 which is only left-orderable, and the projective plane’s group which
is not even left-orderable, as it is a torsion group.

This is proved in [26]. The Klein bottle group cannot be biordered. If it were, the
defining relation would imply that y is positive if and only if y−1 is positive, a contradic-
tion. However, it is left-orderable, because if one maps it onto Z by killing the (normal)
infinite cyclic subgroup 〈y〉, we have left-orderable kernel and image.
• All classical knot groups are left-orderable and some (but not all) are biorderable.
This is a consequence of a more general result about ordering 3-manifold groups,

which we will discuss in Section 7.1. See also [24] and [8].
• The group Homeo(I, ∂I) of homeomorphisms h of the unit interval I = [0, 1], such

that h(0) = 0 and h(1) = 1, is left-orderable. Here the group operation is composition.
To see this, choose a well-ordering r1 ≺ r2 ≺ . . . of the rational numbers in the interval

(0, 1). For two functions g, h ∈ Homeo(I, ∂I) declare g < h if and only if g(rk) < h(rk)
in the usual ordering of I, where rk is the first rational (in the well-ordering) at which
the values of g and h differ.

A similar argument shows that the group of orientation-preserving homeomorphisms
of the reals (or the rationals) is left-orderable, that is
• Homeo+(R) is left-orderable.
The group SL(2,R) acts on the circle (for example by fractional linear transformations

of R ∪ {∞}), and in fact has the homotopy type of S1. Its universal cover S̃L(2,R) is a
group which acts on the real numbers by order-preserving homeomorphisms — it is one
of the eight 3-manifold geometries of Thurston [30]. Therefore it may be considered a
subgroup of Homeo+(R) and we conclude
• S̃L(2,R) is left-orderable.

2. Topology on the power set. For any set X, one may consider the collection of
all its subsets — that is its power set — often denoted by P(X) or 2X . This latter
notation indicates that the power set may be identified with the set of all functions
X → {0, 1} (using von Neumann’s definition 2 := {0, 1}), via the characteristic function
χA : X → {0, 1} associated to a subset A ⊂ X defined by

χA(x) =
{

1 if x ∈ A,
0 if x /∈ A.

The set 2X is a special case of a product space: one gives {0, 1} the discrete topology,
and 2X is considered the product of copies of {0, 1} indexed by the set X. The product
topology is the smallest topology on the set 2X such that for each x ∈ X the sets
{f ∈ 2X : f(x) = 0} and {f ∈ 2X : f(x) = 1} are open. In other notation, the subsets of
P(X) of the form

Ux = {A ⊂ X |x ∈ A} and U cx = {A ⊂ X |x /∈ A}
are open in the “Tychonoff” topology on the power set. Note that the sets Ux and U cx are
also closed, as they are each other’s complement. A basis for the topology can be gotten
by taking finite intersections of various Ux and U cx. A famous theorem of Tychonoff asserts
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that an arbitrary product of compact spaces is again compact. Since the space {0, 1} is
compact, we conclude:
Proposition 1. The power set P(X) of any set X, with the Tychonoff topology, is
compact. It is also totally disconnected.

We recall that a space is said to be totally disconnected if for each pair of points, there
exist disjoint open neighbourhoods of the two points whose union is the whole space. If
Y and Z are distinct points of P (X) (that is, subsets of X), take x ∈ X to be some
element of one of those subsets, but not the other; then the sets Ux and U cx form such
neighbourhoods.

If X is finite, then so is P(X) and the Tychonoff topology is just the discrete topology.
If X is countably infinite, then P(X) is homeomorphic to the Cantor space obtained
by deleting middle thirds successively of the interval [0, 1]. In particular, the Tychonoff
topology on P(X) is metrizable when X is countable.
Example. Let G be a group and define S(G) to be the collection of all sub-semigroups
of G. That is, S(G) = {S ⊂ G | g, h ∈ S =⇒ gh ∈ S}. Note that S(G) ⊂ P(G). We will
argue that S(G) is in fact a closed subset P(G). Consider the complement P(G) \ S(G).
A subset Y of X belongs to P(G) \ S(G) if and only if there exist g, h ∈ Y with gh /∈ Y .
Therefore

P(G) \ S(G) =
⋃

g,h∈G

{Ug ∩ Uh ∩ U cgh}.

Each term in the brackets is an open set, by definition, and therefore so is the intersection
of the three, and P(G) \ S(G) is a union of open sets. It follows that S(G) is closed.

3. The spaces of orderings. We define the space of left-orderings, LO(G) of a group G
to be the collection of all subsets P ⊂ G satisfying (1) and (2) above. We have just shown
that (1) is a closed condition, and a similar argument shows the same for (2). This proves
the following.
Proposition 2. LO(G) is a closed subset of P(G), and is therefore a compact and totally
disconnected space (with the subspace topology).

This space was introduced in the literature by Adam Sikora [29] and has been used
to prove some fundamental properties of left-orderable groups: [23], [22].

Although we are considering the topology on left-orderings to be the Tychonoff topol-
ogy inherited from P(G), there is a natural way to view it in terms of inequalities. Suppose
< is a left-invariant ordering of the group G, and suppose we specify a finite number of
inequalities g1 < h1, . . . , gn < hn which hold. Then the set of all left-orderings, in which
all these inequalities are still true, forms an open neighbourhood of < in LO(G). The set
of all such neighbourhoods is a basis for the topology of LO(G).

Similarly, we can define the set O(G) of bi-invariant orderings on the group G to be
the collection of subsets P ⊂ G satisfying (1), (2), (3). The reader can check the following.
Proposition 3. O(G) is a closed subset of LO(G), so it is also a compact totally dis-
connected space.

Of course, for a given G the spaces LO(G) or O(G) may well be empty.
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4. Testing for orderability. Suppose we wish to determine if a given group G is left-
orderable. Let us assume for the moment that G is finitely generated, with generators
g1, . . . , gn. The length of a group element (relative to the choice of generators) is the
smallest integer k such that there is an expression of g in terms of the generators

g = gε1
i1
· · · gεk

ik

where εi = ±1. Let Bk(G) denote the set of all elements of G of length at most k. This
is a finite set, which includes the identity (length zero) and also is invariant under taking
inverses. It can be regarded as the k-ball of the Cayley graph of G, relative to the given
generators.

Now let us define a subset Q of Bk(G) to be a preorder of Bk(G) if
(1′) (Q ·Q) ∩Bk(G) ⊂ Q and
(2′) Bk(G) = {1} tQ tQ−1.

To check whether, for fixed k, there exists a preorder of Bk(G) is a finite task. If one
can decide the word problem algorithmically for G (with given generators), then there is
an algorithm to decide whether a preorder exists. Notice that if P is a positive cone of a
left-ordering of G, then P ∩Bk(G) is a preorder of Bk(G), so we conclude the following.

Proposition 4. Suppose G is finitely generated by g1, . . . , gn. If G is left-orderable, then
for every positive integer k, Bk(G) admits a preorder.

Perhaps surprisingly, there is a converse.

Theorem 1. Suppose G is generated by g1, . . . , gn and that for all k ≥ 1, there is a
preorder of Bk(G). Then G is left-orderable.

Proof. We will prove this using compactness of P(G). Consider the set

Pk = {R ⊂ G |R ∩Bk(G) is a preorder of Bk(G)}.

One argues as usual that Pk is a closed subset of P(G), and by hypothesis Pk is nonempty.
Note also that a preorder of Bk+1(G) intersected with Bk(G) becomes a preorder of
Bk(G). That is, we have Pk+1 ⊂ Pk. Thus the Pk form a nested descending sequence of
nonempty compact subsets of P(X). We conclude that

∞⋂
k=1
Pk 6= ∅.

Also observe that if g, h belong to Bk(G) then gh is in B2k(G). So if P ∈
⋂∞
k=1 Pk then

P is a sub-semigroup. Similarly P satisfies the partition condition (2) and we conclude
that

LO(G) =
∞⋂
k=1
Pk 6= ∅,

completing the proof.

This means that if a finitely-generated group is not left-orderable, then the algorithm
described will discover that fact in finite time (although one does not know when!).
Moreover, one can design the algorithm to supply a proof of non-left-orderability if it
finds a Bk(G) having no preorder. On the other hand, if the group under scrutiny is
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left-orderable, the algorithm will never end. An example of such an algorithm, due to
Nathan Dunfield, is described in [6] and is available from Dunfield’s website. It was used,
for example, to find a proof that the fundamental group of the Weeks manifold — the
smallest volume closed hyperbolic 3-manifold — is not left-orderable.

The assumption of being finitely-generated is not really essential.
Theorem 2. A group is left-orderable if and only each of its finitely-generated subgroups
is left-orderable.

The proof will use the following version of compactness. A collection of sets is said to
have the finite intersection property if every finite subcollection of the sets has a nonempty
intersection. A space is compact if and only if every collection of closed subsets with the
finite intersection property has a nonempty total intersection.

To prove Theorem 2, consider any finite subset F of the given group G and let 〈F 〉
denote the subgroup of G generated by F . Define

Q(F ) := {Q ⊂ G |Q ∩ 〈F 〉 is a positive cone for 〈F 〉}
For each finite F ⊂ G, Q(F ) is a closed subset of P(G). The family of all Q(F ),

for finite F ⊂ G, is a collection of closed sets which has the finite intersection property,
because

Q(F1 ∪ F2 ∪ . . . ∪ Fn) ⊂ Q(F1) ∩Q(F2) ∩ . . . ∩Q(Fn).
By compactness,

⋂
finite F⊂GQ(F ) 6= ∅.

One can easily verify that any element of
⋂

finiteF⊂GQ(F ) is a left-ordering of G,
completing the proof. In fact ⋂

finite F⊂G
Q(F ) = LO(G).

Corollary 1. An abelian group G is bi-orderable if and only if it is torsion-free.
Proof. We need only show that torsion-free abelian groups are left-orderable (which in
this case is equivalent to bi-orderable). But any finitely generated subgroup is isomorphic
to Zn for some n, which we have already seen to be bi-orderable. The result follows from
Theorem 2.

5. Characterization of left-orderable groups. Following [9], we have a number of
characterizations of left-orderability of a group G. If X ⊂ G, we let S(X) denote the
semigroup generated by X, that is all elements of G expressible as (nonempty) products
of elements of X (no inverses allowed).
Theorem 3. A group G can be left-ordered if and only if for every finite subset
{x1, . . . , xn} of G which does not contain the identity, there exist εi = ±1 such that
1 6∈ S(xε1

1 , . . . , x
εn
n ).

Proof. One direction is clear, for if < is a left-ordering of G, just choose εi so that xε1
i

is greater than the identity. For the converse, by Theorem 2 we may assume that G is
finitely generated, and by Theorem 1 we need only show that each k-ball Bk(G), with
respect to a fixed finite generating set, has a preorder. Now consider {x1, . . . , xn} to be
the entire set Bk(G) \ {1}, and choose εi = ±1 such that 1 6∈ S(xε1

1 , . . . , x
εn
n ).
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We can easily check that the set Q := Bk(G)∩S(xε1
1 , . . . , x

εn
n ) is a preorder of Bk(G).

Note that each xi in the list has its inverse xj also appearing, and necessarily εi and εj
are opposite in sign, for otherwise 1 would be in the semigroup containing them. This
completes the proof of Theorem 3.

Another characterization of left-orderability is due to Burns and Hale [4].

Theorem 4 (Burns–Hale). A group G is left-orderable if and only if for every finitely-
generated subgroup H 6= {1} of G, there exists a left-orderable group L and a nontrivial
homomorphism H → L.

Proof. The forward direction is obvious; just take L = H and use the identity homo-
morphism. To prove the other direction, assume the subgroup condition. According to
Theorem 3, the result will follow if one can show:

Claim. For every finite subset {x1, . . . , xn} of G \ {1}, there exist εi = ±1 such that
1 6∈ S(xε1

1 , . . . , x
εn
n ).

We will establish this claim by induction on n. It is true for n = 1, for S(x1) can-
not contain the identity unless x1 has finite order, which is impossible since the cyclic
subgroup 〈x1〉 must map nontrivially to a left-orderable (hence torsion-free) group.

Next assume the claim true for all finite subsets of G \ {1} having fewer than n

elements, and consider {x1, . . . , xn} ⊂ G \ {1}. By hypothesis, there is a nontrivial ho-
momorphism

h : 〈x1, . . . , xn〉 → L

where (L,≺) is a left-ordered group. Not all the xi are in the kernel; we may assume they
are numbered so that

h(xi)
{
6= 1 if i = 1, . . . , r,
= 1 if r < i ≤ n.

Now choose ε1, . . . , εr so that 1 ≺ h(xεi
i ) in L for i = 1, . . . , r. For i > r, the induction

hypothesis allows us to choose εi = ±1 so that 1 6∈ S(xεr+1
r+1 , . . . , x

εn
n ). We now check that

1 6∈ S(xε1
1 , . . . , x

εn
n ) by contradiction. Suppose that 1 is a product of some of the xεi

i . If all
the i are greater than r, this is impossible, as 1 6∈ S(xεr+1

r+1 , . . . , x
εn
n ). On the other hand

if some i is less than or equal to r, we see that h must send the product to an element
strictly greater than the identity in L, again a contradiction.

A group is said to be indicable if it has the group of integers Z as a quotient, and
locally indicable if each of its nontrivial finitely-generated subgroups is indicable. This
notion was introduced by Higman [16] to study zero divisors and units in group rings.

Corollary 2. Locally indicable groups are left-orderable.

We mention here, without proof, that biorderable groups are locally indicable. So we
have the implications: biorderable =⇒ locally indicable =⇒ left-orderable. Neither of
these implications can be reversed. The braid groups can be used to provide examples. The
3-strand braid group B3 is locally indicable but not biorderable, and the 5-strand braid
group B5 is left-orderable, but not locally indicable. In fact the commutator subgroup
[B5, B5] is finitely generated and perfect [15], meaning it equals its own commutator
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subgroup. Thus there cannot be a nontrivial homomorphism from [B5, B5] to Z, or to any
other abelian group. (See [12] for a more detailed discussion of this.) Another example of
a left-orderable group which is not locally indicable is discussed at the end of Section 7.1.

Corollary 3. Suppose G is a group which has a (finite or infinite) family of normal
subgroups {Gα} such that

⋂
αGα = {1}. If all the factor groups G/Gα are left-orderable,

then G is left-orderable.

Proof. This corollary follows, for if H is a finitely generated subgroup of G, one can
choose α for which H \Gα is nonempty. Then the composition of homomorphisms H ↪→
G→ G/Gα is a nontrivial homomorphism of H to a left-orderable group.

6. Characterization of biorderable groups. Recall that P is the positive cone of a
biordered group (G,<) if and only if it satisfies conditions (1), (2) and (3) cited earlier.
That is, it is a sub-semigroup with the partition property and also normal. The proof of
Theorem 2 adapts easily to a proof of the following.

Theorem 5. A group is biorderable if and only each of its finitely-generated subgroups
is biorderable.

If G is a finitely generated biorderable group, we may consider, as before, the set
Bk(G) of all elements of length at most k, with respect to some fixed set of generators.
We will define a pre-biorder of Bk(G) to be a subset Q of Bk(G) satisfying the conditions
for a preorder

(1′) (Q ·Q) ∩Bk(G) ⊂ Q and
(2′) Bk(G) = {1} tQ tQ−1

plus the condition
(3′) if g ∈ Bk(G) then g−1Qg ∩Bk(G) ⊂ Q,

in other words, if one conjugates an element of Q by an element of Bk(G), and the result is
still in Bk(G), then it must be in Q. Again, checking these conditions, for a fixed Bk(G)
is a finite task. Note that in (3′), closure under the other conjugation gQg−1 follows,
because Bk(G) is closed under taking inverses.

The following two theorems can be proved in a similar way to their counterparts in
the previous section. We leave the details to the reader.

Theorem 6. A finitely-generated group G is bi-orderable if and only if for every positive
integer k, the k-ball Bk(G) relative to a fixed set of generators admits a pre-biorder.

Theorem 7. A group G is bi-orderable if and only if for every finite subset {x1, . . . , xn} ⊂
G \ {1}, there exist εi = ±1 such that 1 /∈ S, where S is the sub-semigroup generated by
the xεi

i and their conjugates x−1
j xεi

i xj.

This is similar to, but sharper than, a characterization due to Fuchs [13], in which S
is replaced by the semigroup generated by the xεi

i and their conjugates by all elements
of G.

Note that there is no direct counterpart to the Burns–Hale theorem for biorderable
groups. If there were, then locally indicable groups should be biorderable, which as men-
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tioned above is not always the case. The inductive step of the proof does not really carry
over to the biorderable case, because of all the conjugates which must be considered.

7. Some applications

7.1. 3-dimensional manifolds. Since this is being presented in the memoir of a knot
theory conference, it is appropriate to mention the following application of the Burns–Hale
theorem, although it already appears in [3] and is based on ideas in [17]. We outline the
proof for the reader’s convenience, and since it is a nice application of the Burns–Hale
theorem.

Theorem 8. Suppose M is an orientable irreducible 3-manifold. Then π1(M) is left-
orderable if and only if there is a nontrivial homomorphism h : π1(M) → L, where L is
a left-orderable group.

Proof. The forward direction is obvious. For the other direction, we will apply the Burns–
Hale theorem. If H is a nontrivial finitely-generated subgroup of π1(M), we need to find
a nontrivial homomorphism from H to a left-orderable group.

Case 1: H has finite index. This is easy; consider the restriction of h to H, which
maps H nontrivially to L.

Case 2: H has infinite index. Then there is a covering p : M̃ →M with p∗π1(M̃) = H.
M̃ is noncompact, but its fundamental group is finitely-generated so, by a theorem of
P. Scott [28], there is a compact 3-dimensional submanifold C ⊂ M̃ with inclusion in-
ducing an isomorphism

π1(C) ∼= π1(M̃) ∼= H.

C necessarily has nonempty boundary. If B ⊂ ∂C is a boundary component which is
a 2-sphere, then irreducibility implies that B bounds a 3-ball in M̃ . That 3-ball either
contains C or its interior is disjoint from C. The former cannot happen because that
would imply the inclusion map π1(C)→ π1(M̃) is trivial. Therefore, we can adjoin that
3-ball to C, removing B as a boundary component and not changing π1(C). This process
allows us to eliminate 2-spheres from ∂C and assume that ∂C is nonempty and has
infinite homology groups. By an Euler characteristic argument, we conclude that C also
has infinite homology. Then we have surjections H ∼= π1(C)→ H1(C)→ Z, the required
left-orderable group.

A similar argument shows the following.

Theorem 9. Suppose M is an orientable irreducible 3-manifold (possibly with boundary)
such that H1(M) is infinite. Then π1(M) is locally indicable.

Corollary 4. Knot groups are locally indicable and therefore left-orderable.

Surgery on a knot may or may not produce a 3-manifold with left-orderable fun-
damental group. For example, consider the +1 surgery on the right-handed trefoil as
indicated in Fig. 1. This means that we remove a tubular neighbourhood N of the knot
and attach a solid torus S1×D2 to the complement of N in such a way that the meridian
{∗} × ∂D2 is attached to the longitudinal curve J which has linking number +1 with
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the knot. This is Dehn’s original construction of the Poincaré homology sphere. This
manifold has fundamental group with presentation (see [25])

〈x, z | (zx)2 = z3 = x5〉.

Fig. 1. Surgery on the trefoil

Here, x and y represent meridian curves indicated in the picture and z = xy. This
group has order 120, and cannot be left-orderable, as it clearly has torsion elements.

On the other hand, if we do surgery on the same knot, but along a longitudinal curve
with linking number −1 with the knot (as J in the figure, but with two more full twists
at the bottom) then we get another homology sphere, with fundamental group

〈a, b | (ba)2 = b3 = a7〉.

As noted by Bergman [1], this group embeds in S̃L(2,R), which we have seen is a
left-orderable group. Therefore this group is left-orderable. Note that, since it abelianizes
to the trivial group, it is not locally indicable.

7.2. Homeomorphisms of surfaces. Suppose M is a connected triangulated surface
with nonempty boundary. Let B denote the union of some or all components of the
boundary, so that B is nonempty. Then define Homeo(M,B) to be the group of homeo-
morphisms of M to itself which are pointwise fixed on B. The group operation is com-
position. Also let HomeoPL(M,B) denote the subgroup of Homeo(M,B) consisting of
piecewise-linear homeomorphisms.

Theorem 10. HomeoPL(M,B) is left-orderable.

Proof. We adapt an argument of Danny Calegary to this theorem for the case
HomeoPL(I2, ∂I2), a result he attributes to Bert Wiest and myself. By the Burns–Hale
theorem, it suffices to consider a nontrivial finitely generated subgroup H of
HomeoPL(M,B) and then find a left-orderable group L and nontrivial homomorphism
h : H → L. Each of the generators of H is a function that fixes some polyhedral subset
of M which contains B. The intersection F of these finitely many subsets will then be a
polyhedral subset of M which contains B; F is exactly the global fixed point set of H.
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Choose a point O in the middle of an edge of a 2-simplex, on the boundary of F , so
that small round neighbourhoods of O will intersect the complement of F in semidisks
in some fixed triangulation of M . We will consider “germs” of functions in H at O in the
following sense. Any polygonal ray R emanating from O is taken by the elements of H
to a polygonal ray h(R) also originating at O. If the initial segment of R leaves O at
angle θ (measured from an edge of F on which O lies), h(R) will be a polygonal curve
whose initial segment is at angle, say, λh(θ). Note that rays starting into F will have their
initial segments fixed. The map h → (1/π)λh is a homomorphism H → Homeo(I, ∂I),
a left-ordered group.

We need to check that this homomorphism is nontrivial — that is, not every ray is
mapped to a polygonal ray which starts in exactly the same direction. If that were the
case, since O is on the boundary of the global fixed point set, the generators cannot
preserve the length of all initial rays. So some generator h of H must send a triangle
OAB linearly to a triangle OA′B′ in which the angles ∠AOB and ∠A′OB′ are equal and
|OA| = |OB|, but |OA′| 6= |OB′| as in Figure 2.

If M is the midpoint of the side AB, then M ′ = h(M) is the midpoint of A′B′. We
leave the reader to verify by elementary geometry that the angles ∠A′OM ′ and ∠M ′OB′

must be unequal. This shows that λh is not the identity mapping. I thank Tali Pinsky
for this observation.

O O

A

B

M

A’

B’

M’

Fig. 2. Showing the map of germs is nontrivial

It is also true that the group of C1 homeomorphisms of the disk, fixed on the boundary,
is left-orderable. This is discussed in Calegari’s blog [5].

Proposition 5. HomeoPL(I2, ∂I2) is not biorderable.

Proof. To see this, consider the PL maps f, g : I2 → I2, where I2 is regarded as the
square in the xy-plane with 0 ≤ x, y ≤ 1. The map f is fixed on the boundary of
the square and rotates an inner square 1/4 ≤ x, y ≤ 3/4 by 180 degrees. The map g

is the identity outside the inner square, takes the point E = (3/8, 5/8) to the point
E′ = (5/8, 3/8) and extended linearly on the four triangles formed by E and the sides
of the inner square, taking them to the triangles formed by E′ and the four sides of the
inner square. One easily checks that f−1gf = g−1. As with the Klein bottle group, the
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existence of a biordering on HomeoPL(I2, ∂I2) would lead to the contradiction that g is
positive iff g−1 is positive.

Open Question. Is Homeo(I2, ∂I2) left-orderable?

We note that Kérékjartò [18] showed in 1920 that Homeo(I2, ∂I2) is torsion-free. See
[10] for a discussion of this and similar results.

Added in proof. Theorem 10 has been generalized in [7] to show that HomeoPL(M,B)
is actually locally indicable. There is also a version in higher dimensions.
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